
Introduction to Robot Motion
Planning & Navigation

Module 5
Solmaz S. Kia (solmaz.eng.uci.edu)

solmaz@uci.edu
Mechanical and Aerospace Engineering Department

University of California Irvine

©Solmaz Kia, UCI

Chapter 5: Mo-on Planning via Sampling

Ø general roadmaps and their desirable properFes,

Ø complete planners based on exact roadmap computaFon (specifically, we will review decomposiFon-based
roadmaps and will introduce a novel shortest-paths visibility graph),

Ø shortest-path planning via visibility roadmap and shortest path search via Dijkstra’s algorithm.

Ø general-purpose planners based on sampling and approximate roadmaps. (Sampling-based Roadmap Methods). For
this general-purpose planners we will discuss:

• connecFon rules for fixed resoluFon grid-based roadmaps,
• connecFon rules for arbitrary-resoluFon methods,
• comparison between sampling-based approximate and exact planners

Ø incremental sampling-based planning methods, including:
• from mulF-query to single-query,
• rapidly-exploring random trees (RRT),
• the applicaFon of receding-horizon incremental planners to sensor-based planning.

©Solmaz Kia, UCI

Motion Planning via Sampling

©Solmaz Kia, UCI

“cloud representation” of the free configuration space for robots and obstacles of arbitrary shape

compute a roadmap from a cloud in the next chapter

©Solmaz Kia, UCI

Roadmaps

A roadmap is a collecFon of locaFons in the configuraFon space along with paths
connecFng them.

• With each path, we associate a posiFve weight that represents a cost for
traveling along that path, for example, the path length or the travel Fme.

• Think of a roadmap as a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤), where 𝑤 is a
funcFon that assigns the weight (e.g., path length) to each edge in 𝐸.

©Solmaz Kia, UCI

roadmap may have the following properties:
i. the roadmap is accessible if, for each point 𝑞*+,-+ ∈ 𝑄0-11,

there is an easily computable path from 𝑞*+,-+ to some
node in the roadmap,

ii. similarly, the roadmap is departable if, for each point
𝑞23,4 ∈ 𝑄0-11, there is an easily computable path from
some node in the roadmap to 𝑞23,4, and

iii. the roadmap is connectivity-preserving if, given a
connected free configuration space (i.e., any two
configurations in 𝑄0-11 are connected by a path in 𝑄0-11),
then any two locations of the roadmap are connected by a
path in the roadmap,

iv. the roadmap is efficient with factor 𝛿 ≥ 1 if, for any two
locations in the roadmap, say 𝑢 and 𝑣, the path length
from 𝑢 to 𝑣 along edges of the roadmap is no longer than
𝛿 times the length of the shortest path from 𝑢 to 𝑣 in the
environment

The notions of accessibility and departability are
not fully specified as they depend upon the notion
of “easily computable path.”

Roadmaps

©Solmaz Kia, UCI

Visibility roadmaps: the visibility graph 𝐺 = (𝑉, 𝐸, 𝑤), is defined as

environments with polygonal obstacles.

i. the nodes 𝑉 of the visibility graph are all convex verFces of the
polygons 𝑂;,⋯ , 𝑂=,

ii. the edges 𝐸 of the visibility graph are all pairs of verFces that are
visibly connected. That is, given 𝑢, 𝑣 ∈ 𝑉, we add the edge {𝑢, 𝑣}
to the edge set 𝐸 if the straight-line segment between 𝑢 and 𝑣 is
not in collision with any obstacle, and

iii. the weight of an edge {𝑢, 𝑣} is given by the length of the segment
connecFng 𝑢 and 𝑣. environments with polygonal obstacles.

