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Chapter 4: Free Configuration Spaces via Sampling and Collision Detection

Ø represent obstacles and the free space when the robot is composed of a single or multiple rigid bodies with proper 
shape, position and orientation,

Ø compute free configuration spaces via sampling and collision detection,
Ø discuss sampling methods, and
Ø discuss collision detection methods.

©Solmaz Kia, UCI



©Solmaz Kia, UCI

Configura;on Space

Ø A configuraHon of a robot is a minimal set of variables that specifies the posiHon and orientaHon of each rigid body 
composing the robot. The robot configuraHon is usually denoted by the leJer 𝑞.

Ø The configuraHon space is the set of all possible configuraHons of a robot, denoted by the leJer 𝑄, so that 𝑞 ∈ 𝑄.

Ø The number of degrees of freedom of a robot is the dimension of the configuraHon space, i.e., the minimum number of 
variables required to fully specify the posiHon and orientaHon of each rigid body belonging to the robot.

Ø The configuraHon map, and it maps each point 𝑞 ∈ 𝑄 to the set of all points ℬ 𝑞 of the workspace belonging to the robot.

𝑑

ℬ 𝑞

ℬ 𝑞



Motion Planning for Robots with Finite Shape and Size
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©Solmaz Kia, UCI

O1

O2

𝑝'()*(

.𝑝+,)-

O1

O2

𝑝'()*(

.𝑝+,)-

O1

O2

Ø A workspace 𝑊 ⊂ 𝑅1;

Ø Some obstacles 𝑂3, 𝑂1,⋯ , 𝑂6;

Ø 𝑊8*99 = 𝑊\(𝑂3 ∪ 𝑂1 ∪ ⋯∪ 𝑂6)

MoHon planning for rigid body robots: given a moHon planning problem in the workspace “move from 
point 𝑝'()*( ∈ 𝑊 to point 𝑃+,)- ∈ 𝑊,” we need to translate this specificaHon into the configuraHon 
space, i.e., move from a configuraHon 𝑞'()*( ∈ 𝑄 to a configuraHon 𝑞+,)- ∈ 𝑄 .
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Ø A configuration space;

Ø …..

Ø 𝑄8*99 = ⋯
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Free Configura;on Space

The key problem: what robot configurations correspond to feasible positions of the robot, i.e., configurations in 
𝑄 such that the robot is not in collision with any obstacle in 𝑊.

Ø A workspace 𝑊 ⊂ 𝑅1;

Ø Some obstacles 𝑂3, 𝑂1,⋯ , 𝑂6;

Ø 𝑊8*99 = 𝑊\(𝑂3 ∪ 𝑂1 ∪ ⋯∪ 𝑂6)

The free configuration space 𝑄8*99 is the set of configurations 𝑞 such that all 
points of the robot are inside 𝑊8*99:

𝑄8*99 = {𝑞 ∈ 𝑄|ℬ 𝑞 ∈ 𝑊8*99}
O1

O2

Given an obstacle 𝑂 in workspace, the corresponding configuration space 
obstacle 𝑂F is the set of configurations 𝑞 such that the robot at configuration 𝑞
is in collision with the obstacle 𝑄:

𝑂F = {𝑞 ∈ 𝑄|ℬ 𝑞 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝑤𝑖𝑡ℎ 𝑂}

𝑞3 = (𝜃3, 𝜃1)

𝑞S = (𝜃3S , 𝜃1S )

Ø A configuration space;

Ø Some configuration space obstacles OU3, OU1,⋯ , OU6;

Ø 𝑄8*99 = 𝑄\(OU3 ∪ OU1 ∪ ⋯OU6)
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Free Configuration Space for the Disk Robot

Workspace ConfiguraHon Space
Approximating expanded obstacles  by a larger 
polygonal obstacle
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Free Configura;on Space for the Transla;ng Polygon Robot

Ø 𝑄-space is obtained by 
sliding the robot along the 
edge of the obstacle regions
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Some Mathematical Definitions

Given two sets 𝒮3 ⊂ 𝑅1 and 𝒮1 ⊂ 𝑅1, the Minkowski difference ((or geometric difference) 𝒮3 ⊖ 𝒮1 is defined by
𝒮3 ⊖ 𝒮1 = 𝑝 − 𝑞 𝑝 ∈ 𝒮3 𝑎𝑛𝑑 𝑞 ∈ 𝒮1}

That is, Minkowski difference 𝒮3 ⊖ 𝒮1 is the result of subtracting every point in 𝒮3 from every point in 𝒮1.

