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Chapter 4: Free Configuration Spaces via Sampling and Collision Detection

> represent obstacles and the free space when the robot is composed of a single or multiple rigid bodies with proper
shape, position and orientation,

» compute free configuration spaces via sampling and collision detection,

» discuss sampling methods, and

» discuss collision detection methods.
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Configuration Space

» A configuration of a robot is a minimal set of variables that specifies the position and orientation of each rigid body
composing the robot. The robot configuration is usually denoted by the letter g.

B(q)

= (O,

B(q)
£o)

» The configuration space is the set of all possible configurations of a robot, denoted by the letter Q, so that g € Q.

» The number of degrees of freedom of a robot is the dimension of the configuration space, i.e., the minimum number of
variables required to fully specify the position and orientation of each rigid body belonging to the robot.

» The configuration map, and it maps each point g € Q to the set of all points B(q) of the workspace belonging to the robot.

©Solmaz Kia, UCI



Motion Planning for Robots with Finite Shape and Size
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Motion planning for rigid body robots: given a motion planning problem in the workspace “move from
point psiare € W to point Py, € W,” we need to translate this specification into the configuration
space, i.e., move from a configuration g4+ € Q to a configuration qg,4; € Q -



Free Configuration Space

The key problem: what robot configurations correspond to feasible positions of the robot, i.e., configurations in
Q such that the robot is not in collision with any obstacle in I/

The free configuration space Q.. is the set of configurations g such that all
points of the robot are inside Ws,.,:

eree ={q € Q|B(q) € Wfree}

q; = (61,0;)

q = (61,0,)

A

Given an obstacle 0 in workspace, the corresponding configuration space
obstacle Oy is the set of configurations g such that the robot at configuration q
is in collision with the obstacle Q:

0o = {q € Q|B(q) overlaps with 0}

> A workspace W c R?; » A configuration space;
» Some obstacles 04,0, -+, Oy; ‘ » Some configuration space obstacles Oq,0q2,***, Oqn;
> Wfree — W\(Ol U0, U U On) > eree = Q\(OQl U OQZ U--- OQn)
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Free Configuration Space for the Disk Robot
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Free Configuration Space for the Translating Polygon Robot

» (-space is obtained by
sliding the robot along the
edge of the obstacle regions
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Some Mathematical Definitions

Given two sets §; € R? and S, € R?, the Minkowski difference ((or geometric difference) S; © S, is defined by
508, ={p—qlp €S, and q € S,}
That is, Minkowski difference §§ © 8, is the result of subtracting every point in §; from every pointin §,.

ob

V

Convex hull of a group of points as the minimum-perimeter convex set containing them.

* The convex hull of a group of points is a convex polygon.

* Graphically, the convex hull can be obtained by snapping a tight

rubber band around all the points (the length of the rubber band
is the perimeter of the envelope).

e Every convex polygon is the convex hull of its vertices.
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Polygonal Obstacles: from Workspace to Configuration Space

Proposition 4.1 Assume the robot body, with reference position B(0,0) and the obstacle O are convex polygons with n and
m vertices respectively. Then the resulting configuration space obstacle O, is a convex polygon with at most n + m vertices
and satisfies

0, = 0 © B(0,0)
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Polygonal Obstacles: from Workspace to Configuration Space

Minkowski-difference-via-convex-hull algorithm

Input: two convex polygonal subsets P; and P, of R?
Output: the Minkowski difference P, & Ps

1: for each vertex v of P :

2 for each vertex w of P :

3: compute the difference point v — w

4: return the convex hull of all difference points

D RN

.

@ workspace space free configuration space
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Motion planning for Robots with Finite Shape and Size

Motion planning for rigid body robots: given a motion planning problem in the workspace “move from
point Pstare € W to point Py,q; € W,” we need to translate this specification into the configuration
space, i.e., move from a configuration g4+ € Q to a configuration qg,4; € Q .
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Free Configuration Space for the 2-link Robot

Jia Pan, Dinesh Manocha, “Efficient
Configuration Space Construction and
Optimization for Motion Planning”
Engineering 2015, 1(1): 46-57

DOI 10.15302/J-ENG-2015009
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Numerical Computation of the Free Configuration Space

q; = (04, 6,)
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sampling & collision-detection algorithm

Input: A number of samples n, the free workspace Wiee, and the robot configuration map B(q)
Output: A set of configurations in the free configuration space

1: Initialize free-configs := ()

2: Compute a sequence of sample configurations ¢, ..., g,

3: for each configuration sample ¢; in the sequence :

4 compute the positions of the robot rigid bodies corresponding to the sample, B(qg;)

5: detect if the robot collides with the obstacles (i.e., test if B(q;) C Wee)

6 if robot does not collide with obstacles and is inside the workspace :

7 Add g; to free-configs
8

: return free-configs
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Numerical Sampling of Configuration Space> Motion Planning
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“cloud representation” of the free configuration space for robots and obstacles of arbitrary shape

compute a roadmap from a cloud in the next chapter
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Numerical Sampling of Configuration Space
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A sampling method should have certain properties:

» Uniformity: the samples should provide a “good covering” of space. Mathematically, this can be formulated using the
notion of dispersion.

