Some preliminary functions for implementing a PRM-based motion planning algorithm
For this demonstration we will use Matlab's
union function: https://www.mathworks.com/help/matlab/ref/double.union.html
setdiff function: https://www.mathworks.com/help/matlab/ref/double.setdiff.html
Specify your workspace W, number of samples n_samples, neighborhood connectivity radius r, and start point start_point and goal point goal_point.
Take a note of path_length and how it is changing when you change the number of samples or each time you run the program.
Generating Samples
Generate n_samples samples uniformly distributed over the workspace of W=[1 14]x[0 8] .
We will create the Samples as a cell data in Matlab.
Notice that since you are generating the samples randomly. Everytime you run the algorithm your roadmap will change.
clear all
fig_samples=figure;
n_samples=60; %specify this value
W={[1 14],[0 8]}; %specify this value
Samples(:,1) = W{1}(1,1) + (W{1}(1,2)-W{1}(1,1))*rand(n_samples,1); % x coordiante
Samples(:,2) = W{2}(1,1) + (W{2}(1,2)-W{2}(1,1))*rand(n_samples,1); % y coordiante
plot(Samples(:,1),Samples(:,2),'o')
xlim([W{1}(1,1)-1,W{1}(1,2)+1])
ylim([W{2}(1,1)-1,W{2}(1,2)+1])
axis square
Some programming tricks, for copy content of one figure to another. we use fig_PRM to plot the roadmap
fig_PRM=figure();
fig_samplesChil = fig_samples.Children;
copyobj(fig_samplesChil, fig_PRM);
Connecting the samples to create the roadmap
Now let us connect the points using r-radius rule, where we set the r to be 2.
We will save the edge lengths between any two nodes in a matrix called edge_length (this matrix is going to be symmertric by construct).
hold on
edge_length=-1*ones(n_samples+2,n_samples+2);%we initialize this matrix -1; at the end of process if an element is -1 it means that the corresponding elements are not connected.
%edge_length has two extra rows and columns, as place holder for start and goal points (nodes)
r=2; %neighborhood radius (specify this value)
Adj_table={};
node_set=(1:1:n_samples);
for i=1:n_samples
Adj_table{i}=[];%Adj_table of node i is initialized empty
for j=setdiff(node_set,[i])
if ((Samples(i,1)-Samples(j,1))^2+(Samples(i,2)-Samples(j,2))^2<=r^2)
line([Samples(i,1) Samples(j,1)],[Samples(i,2) Samples(j,2)],'Color','r')
Adj_table{i}=union(Adj_table{i},[j]);
edge_length(i,j)=sqrt((Samples(i,1)-Samples(j,1))^2+(Samples(i,2)-Samples(j,2))^2);
end
end
clear temp n_samples_minus_i j
end
Some programming tricks, for copy content of one figure to another. we use fig_PRM to plot the roadmap
fig_start_goal_connected=figure();
fig_PRMChil = fig_PRM.Children;
copyobj(fig_PRMChil, fig_start_goal_connected);
Joining the start and goal points to the roadmap
We add the start and goal points as the last two nodes on the PRM graph
start_point=[2,2];
goal_point=[11, 2];
plot(start_point(1,1),start_point(1,2),'m>')
plot(goal_point(1,1),goal_point(1,2),'gs')
Samples(n_samples+1,:)=[2,2];
Samples(n_samples+2,:)=[11, 2];
Adj_table{n_samples+1}=[];%Adj_table of start node is initialized empty
Adj_table{n_samples+2}=[];%Adj_table of goal node is initialized empty
%connecting to the nodes in r radius of the points
Colour(n_samples+1)='m';
Colour(n_samples+2)='g';
for i=[n_samples+1, n_samples+2]
for j=1:n_samples
if ((Samples(i,1)-Samples(j,1))^2+(Samples(i,2)-Samples(j,2))^2<=r^2)
line([Samples(i,1) Samples(j,1)],[Samples(i,2) Samples(j,2)],'Color',Colour(i),'LineWidth',3)
edge_length(i,j)=sqrt((Samples(i,1)-Samples(j,1))^2+(Samples(i,2)-Samples(j,2))^2);
edge_length(j,i)=edge_length(i,j);
Adj_table{i}=union(Adj_table{i},[j]);
Adj_table{j}=union(Adj_table{j},[i]); %i is also a neighbor of j
end
end
clear temp n_samples_minus_i
end
Some programming tricks, for copy content of one figure to another. we use fig_PRM to plot the roadmap
fig_shortestpath=figure();
fig_start_goal_connectedChil = fig_start_goal_connected.Children;
copyobj(fig_start_goal_connectedChil, fig_shortestpath);
Plotting the shortest path
[parent,dist]=Dijkstra_search(n_samples+2,Adj_table,edge_length,n_samples+1,n_samples+2);
path=extract_path(parent,n_samples+2)
path_length=dist(n_samples+2)
if length(path)~=0
for k=1:length(path)-1
line([Samples(path(k),1),Samples(path(k+1),1)],[Samples(path(k),2),Samples(path(k+1),2)],'Color','Y','LineWidth',4)
hold on
end
end
Dijkstra'a algorithm
function [parent,dist]=Dijkstra_search(n,Adj_table,weight,v_start,v_goal)
%n is the number of the nodes in the graph
%Adj_table adjacency table of the graph (assumes this table is defined as a matlab cell)
%weight: efge weight matrix
%v_start: start node label
%v_goal: goal node label
for i=1:n %(line 1 on pseudo code)
dist(i)=inf;%(line 2 on pseudo code)
parent(i)=-1; %(line 3 on pseudo code) %-1 is equivalent of none, it means that node i does not have a parent
end
dist(v_start)=0; %(line 4 on pseudo code)
parent(v_start)=v_start; %(line 5 on pseudo code)
Q=(1:1:n); %(line 6 on pseudo code)
while length(Q)~=0 %(line 7 on pseudo code)
dist_Q=dist(Q);
[min_dist,index_min]= min(dist_Q);
v=Q(index_min); %(line 8 on pseudo code)
dist_Q=[]; Q(index_min)=[]; %(line 9 on pseudo code)
for w=Adj_table{v} %(line 10 on pseudo code)
if dist(w)>dist(v)+weight(v,w) %(line 11 on pseudo code)
dist(w)=dist(v)+weight(v,w); %(line 12 on pseudo code)
parent(w)=v;%(line 12 on pseudo code)
end
end
end
end
Extract path
function P=extract_path(parent,v_goal)
P=[v_goal]; %(line 1 on pseudo code)
u=v_goal; %(line 2 on pseudo code)
while parent(u)~=u %(line 3 on pseudo code)
u=parent(u); %(line 4 on pseudo code)
P=[u P]; %(line 5 on pseudo code)
if u==-1 %for discounected graphs
P=[];
break
end
end
end
@ Solmaz Kia
May 14, 2023
Kia Cooeprative Systems Lab
University of California Irvine