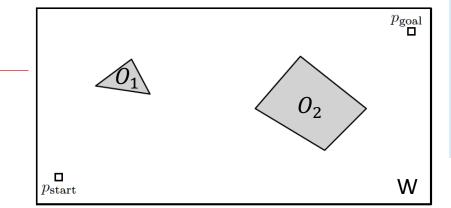
Introduction to Robot Motion Planning & Navigation Module 2

Solmaz S. Kia (solmaz.eng.uci.edu) solmaz@uci.edu Mechanical and Aerospace Engineering Department University of California Irvine

Chapter 2: Motion Planning via Decomposition and Search

- > study techniques for decomposing the continuous robot workspace into convex regions,
- define roadmaps, which encode the decomposed workspace, and
- introduce graph algorithms for computing point-to-point paths in roadmaps.

Problem Setup and Modeling Assumptions



Assumptions on the capabilities and knowledge of the robot

- knows the start and goal locations, and
- knows the workspace and obstacles.
- the robot's motion is omni-directional (i.e., the robot can move in every possible direction)

- > a robot described by a moving point
- → A workspace $W \subset R^2$;
- Some obstacles O_1, O_2, \dots, O_n ;
- $\succ W_{free} = W \backslash (O_1 \cup O_2 \cup \cdots \cup O_n)$
- > A start point p_{start} and a goal point p_{goal} ;

Environment Assumptions

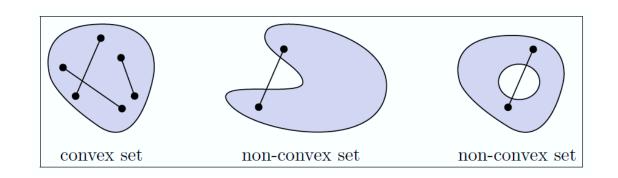
- the workspace is a bounded polygon,
- there are only a finite number of obstacles that are polygons inside the workspace, and
- the start and goal points are inside the workspace and outside all obstacles.

Polygons

Vertex (corner) Side (edge)

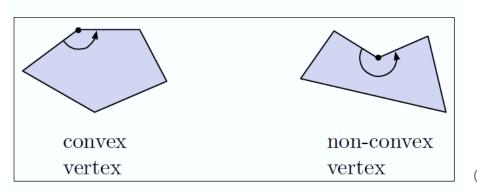
Convex set

A set S is convex if for any two points p and q in S, the entire segment \overline{pq} is also contained in S. Examples of convex and non-convex sets:



For polygons, convexity is related to the interior angles at each vertex of the polygon (each vertex of a polygon has an interior and an exterior angle): a polygonal set is convex if and only if each

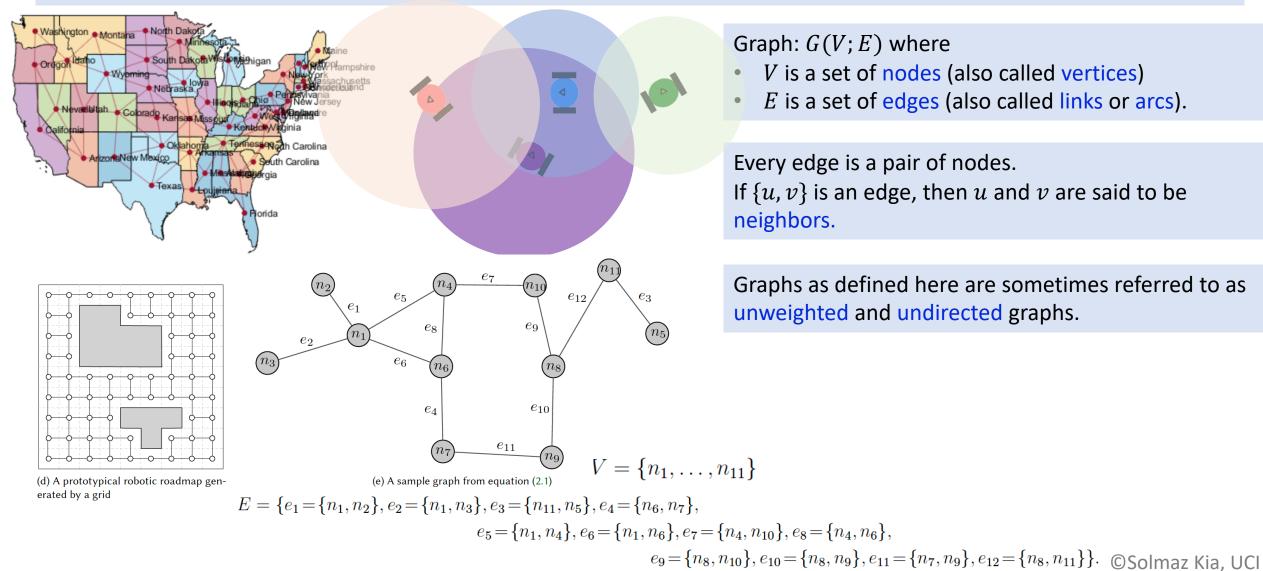
vertex is convex, i.e., it has an interior angle less than π . A vertex is instead called non-convex if its interior angle is larger than π .