⊖⊖

Convex hull of a group of points as the minimum-perimeter convex set containing them.

• The convex hull of a group of points is a convex polygon.

• Graphically, the convex hull can be obtained by snapping a Hght 
rubber band around all the points (the length of the rubber band 
is the perimeter of the envelope).  

• Every convex polygon is the convex hull of its verHces.
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Polygonal Obstacles: from Workspace to Configura;on Space

Proposition 4.1 Assume the robot body, with reference position ℬ(0,0) and the obstacle 𝑂 are convex polygons with 𝑛 and
𝑚 vertices respectively. Then the resulting configuration space obstacle 𝑂F is a convex polygon with at most 𝑛 + 𝑚 vertices
and satisfies

𝑂F = 𝑂⊖ℬ(0,0)
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CompuHng the configuraHon space obstacle using the Minkowski difference

Polygonal Obstacles: from Workspace to Configuration Space



MoHon planning for rigid body robots: given a moHon planning problem in the workspace “move from 
point 𝑝'()*( ∈ 𝑊 to point 𝑃+,)- ∈ 𝑊,” we need to translate this specificaHon into the configuraHon 
space, i.e., move from a configuraHon 𝑞'()*( ∈ 𝑄 to a configuraHon 𝑞+,)- ∈ 𝑄 .

Mo;on planning for Robots with Finite Shape and Size
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Free Configura;on Space for the 2-link Robot

Jia Pan, Dinesh Manocha, “Efficient 
Configuration Space Construction and
Optimization for Motion Planning” 
Engineering 2015, 1(1): 46–57
DOI  10.15302/J-ENG-2015009
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Numerical Computa;on of the Free Configura;on Space
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𝑞3 = (𝜃3, 𝜃1)
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Numerical Sampling of Configura;on Spaceà Mo;on Planning
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“cloud representation” of the free configuration space for robots and obstacles of arbitrary shape

compute a roadmap from a cloud in the next chapter



A sampling method should have certain properHes:

Ø Uniformity: the samples should provide a “good covering” of space. MathemaHcally, this can be formulated using the 
noHon of dispersion.

Ø Incremental property: the sequence of samples should provide good coverage at any number n of samples. In other words, 
it should be possible to increase n conHnuously and not only in discrete large amounts.

Ø La[ce structure: given a sample, the locaHon of nearby samples should be computaHonally easy to determine.

Numerical Sampling of Configuration Space
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Numerical Sampling: Dispersion
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Given a space 𝑋,and set of points 𝑃 ⊂ 𝑋, and a metric 
distance, the dispersion of 𝑃 with respect to the 
distance metric is defined as 

That is, the dispersion is defined as maximum distance 
from a point in X to its nearest sample in P.



Numerical Sampling: Uniform Grids

©Solmaz Kia, UCI

Uniform grids: There are two ways of defining uniform grids in the unit cube 𝑋 = 0,1 ^: center grid and the corner grid. 
Both grids with 𝑛 points can be defined if 𝑛 = 𝑘^ for some number 𝑘.

uniform center grid (Sukharev grid) Corner grid

multi-resolution versions of the uniform center grid

A step increase in 
resolution correspond to 
a jump in number of 
samples from 𝑛 to 𝑛3^.

Incremental property

👎



Numerical sampling: Random Sampling 
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Numerical Sampling: Halton Sequences

Deterministic sampling sequences Halton sequences (Halton, 1960) are an elegant way of sampling an interval
• with good uniformity : better than a pseudorandom sequence, though not as good as the optimal center grid) 
• with the incremental property (which the center grid does not possess). 

Each scalar Halton sequence is generated by a prime number

• square-dispersion of a Halton sequence 
of 𝑛 samples is 𝑓(𝑑)/c 𝑛, where 𝑓(𝑑) is 
a constant for each dimension 𝑑.

• the Halton sequence achieves a dispersion 
similar to that of uniform grids, but has the 
advantage of allowing for incremental 
increases in the number of samples.
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Numerical Sampling: Comparison

hJp://extremelearning.com.au/a-simple-method-to-construct-isotropic-quasirandom-blue-noise-point-sequences/
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http://extremelearning.com.au/a-simple-method-to-construct-isotropic-quasirandom-blue-noise-point-sequences/


Numerical Collision Detection Methods
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Problem 4.2 Given two bodies B1 and B2, determine if they collide. (In equivalent set-theoretic words, 
determine if the intersection between two sets is non-empty.)

