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Chapter 3: Configuration Spaces

» describe a robot as a single or multiple interconnected rigid bodies,
» define the configuration space of a robot,
» examine numerous example configuration spaces, and

» discuss forward and inverse kinematic maps that arise in robot motion planning.
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Motion Planning for Robots with Finite Shape and Size

‘ a robot described by a moving point (that is, the robot has zero size).

robots with a finite shape and size (a robot is composed of
a single rigid body or multiple interconnected rigid bodies).

pgoal
* pgoal
robot | '; collision!

Pstart

©Solmaz Kia, UCI

Robot cannot go
through this space




Robot Modeling

a rigid body is a collection of particles whose position
F relative to one another is fixed

A robot is composed of a single rigid body or multiple interconnected rigid bodies;
* robots are 3-dimensional in nature, but we will focus on planar problems
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Example Robot Model Abstractions

robots with a finite shape and size (a robot is composed of
a single rigid body or multiple interconnected rigid bodies).

'pgoal

ollision!

Pstart

disk robot

!
O—

roto-translating polygon robot

translating polygon robot

T
-

multi-body robot

©Solmaz Kia, UCI




Motion Planning for Rigid Body Robots

To create motion plans for robots, we must be able to specify the position of the robot.
We should ensure that no points on the robot collides with an obstacle.

P

every point on the robot

L we should be able to give a specification of the location of

!

» How much information is required to completely specify the position of every point on the robot?

» How should this information be represented?

» What are the mathematical properties of these representations?

» How can obstacles in the robot world be taken into
consideration while planning the path of a robot?
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Configuration of a Robot

To specify the position of every point belonging to a rigid body:
the position of a specific point and the orientation of the rigid body, plus a representation of the shape of the
rigid body (which does not vary with time as the body is rigid)

A minimal set of variables that describe the
position and orientation of the specific point.

C=— -,
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A configuration of a robot is a minimal set of variables that specifies the position and orientation of each rigid
body composing the robot. The robot configuration is usually denoted by the letter g.
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Configuration of a Robot

» A configuration of a robot is a minimal set of variables that specifies the position and orientation of each rigid body
composing the robot. The robot configuration is usually denoted by the letter q.

B(q)

= (O,

B(q)
£o)

» The configuration space is the set of all possible configurations of a robot, denoted by the letter Q, so that g € Q.

» The number of degrees of freedom of a robot is the dimension of the configuration space, i.e., the minimum number of
variables required to fully specify the position and orientation of each rigid body belonging to the robot.

» The configuration map, and it maps each point g € Q to the set of all points B(q) of the workspace belonging to the robot.
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Configuration Space: Examples
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Configuration Space: Two-link Robot
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Configuration Space: More Examples
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Joints and Their Degrees of Freedom
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Forward and Inverse Kinematic Maps

Motion planning for rigid body robots: given a motion planning problem in the workspace “move from
point Pseqre € W to point Py, € W,” we need to translate this specification into the configuration space,

i.e., move from a configuration qs¢q,+ € Q to a configuration qgq; € Q .

With the help of forward and inverse kinematics maps we can transform motion
planning problems from the workspace W to the configuration space Q.

The forward kinematics problem: compute (x,y) as a
function of (84, 6,).

The inverse kinematics problem: compute(6,, 6,) as a
function of (x, y).

Figure 3.15: The Yamaha® YK500XG is a high-speed SCARA  Figure 3.16: Vertical view of a SCARA robot, with end-effector
robot with two revolute joints and a vertical prismatic  location (z,y). In the triangle (po, p1, p2), define v € [0, 7] as
joint. Image courtesy of Yamaha Motor Co., Ltd, http: the angle opposite the side pgps.
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Forward Kinematics Map of the 2-link Robot

x = {1 cos(01) + ly cos(61 + 0),

y = l1sin(fy) + o sin(fy + 69).
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Inverse Kinematics Map of the 2-link Robot

P1 .elbow- up

Proposition (Inverse kinematics for 2-link robot) Consider the 2-link Ao
robot with configuration (64, 8,) and links length (1, €5) shown %\
below. Given a desired end-effector position (x, y) such that

1€, — €5] <+/x?+ y? < (£ + ¥,), there exist two (possibly
coincident) solutions for the joint angle 6, given by

0?2 + 02 — % — 42 _
T — arccos| — 2 jl i € [0, 7],

PE L T — i —
1 D) : :
— 7T + arccos S € |—m. 0].
( 20105 [ l

(_)‘Z,elbow down =

H2.elbow up —

P1,elbow-down

‘ po = (x,y)

—21ly < 2* 07 — 12 — 15 < 21y

(= 2)* <a® 4y < (0 + 1)

|6y — o] < /22 +y2 < (6 + L),

[

P1,elbow-down
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Math Appendix: Solution to Basic Trigonometric Equalities

Given three numbers a, b, and ¢, we consider the following equations in the variables «, 3 and ~:

N—r

sin(a) =a, cos(f)=>b, and tan(y)=c.

Inverse Trigonometric Functions

1
Y

If <1 <a<1, then the inverse sine of ais an
angle 6, written 0 = sin~' a, where:

()sin0=a

=Y

(2) ‘% <0< g (or —90° < 0< 90°)

any

ST

<

If =1 €a<1, then the inverse cosine of ais an
angle 6, written 0 = cos ' a, where:

(Dcost=a

-y

)

(2)0<0<w(or0°<0<180°

If @ is any real number, then the inverse

tangent of a is an angle 6, written # = tan ' a,

where:

-y

(Dtanb=a h
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Math appendix: Four-quadrant Arctangent Function with Two Arguments

A ,' (5131791)
61 = atans(y1,x1)

= atans(ys2, x2)

— atans(ys, T3)

( arctan(%) ifz >0
arctan(;:) +7m fz<0andy>0
w

arctan( %) fz <0Oandy < 0

atan2(y, z 4
) 3 ifz=0andy >0
- ifz=0andy < 0

| undefined ifz=0andy=0
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Math Appendix: Alternative Solutions to Basic trigonometric Equalities
The four-quadrant arctangent function provides an alternative and sometimes easier way of computing solutions to
sin(a) =a, cos(f)=>, and tan(y)=c,
where we assume |a| < 1 and |b| < 1. Specifically, if sin(a) = a, then cos(a) = £+1/1 — a2 and therefore
oy = atang(a, V1 —a?), and ay = atang(a, —v1 — a?).
Similarly, if cos(3) = b, then sin(3) = £v/1 — b? and therefore

p1 = atang (V1 —0%2,b), and [y = atanyg(—V' 1 —b2D).

Finally, tan(vy) = cis equivalent to

71 = atans(c, 1), and 7o = atang(—c, —1).
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