Introduction to Robot Motion
Planning & Navigation
Module 5

Solmaz S. Kia (solmaz.eng.uci.edu)
solmaz@uci.edu
Mechanical and Aerospace Engineering Department
University of California Irvine

©Solmaz Kia, UCI

Chapter 5: Motion Planning via Sampling

» general roadmaps and their desirable properties,

» complete planners based on exact roadmap computation (specifically, we will review decomposition-based
roadmaps and will introduce a novel shortest-paths visibility graph),

» shortest-path planning via visibility roadmap and shortest path search via Dijkstra’s algorithm.

» general-purpose planners based on sampling and approximate roadmaps. (Sampling-based Roadmap Methods). For
this general-purpose planners we will discuss:
e connection rules for fixed resolution grid-based roadmaps,
e connection rules for arbitrary-resolution methods,
e comparison between sampling-based approximate and exact planners

» incremental sampling-based planning methods, including:
e from multi-query to single-query,
e rapidly-exploring random trees (RRT),
e the application of receding-horizon incremental planners to sensor-based planning.

©Solmaz Kia, UCI

Motion Planning via Sampling

) L
° -~. e m—m————== e
° L4 ° W S /"‘\‘\\\ _="7 N]
L4 L] W -r ., o O SN - \
. . . ¥) A d ~é. \)
b . KN 2. R =
/

\ T
N
AN
P /
° ’ \ ~ ,)ll
o . . .o) . " \\ ’i ‘ ?: o \\) *\ “:
/ - |
L4 . r» AN I"g (N
o o D o * ;//I O’ \\ ‘i o l"/‘
L . s 4 S R
* * . \ R
\ 7/
\ Pranst
. L N

“cloud representation” of the free configuration space for robots and obstacles of arbitrary shape

compute a roadmap from a cloud in the next chapter

©Solmaz Kia, UCI

Roadmaps

i wy o)

A roadmap is a collection of locations in the configuration space along with paths Ao

i land Park &
connecting them.
. ;

* With each path, we associate a positive weight that represents a cost for

— @ Garden Grove o iy S
traveling along that path, for example, the path length or the travel time. l Santa Al fus

Canyon

Orange

* Think of a roadmap as a weighted graph G = (V,E,w), wherew is a D b I o i
Valle TH T ; ¢ 6 Canyon
function that assigns the weight (e.g., path length) to each edge in E. A= @ e - 8 @ nngferen
Huntington Costa Mesa, Park E:r?;ocr?

Beach

] Lake Forest Rancho Santa
& Margarita

h “Newport 7

L p
Beach= /% San Yoaquin Lagina\s
2 O Hills Woods &
) @ Mission Viejo oto De Ca:
., /CrystallCove
N State Park \
N\ Aliso Viejo Galivan

©)
RN @ Ladera Ranch
aBeach .
N\
\ X Rancho \
Laguna Niguel Mission-Viej
10
San Juan
Capistrano
Dana Point

©Solmaz Kia, UCI

Roadmaps

roadmap may have the following properties:

the roadmap is accessible if, for each point qstqrt € Qfrees

there is an easily computable path from g¢;4,+ to some
node in the roadmap,

similarly, the roadmap is departable if, for each point
dgoal € Qfree, there is an easily computable path from

some node in the roadmap to q 4,4, and

the roadmap is connectivity-preserving if, given a
connected free configuration space (i.e., any two
configurations in Q sy, are connected by a path in Qfrc),
then any two locations of the roadmap are connected by a
path in the roadmap,

the roadmap is efficient with factor § = 1 if, for any two
locations in the roadmap, say u and v, the path length
from u to v along edges of the roadmap is no longer than
6 times the length of the shortest path from u to v in the
environment

Vo2
C@

The notions of accessibility and departability are
not fully specified as they depend upon the notion
of “easily computable path.”

©Solmaz Kia, UCI

Complete Planners on Exact Roadmaps

Decomposition-based roadmaps:

Example: sweeping trapezoidation algorithm

* guaranteed to be accessible and departable (via straight segments)
and connectivity-preserving

* does not contain shortest paths among environment locations

environments with polygonal obstacles.

Visibility roadmaps: the visibility graph ¢ = (V, E,w), is defined as
i. the nodes V of the visibility graph are all convex vertices of the

polygons 04, :*+, O,,

ii. the edges E of the visibility graph are all pairs of vertices that are
visibly connected. That is, given u, v € V, we add the edge {u, v}
to the edge set E if the straight-line segment between u and v is
not in collision with any obstacle, and

iii. the weight of an edge {u, v} is given by the length of the segment
connecting u and v.

N/

environments with polygonal obstacles.

©Solmaz Kia, UCI

Complete Planners on Exact Roadmaps

Computational complexity of visibility roadmap
* Number of obstacle vertices is n, then the number of nodes in the visibility graph is at most n

 To compute the edges E, we need to check every pair of nodes v;, v; € V and see if the line segment
intersects with any of the n obstacle edges.