» Incremental property: the sequence of samples should provide good coverage at any number n of samples. In other words,
it should be possible to increase n continuously and not only in discrete large amounts.

» Lattice structure: given a sample, the location of nearby samples should be computationally easy to determine.
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Numerical Sampling: Dispersion

Consider the d-dimensional unit cube X = [0, 1]? C R%. The sphere-dispersion and the square-dispersion of a set of points
P in the set X are defined by (see also Figure 4.13)

dispersiongype (F) = radius of largest empty d-sphere with center in X,

. . L, . . :
dispersiong,ee(P) = 5(5|de length of largest empty d-dimensional cube
with center in X)
hd [ e
. Given a space X,and set of points P C X, and a metric
) distance, the dispersion of P with respect to the
distance metric is defined as
) ’/—_\:‘x- . . o . e . lispersion( ) = max min dist (2. p).
L g . Lo ! . dispersion(P) 112 [';ldl’“ st(x, p)
l\ . o That is, the dispersion is defined as maximum distance
[ \ [ | ” from a point in X to its nearest sample in P.

(i) sphere dispersion uses the 2-norm:

dist(z,p) = ||z — pllo = V(21 — p1)2 + - - + (24 — pa)?.
(ii) square dispersion uses the co-norm:

dist(z,p) = || — plleo = max(|z1 —p1],. .., |za — pal),
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Numerical Sampling: Uniform Grids

Uniform grids: There are two ways of defining uniform grids in the unit cube X = [0,1]¢: center grid and the corner grid.

Both grids with n points can be defined if n
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uniform center grid (Sukharev grid)

dispersionggare (Peenter grid (1, d)) =
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multi-resolution versions of the uniform center grid

A step increase in
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Numerical sampling: Random Sampling

Random and pseudo-random sampling Adopting a random number generator is usually a very simple approach to
(uniformly or possibly non-uniformly) sample the cube X = [0, 1]%. An example set of 100 randomly generated points is shown
in Figure 4.16.

Note: Let P be a set of n points generated independently and uniformly over X. As n — oo, the set P has square-dispersion
of order O((ln(n)/n)l/d) (Deheuvels, 1983). Therefore, randomly-sampled points have asymptotically worse dispersion than
center grids.
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Numerical Sampling: Halton Sequences

Deterministic sampling sequences Halton sequences (Halton, 1960) are an elegant way of sampling an interval
+ with good uniformity : better than a pseudorandom sequence, though not as good as the optimal center grid)
« with the incremental property (which the center grid does not possess).

Each scalar Halton sequence is generated by a prime number

ol ~
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o =
oo Ot
oo | W

L
>

Halton sequence algorithm

Input: length of the sequence N € N and prime numberp € N
Output: an array S with the first NV samples of the Halton sequence generated by p
1: initialize: S to be an array of N zeros (i.e., S(i) := 0 for each i from 1 to N)

» square-dispersion of a Halton sequence
of n samples is f(d)/3/n, where f(d) is

2. for each i from 1to N : a constant for each dimension d.
3: initialize: ymp := 4, and f :=1/p
4 while iy, > 0 » the Halton sequence achieves a dispersion
5: compute the quotient ¢ and the remainder r of the division iy, /p similar to that of uniform grids, but has the
S’ ?("')_::qs(l) A advantage of allowing for incremental
: "tmp — . .
. fo= f/p increases in the number of samples.
9: return S
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Numerical Sampling: Comparison

Sampling property Uniform grids Random sampling Halton sequences
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http://extremelearning.com.au/a-simple-method-to-construct-isotropic-quasirandom-blue-noise-point-sequences/
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Numerical Collision Detection Methods

Problem 4.2 Given two bodies B1 and B2, determine if they collide. (In equivalent set-theoretic words,
determine if the intersection between two sets is non-empty.)

The distance between two sets A and B, ina norm | |.| |, is defined as
dist(A,B) = inf{llp — q||| p € A,q € B}.

L The two sets A and B do not intersect if dist(4,B) > 0.

©Solmaz Kia, UCI



Numerical Collision Detection Methods: Approximate Methods

Use well-defined geometric bounding shapes to over-approximate sets in collision detection problems

>
Axis-aligned Bounding Box (AABB) Oriented Bounding Box (OBB)

(i) bounding spheres, rather than

(ii) Axis-Aligned Bounding Boxes (AABB), rather than
(iii) Oriented Bounding Boxes, rather than

(iv) convex polygons, rather than

(v) non-convex polygons, rather than

(vi) arbitrary shapes.