©Solmaz Kia, UCI

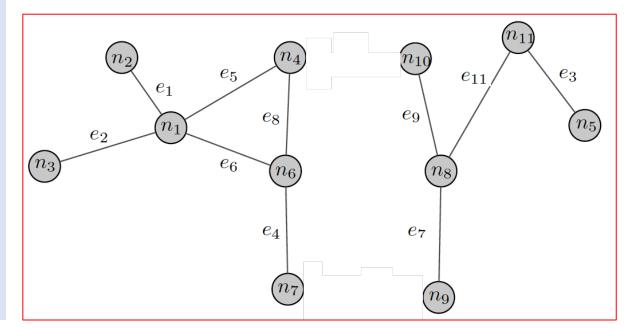
Graphs

In mathematics, especially graph theory, graphs are mathematical structures used to model pairwise relations between objects.



Graphs

- A path is an ordered sequence of nodes such that from each node there is an edge to the next node in the sequence.
- The length of a path is the number of edges in the path from start node to end node.
- Two nodes in a graph are path-connected if there is a path between them.
- A graph is connected if every two nodes are path-connected.
- If a graph is not connected, it is said to have multiple connected components. More precisely, a connected component is a subgraph in which (1) any two nodes are connected to each other and (2) all nodes outside the subgraph are not connected to the subgraph.
- A shortest path between two nodes is a path of minimum length between the two nodes. Note that a shortest path does not need to be unique.
- The distance between two nodes is the length of a shortest path connecting them, i.e., the minimum number of edges required to go from one node to the other.
- A cycle is a path with at last three distinct nodes and with no repeating nodes, except for the first and last node which are the same. A graph that contains no cycles and is connected is called a tree.



©Solmaz Kia, UCI

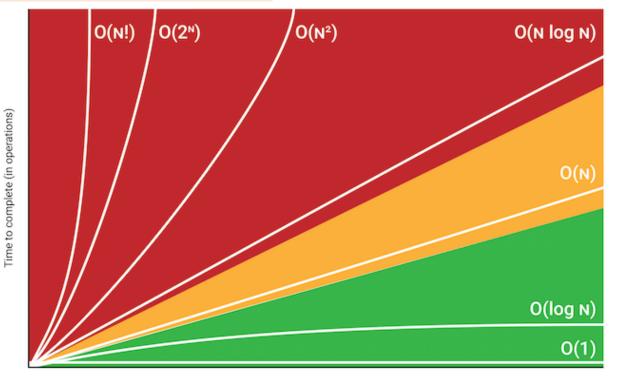
Big O (Time Complexity of Algorithms)

Big O notation is a mathematical notation that describes the <u>limiting behavior</u> of a <u>function</u> when the <u>argument</u> tends towards a particular value or infinity.

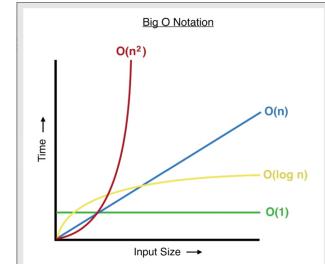
• Finding a specific number in an array of n numbers

• Finding the maximum in an array of n numbers

• Traveling salesman problem

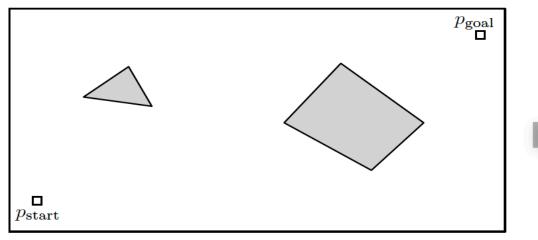


Size of input data

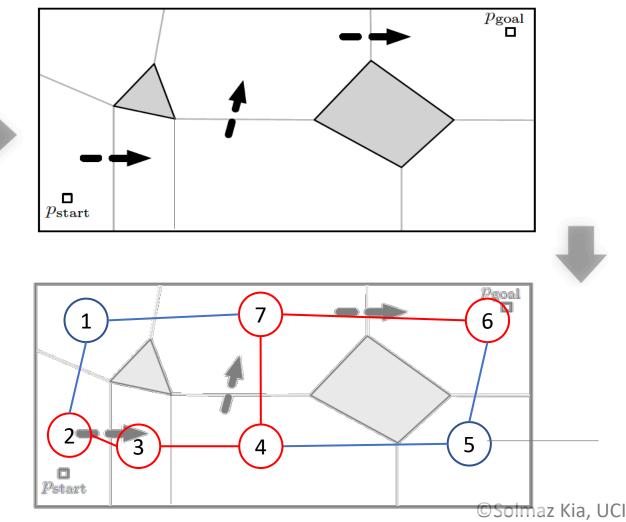


Planning in non-convex sets via convex decompositions

- > If p_{start} and p_{goal} are in a convex free workspace, then the line connecting them also will be in free workspace; if not
- Decompose the free workspace to convex cells and traverse through these convex sub spaces of the free workspace according to the motion planning algorithm.