« Thus, the graph can be computed in a total runtime of 0(n3)

« A more sophisticated implementation (de Berg et al., 2000) reduces this runtime to 0(n?log(n))

©Solmaz Kia, UCI

Complete Planners on Exact Roadmaps

Properties of visibility roadmap:
» If the free configuration space is connected, then the visibility

graph is connected, departable, and accessible.

» The shortest path from start to goal is a path in the visibility Gstart ™
graph. Hence, the roadmap obtained via the visibility graph is
optimally efficient, in the sense that the efficiency factor § is 1.

Theorem 5.1 (Shortest paths through polygonal obstacles) Consider a configuration space with polygonal
configuration space obstacles.
Any shortest path in the free configuration space between g4+ and q 44

(i) consists of only straight line segments, and

(i) has segments whose endpoints are either the start location q.,,¢, the goal location q,,,;, Or an obstacle
vertex (or, more precisely, a convex obstacle vertex if start and goal locations are not non-convex vertices).

©Solmaz Kia, UCI

Shortest Paths in Weighted Graphs via Dijkstra’s Algorithm

The minimum-weight path between two nodes, also called the shortest path in a weighted graph, is a path of minimum weight
between the two nodes

Dijkstra’s algorithm

Input: a weighted graph GG and a start node v,
Output: the parent pointer and dist values for each node in the graph GG
// Initialization of distance and parent pointer for each node

1: for each node vin G':

2 dist(v) := +oo

3 parent(v) := NONE
4: dist(vstart) =0
5
6

: parent(vsat) := SELF
: () := set of all nodes in GG
/] Main loop to grow the tree and update distance estimates

7: while () is not empty :

8: find node v in Q with smallest dist(v)

9: remove v from ()

10: for each node w in () connected to v by an edge :
11: if dist(w) > dist(v) + weight(v, w) :

12: dist(w) := dist(v) 4+ weight (v, w)

13: parent(w) := v

14: return parent values and dist values for all nodes v

» The shortest path tree as {parent(u), u} for each node u for which parent(u) is different from +co.
» Given a goal node v,,,; We can use the parent values to reconstruct the sequence of nodes on the shortest path from
Vstart 10 Vgoqr USINg the The extract-path algorithm from Chapter 2 of Ref [1].

©Solmaz Kia, UCI

. . ©Solmaz Kia, UCI
General-purpose Planners via Sampling-based Roadmaps

Probabilistic roadmaps (PRM) are an approximate roadmap of the robot's free space built by randomly sampling free
connections and attempting connections between them. The roadmap can then be searched as usual for a path from the start
to the goal.

The basic algorithm for constructing a PRM is:
1.Sample N configurations at random from the Q-
space (plot a--b).

2.Add all feasible configurations and the start

and goal to the roadmap. These are known
as milestones. (plot c)

3.Test pairs of nearby milestones for visibility,
and add visible edges to the roadmap. (plot d--e)

4.Search for a path from the start to the goal.
(d) ©) (plot f)

It can be shown that the method is probabilistically complete,
e ifit finds a path, the path will be feasible;
e ifit does not find a path, then this answer might be incorrect;
* The chance of this incorrect answer decreases to as N increases, given some relatively mild assumptions on the
shape of the free space.

General-purpose Planners via Sampling-based Roadmaps

probabilistic roadmap (PRM) algorithm

Input: number of sample points in roadmap N € N. Requires access to a sampling algorithm, collision detection algorithm,
and a notion of neighborhood in Q)
Output: aroadmap (V, E) for the free configuration space Qfree
1: initialize (V, E) to be the empty graph
/| compute a set of locations V' in Qfree, via sampling & collision detection
while number of nodes in V' is less than N :
compute a new sample ¢ in the configuration space)
if the configuration g is collision-free :
V=V U{q}
/| compute a set of paths E via the following connection rule
for each sampled location g in V :
for all other sampled locations p in a neighborhood of ¢ :
if the path from ¢ to p hits no obstacle :
E := E'U{path from p to ¢}

DR e N

10: return (V, E)

©Solmaz Kia, UCI

Neighborhood Functions

PRM: a motion planning method based on computing a roadmap for the free configuration space Q. via

(1) sampling,
(2) collision detection, and
(3) a so-called connection rule.

A connection rule is an algorithm that decides when and how to (try to) compute a path connecting two nodes of a sampled

configuration space.

A significant computational expense in PRM and its variants, is computing nearest-neighbors (and near-neighbors).

r-radius rule: fix a radiusr > 0 and select
all locations p within distance r of q.

K-closest rule: select the
K closest locations p to q.

©Solmaz Kia, UCI

component-wise K-closest rule: from each
connected component of the current
roadmap, select the K closest locations p to q.

Multiple-query and Single-query Scenarios

Roadmap-based methods are structured in general as a two-phase computation process:
(i) a preprocessing phase — given the free configuration space, compute the roadmap, followed by
(ii) a query phase — given start and goal locations, connect them to the roadmap and search the resulting graph.

Motion Planning, Multiple-query Solvers
multiple-query: problems, in which the same roadmap can be utilized multiple times to solve multiple

motion planning problems in the same workspace.

Motion Planning , Single-query Solvers

single-query: (we do not need to compute a reusable roadmap.)