Decomposition-based roadmaps:
Example: sweeping trapezoidation algorithm
• guaranteed to be accessible and departable (via straight segments)

and connectivity-preserving
• does not contain shortest paths among environment locations

Complete Planners on Exact Roadmaps

©Solmaz Kia, UCI

Computational complexity of visibility roadmap
• Number of obstacle vertices is n, then the number of nodes in the visibility graph is at most n
• To compute the edges E, we need to check every pair of nodes 𝑣@, 𝑣A ∈ 𝑉 and see if the line segment

intersects with any of the n obstacle edges.
• Thus, the graph can be computed in a total runtime of 𝑂(𝑛C)
• A more sophisticated implementation (de Berg et al., 2000) reduces this runtime to 𝑂(𝑛D log 𝑛)

Complete Planners on Exact Roadmaps

©Solmaz Kia, UCI

Properties of visibility roadmap:
Ø If the free configuraFon space is connected, then the visibility

graph is connected, departable, and accessible.

Ø The shortest path from start to goal is a path in the visibility
graph. Hence, the roadmap obtained via the visibility graph is
opFmally efficient, in the sense that the efficiency factor 𝛿 is 1.

Theorem 5.1 (Shortest paths through polygonal obstacles) Consider a configuration space with polygonal
configuration space obstacles.
Any shortest path in the free configuration space between 𝑞*+,-+ and 𝑞23,4
(i) consists of only straight line segments, and

(ii) has segments whose endpoints are either the start location 𝑞*+,-+, the goal location 𝑞23,4, or an obstacle
vertex (or, more precisely, a convex obstacle vertex if start and goal locations are not non-convex vertices).

Complete Planners on Exact Roadmaps

©Solmaz Kia, UCI

Shortest Paths in Weighted Graphs via Dijkstra’s Algorithm
The minimum-weight path between two nodes, also called the shortest path in a weighted graph, is a path of minimum weight
between the two nodes

Ø The shortest path tree as {parent(u), u} for each node u for which parent(u) is different from +∞.
Ø Given a goal node 𝑣23,4 we can use the parent values to reconstruct the sequence of nodes on the shortest path from
𝑣*+,-+ to 𝑣23,4 using the The extract-path algorithm from Chapter 2 of Ref [1].

1

2

3

4

5

6

7

8

©Solmaz Kia, UCI
General-purpose Planners via Sampling-based Roadmaps

Probabilistic roadmaps (PRM) are an approximate roadmap of the robot's free space built by randomly sampling free
connections and attempting connections between them. The roadmap can then be searched as usual for a path from the start
to the goal.

It can be shown that the method is probabilistically complete,
• if it finds a path, the path will be feasible;
• if it does not find a path, then this answer might be incorrect;
• The chance of this incorrect answer decreases to as N increases, given some relatively mild assumptions on the

shape of the free space.

The basic algorithm for constructing a PRM is:
1.Sample N configurations at random from the 𝑄-
space (plot a--b).

2.Add all feasible configurations and the start
and goal to the roadmap. These are known
as milestones. (plot c)

3.Test pairs of nearby milestones for visibility,
and add visible edges to the roadmap. (plot d--e)

4.Search for a path from the start to the goal.
(plot f)

©Solmaz Kia, UCI

General-purpose Planners via Sampling-based Roadmaps

©Solmaz Kia, UCI

Neighborhood Functions

PRM: a moFon planning method based on compuFng a roadmap for the free configuraFon space 𝑄0-11 via
(1) sampling,
(2) collision detecFon, and
(3) a so-called connecFon rule.

A connecFon rule is an algorithm that decides when and how to (try to) compute a path connecFng two nodes of a sampled
configuraFon space.

𝑟-radius rule: fix a radius 𝑟 > 0 and select
all locations 𝑝 within distance 𝑟 of 𝑞.

𝐾-closest rule: select the
𝐾 closest locations 𝑝 to 𝑞.

component-wise 𝐾-closest rule: from each
connected component of the current
roadmap, select the 𝐾 closest locations 𝑝 to 𝑞.

A significant computational expense in PRM and its variants, is computing nearest-neighbors (and near-neighbors).