The distance between two sets A and B, in a norm ||.||, is defined as 
𝑑𝑖𝑠𝑡 𝐴, 𝐵 = inf 𝑝 − 𝑞 𝑝 ∈ 𝐴, 𝑞 ∈ 𝐵}.

The two sets A and B do not intersect if 𝑑𝑖𝑠𝑡 𝐴, 𝐵 > 0.

It is undesirable to check collision by compuHng the pairwise distance between any two points. 
Therefore, it is convenient to devise careful algorithms for collision detecHon.



Numerical Collision Detec;on Methods: Approximate Methods

(i) bounding spheres, rather than
(ii) Axis-Aligned Bounding Boxes (AABB), rather than
(iii) Oriented Bounding Boxes, rather than
(iv) convex polygons, rather than
(v) non-convex polygons, rather than
(vi) arbitrary shapes.

Use well-defined geometric bounding shapes to over-approximate sets in collision detection problems

Axis-aligned Bounding Box (AABB) Oriented Bounding Box (OBB)
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Convex decomposiHon is used to 
decompose arbitrary, triangular meshes 
into approximate convex pieces and their 
corresponding Oriented Bounding Boxes or 
OBBs (shown in blue) for efficient collision 
detecHon detecHon and distance queries.
Courtesy of:  10.1109/BIOROB.2010.5625965

http://dx.doi.org/10.1109/BIOROB.2010.5625965


Numerical Collision Detec;on Methods: Basic primi;ves
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Basic primitive #1: do two segments intersect?

Does the intersection point actually belongs to the segment?
If 𝑠) ∈ [0,1] and 𝑠m ∈ 0,1 , the two segments collide!

𝑝) = 𝑝3 + 𝑠) 𝑝1 − 𝑝3 ,
𝑝m = 𝑝n + 𝑠m(𝑝o − 𝑝n)
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Basic primiHve #2: is a point in a convex polygon?

Given a polygon with verHces 𝑝3,⋯ , 𝑝6, labeled counter clockwise and 𝑝6p3 = 𝑝1, the point q is in the polygon 
(possibly on the boundary), if and only if for all 𝑖 ∈ { 1,⋯ , 𝑛}, the dot product between the interior normal to 
the side 𝑝q𝑝qp3 and the segment 𝑝q𝑞 is posiHve or zero.

Interior normal to a side of the polygonTesting if a point lies in a polygon

Numerical Collision Detection Methods: Basic primitives
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Basic primitive #3: do two convex polygons intersect?

five possible cases that one must consider

Numerical Collision Detec;on Methods: Basic primi;ves
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Basic primiHve #3: do two nonconvex polygons intersect?

The key idea is ☝, rest lek to you to figure out J

By virtue of Jordan Theorem, the number of 
intersections between a line segment and a closed curve, 
where the endpoints of the segment lie on the outside of 
the curve, is even

ShooHng ray method

Numerical Collision Detec;on Methods: Basic primi;ves



(i) collision detecHon algorithms for simple objects are easy to perform,

(ii) for complex objects, e.g., arbitrary shapes, a reasonable approach is to use hierarchical approximaHons 
and decomposiHons, described as follows:

(a) approximate the complex shape by a simple enclosing shape, e.g., a sphere, an AABB, or an OBB,

(b) if no collision occurs between the two simple enclosing shapes, then return a “no collision” result,

(c) if a collision is detected between two simple enclosing shapes, then approximate the bodies less 
conservaHvely and more accurately, e.g., by decomposing them into the union of mulHple simple shapes. 
One can then check collision between these more accurate decomposiHons;

(iii) to detect collisions between moving objects, discreHze Hme and perform a collision detecHon test for 
each Hme step.

Collision Detec;on Methods: Final Note
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MoHon planning for robots with finite shape and size
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Ø A workspace 𝑊 ⊂ 𝑅1;

Ø Some obstacles 𝑂3, 𝑂1,⋯ , 𝑂6;

Ø 𝑊8*99 = 𝑊\(𝑂3 ∪ 𝑂1 ∪ ⋯∪ 𝑂6)

Motion planning for rigid body robots: given a motion planning problem in the workspace “move from 
point 𝑝'()*( ∈ 𝑊 to point 𝑃+,)- ∈ 𝑊,” we need to translate this specification into the configuration 
space, i.e., move from a configuration 𝑞'()*( ∈ 𝑄 to a configuration 𝑞+,)- ∈ 𝑄 .

vv

Ø A configuration space;

Ø …..

Ø 𝑄8*99 = ⋯
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