In this case we can compute a special roadmap to solve the specific query:
(i) computed directly as a function of the start location,
(ii) is just a tree, as cycles do not add new paths from the start location.

Note: For symmetry reasons that we need not worry about here, one often computes two trees, one originating
from the start location and one originating from the goal location.

—— Potentially can use much less samples than multi-query PRMs

©Solmaz Kia, UCI

Incremental Tree-roadmap Computation

incremental tree-roadmap computation method

Input: start location g, Nnumber of sample points in tree roadmap N € N. Also requires access to a sampling algorithm,
collision detection algorithm, and a distance notion on @)
Output: a tree roadmap (V, F) for the free configuration space Q. containing gstart
. initialize (V, E') to contain the start location g.+ and no edges

: while number of nodes in V' is less than IV : L node selection

select a node Gexpansion from V' for expansion
choose a collision-free configuration gnearby N€Ar Gexpansion - |

node expansion

V=VU Gnearby

(goal

: E := E U{collision-free path from Gexpansion tO Gnearby }
: return (V E) q%arby

3
2
3
4
5: if can find a collision-free path from Gexpansion tO Gnearby
6
7
8

._.*L}. qu Z

. 1 / Qexpan

<

©Solmaz Kia, UCI

Incremental tree-roadmap Computation: Expansive-Spaces Trees

Expansive-Spaces Trees (ESTs): an efficient single-query planner that covers the space between G4+ and qgoai

Courtesy of 10'11109/ROBOT.2004.1308890

‘Guided’ EST

©Solmaz Kia, UCI

https://doi.org/10.1109/ROBOT.2004.1308890

Incremental tree-roadmap Computation: Expansive-Spaces Trees

Build EST algorithm

Input:
qo: the configuration where the tree is rooted
N: number of attempts to expand the tree
Output:
Atree T = (V,E) thatis rooted g, at and has
< N configurations

1: V < {qo}

2: E<«{ }

3: fori=1toN do

4: q < arandomly chosen configuration from T
5 extend EST (T, q)

6: end for

7:Return T

Extend EST algorithm

Input:
T =(V,E):an EST
q: a configuration from which to grow T

Output:
A new configuration g,,.,, in the neighborhood of g, or NIL

in case of failure

1: @new < @ random collision-free configuration from the
neighborhood of g
2: if qpew is visible from g then

3: V < {Gnew}

4: E < EU{q, gnew}
5: return q,cw

6: else

7: Return NIL

8: end if

©Solmaz Kia, UCI

Incremental tree-roadmap Computation: Rapidly-Exploring Random Tree

One of the most popular PRM variants is the Rapidly-Exploring Random Tree (RRT) algorithm, which grows a tree
rather than a graph.

incremental tree-roadmap computation method

Input: start location g, Nnumber of sample points in tree roadmap N € N. Also requires access to a sampling algorithm,
collision detection algorithm, and a distance notion on @)
Output: atree roadmap (V, E) for the free configuration space Qfee containing gstart

1: initialize (V, F) to contain the start location gg,+ and no edges

2: while number of nodes in V is less than IV : choose a random configuration q,gndom

3 select a node Gexpansion from V' for expansion in @ and select for expansion the node q.xpansion
4 choose a collision-free configuration gnearby N€Ar Gexpansion from V that is closest t0 ¢,gndom

5: if can find a collision-free path from Gexpansion t0 Gnearby

6 V=VuU Gnearby Toon]
7: E := E U{collision-free path from Gexpansion tO Gnearby } E’E’I‘”
8: return (V, E) step_S\Z€ (8)

l\%earby
select a collision-free configuration

o
from Qexpansion towards Qrandom <
(start ;

©Solmaz Kia, UCI

RRT in Environment with Obstacles: an Example

One of the most popular PRM variants is the Rapidly-Exploring Random Tree (RRT) algorithm, which grows a tree
rather than a graph.

Ggoal

Qstart

5‘6;\
|} A

-
[3

SRSy
S

A :
RS e ~%

©Solmaz Kia, UCI

RRT-connect

Algorithm RRT-Connect
1. T, « {s}.

° Tg <« {g}

e fori=1,...,Ndo

9rand < Sample()

q. < Extend-Tree(T, q,and» 0)
q. < Extend-Tree(T,, Grand,)

return the path from s to g
return "no path"

(extend start tree at most o distance toward g,4,4)
(extend goal tree at most ¢ distance toward g,4,,4)
if d(g.,qt) < 6 and Visible(g,, g-) then

Add edge g, — ge to connect T and T,

(trees are close enough)

Algorithm Extend-Tree(T’, ¢,4,4, 6)

Qnear < Near est(T, Qrand)

. o
«— +minl, ————
q qnear ’ d(qrand ’qnear

if Visible(gpeqr,) then
Add edge Gpeqr > qto T.
return g.

return g,,..; -

2 e

) (Qrand - Qnear)

©Solmaz Kia, UCI

CONNECT _.--

-~ q goal
EXTEND

> q goal

T goal

start

References:
[1] F. Bullo and S. L. Smith. Lecture notes on robotic planning and kinematics

©Solmaz Kia, UCI