𝐾=1𝐾=3

©Solmaz Kia, UCI

Mul-ple-query and Single-query Scenarios

Roadmap-based methods are structured in general as a two-phase computation process:
(i) a preprocessing phase – given the free configuration space, compute the roadmap, followed by
(ii) a query phase – given start and goal locations, connect them to the roadmap and search the resulting graph.

Motion Planning, Multiple-query Solvers
multiple-query: problems, in which the same roadmap can be utilized multiple times to solve multiple
motion planning problems in the same workspace.

Motion Planning , Single-query Solvers
single-query: (we do not need to compute a reusable roadmap.)
In this case we can compute a special roadmap to solve the specific query:

(i) computed directly as a function of the start location,
(ii) is just a tree, as cycles do not add new paths from the start location.

Note: For symmetry reasons that we need not worry about here, one often computes two trees, one originating
from the start location and one originating from the goal location.

Potentially can use much less samples than multi-query PRMs

©Solmaz Kia, UCI

Incremental Tree-roadmap Computation

node selection

node expansion

𝑞1PQ,=*@3=

𝑞=1,-RST

𝑞=1,-RS

X

Incremental tree-roadmap Computation: Expansive-Spaces Trees

Expansive-Spaces Trees (ESTs): an efficient single-query planner that covers the space between 𝑞*+,-+ and 𝑞23,4

‘Guided’ EST

Courtesy of 10.1109/ROBOT.2004.1308890

©Solmaz Kia, UCI

https://doi.org/10.1109/ROBOT.2004.1308890

Incremental tree-roadmap Computation: Expansive-Spaces Trees

Build EST algorithm
Input:

𝑞U: the configuration where the tree is rooted
N: number of attempts to expand the tree

Output:
A tree 𝑇 = (𝑉, 𝐸) that is rooted 𝑞U at and has
≤ 𝑁 configurations

1: 𝑉 ← 𝑞U
2: E ←
3: for 𝑖 = 1 to 𝑁 do
4: 𝑞 ← a randomly chosen configuration from 𝑇
5: extend 𝐸𝑆𝑇(𝑇, 𝑞)
6: end for
7: Return 𝑇

Extend EST algorithm
Input:

𝑇 = (𝑉, 𝐸) : an 𝐸𝑆𝑇
𝑞: a configuration from which to grow 𝑇

Output:
A new configuration 𝑞=1] in the neighborhood of 𝑞, or 𝑁𝐼𝐿
in case of failure

1: 𝑞=1] ← a random collision-free configuration from the
neighborhood of 𝑞

2: if qabc is visible from 𝑞 then
3: 𝑉 ← 𝑞=1]
4: E ← 𝐸 ∪ {𝑞, 𝑞=1]}
5: return 𝑞=1]
6: else
7: Return NIL
8: end if

©Solmaz Kia, UCI

©Solmaz Kia, UCI

Incremental tree-roadmap Computation: Rapidly-Exploring Random Tree

choose a random configuraFon 𝑞-,=e3f
in 𝑄 and select for expansion the node 𝑞1PQ,=*@3=

from 𝑉 that is closest to 𝑞-,=e3f

select a collision-free configuration
𝑞=1,-RS near 𝑞1PQ,=*@3= by moving
from 𝑞1PQ,=*@3= towards 𝑞-,=e3f

One of the most popular PRM variants is the Rapidly-Exploring Random Tree (RRT) algorithm, which grows a tree
rather than a graph.

𝑞1PQ,=*@3= 𝑞-,=e3f
𝑞=1,-RS

Step_size (𝛿)

©Solmaz Kia, UCI

RRT in Environment with Obstacles: an Example

One of the most popular PRM variants is the Rapidly-Exploring Random Tree (RRT) algorithm, which grows a tree
rather than a graph.

RRT-connect

©Solmaz Kia, UCI

References:
[1] F. Bullo and S. L. Smith. Lecture notes on robotic planning and kinematics

©Solmaz Kia, UCI