Convex decomposition is used to
decompose arbitrary, triangular meshes
into approximate convex pieces and their
corresponding Oriented Bounding Boxes or
OBBs (shown in blue) for efficient collision

detection detection and distance queries.
Courtesy of: 10.1109/BIOROB.2010.5625965
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Numerical Collision Detection Methods: Basic primitives

Basic primitive #1: do two segments intersect?

Problem 4.3 Given two segments, determine if they intersect.

=p3tS —
Pb D3 Ps 4 Sb (P~ Ps) Dqg = DP1 + Sa(p2 — P1),

P2

P1 P4

Testing for the intersection of two segments

These two equations can be solved and, for example, one obtains

. — (x4 —23) (1 —y3) — (ya — y3) (1 — 3) _ Dum
* (ya—y3)(we — 1) — (x4 —23)(yo —y1)  den’

One can show that

(i) if num = den = 0, then the two lines are coincident,
(ii) if num # 0 and den = 0, then the two lines are parallel and distinct, and
(iii) if den # 0, then the two lines are not parallel and therefore intersect at a single point.
Does the intersection point actually belongs to the segment?

If s, € [0,1] and s, € [0,1], the two segments collide!
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Numerical Collision Detection Methods: Basic primitives

Basic primitive #2: is a point in a convex polygon?

Problem 4.4 Given a convex polygon and a point, determine if the point is inside the polygon.

The polygon is defined by a counter-clockwise sequence of vertices, p1, ..., psin Figure 4.19. For each side of the polygon, we

define the interior normal as in Figure 4.20 for the side pyps. Notice that the interior normal of p;p; 11 is obtained by rotating the
vector (p;11—p;) by the angle /2. Letting p; = (x;, ;) and p;11 = (2411, Yiv1), the interior normal is (—(yi+1—yi), (241 —Ii)).

P2
P2

P3
P1

P4 P1
Testing if a point lies in a polygon Interior normal to a side of the polygon
Given a polygon with vertices p4, -*-, p,,, labeled counter clockwise and p,,,; = p1, the point q is in the polygon

(possibly on the boundary), if and only if foralli € { 1,---,n}, the dot product between the interior normal to
the side p;p;+1 and the segment p;q is positive or zero.
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Numerical Collision Detection Methods: Basic primitives

Basic primitive #3: do two convex polygons intersect?

Problem 4.5 Given two convex polygons, determine if they intersect.

on)| =

PoNP =0 PoNP #0)

O

PlCPQ

P,c P

Pgﬂpl#@

and no vertex is in common

five possible cases that one must consider

polygon-intersection algorithm

Input: two convex polygons P; and P,
Output: collision or no collision
1: if (any vertex of P; belongs to ») OR (any vertex of P, belongs to P;) :
2 return collision
3: if any edge of P; intersects any edge of P, :
4 return collision
5: return no collision
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Numerical Collision Detection Methods: Basic primitives

Basic primitive #3: do two nonconvex polygons intersect?

Problem 4.6 Given a non-convex polygon and a point, determine if the point is inside the polygon.

Problem 4.7 Given a line segment s and a ray R, determine if they intersect.

Problem 4.8 Given two non-convex polygons, determine if they intersect.

By virtue of Jordan Theorem, the number of
intersections between a line segment and a closed curve,

where the endpoints of the segment lie on the outside of
the curve, is even

—

Shooting ray method

: ; \:g\ ‘ even number of intersections

The key idea is © , rest left to you to figure out ©
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Collision Detection Methods: Final Note

(i) collision detection algorithms for simple objects are easy to perform,

(ii) for complex objects, e.g., arbitrary shapes, a reasonable approach is to use hierarchical approximations
and decompositions, described as follows:
(a) approximate the complex shape by a simple enclosing shape, e.g., a sphere, an AABB, or an OBB,

(b) if no collision occurs between the two simple enclosing shapes, then return a “no collision” result,

(c) if a collision is detected between two simple enclosing shapes, then approximate the bodies less
conservatively and more accurately, e.g., by decomposing them into the union of multiple simple shapes.
One can then check collision between these more accurate decompositions;

(iii) to detect collisions between moving objects, discretize time and perform a collision detection test for
each time step.
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Motion planning for robots with finite shape and size
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Motion planning for rigid body robots: given a motion planning problem in the workspace “move from
point Psiqre € W to point Py, € W,” we need to translate this specification into the configuration
space, i.e., move from a configuration g4+ € Q to a configuration q,,4; € Q .