- the triangulation of a polygon is the decomposition of the polygon into a collection of triangles, and
- the trapezoidation of a polygon is the decomposition of the polygon into a collection of trapezoids. (We allow some trapezoids to have a side of zero length and therefore be triangles.)



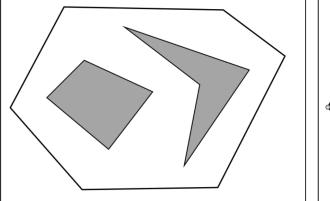
Sweeping Trapezoidation Algorithm

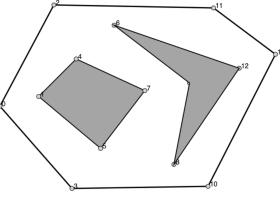
sweeping trapezoidation algorithm

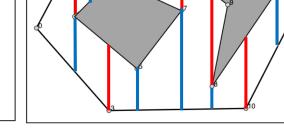
Input: a polygon possibly with polygonal holes

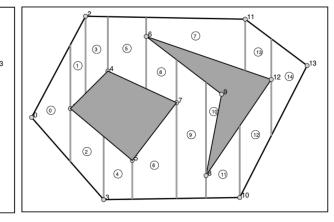
Output: a set of disjoint trapezoids, whose union equals the polygon

- 1: initialize an empty list \mathcal{T} of trapezoids
- 2: order all vertices (of the obstacles and of the workspace) horizontally from left to right
- 3: **for** each vertex selected in a left-to-right sweeping order :
- 4: extend vertical segments upwards and downwards from the vertex until they intersect an obstacle or the workspace boundary
- 5: add to \mathcal{T} the new trapezoids, if any, generated by these segment(s)









Vertex points of polygons are marked.

Upper and lower edge extensions of a polygon vertex is depicted.

Determined Trapezoidal Cells.

Each trapezoidal cell lies between two successive polygon vertex.

©Solmaz Kia, UCI

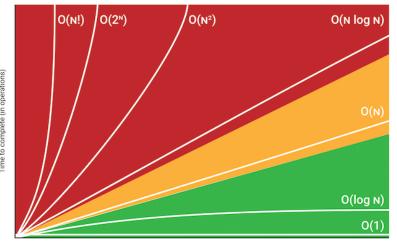
Sweeping Trapezoidation Algorithm: Naïve Implementation

sweeping trapezoidation algorithm

- **Input:** a polygon possibly with polygonal holes
- **Output:** a set of disjoint trapezoids, whose union equals the polygon
 - 1: initialize an empty list ${\mathcal T}$ of trapezoids
 - 2: order all vertices (of the obstacles and of the workspace) horizontally from left to right
 - 3: **for** each vertex selected in a left-to-right sweeping order :
 - 4: extend vertical segments upwards and downwards from the vertex until they intersect an obstacle or the workspace boundary
 - 5: add to \mathcal{T} the new trapezoids, if any, generated by these segment(s)

> Input to the algorithm is a list of polygons, each represented by a list of vertices.

- First step: to sort the vertices based on the x-coordinate of each vertex
 - Many sorting algorithms like bubble sort, merge sort, quick sort exists. Best of them takes $O(n \log n)$ time and O(n) storage
- > Next step: to determine the vertical extensions.
 - For each vertex v_i , a naïve algorithm can intersect a line through v_i with each edge e_j for all j. This takes $O(n^2)$ time to construct the trapezoidal decomposition.



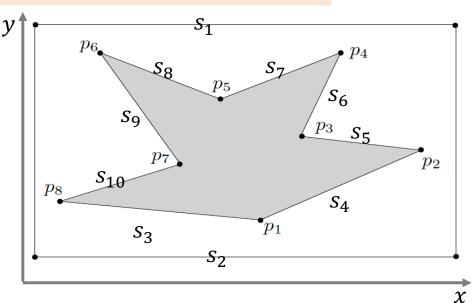
Size of input data

Can we do better?

Sweeping Trapezoidation Algorithm: 'Smarter' Implementation

Consider a workspace in which

- the boundary is an axis-aligned rectangle
- every obstacle vertex has a unique x-coordinate
- ➢ Represent each segment with the x coordinate of its left and right end points: $s_i = [\ell_i, r_i]$
- define a sweeping vertical line L moving from left to right
- Determine the vertex type



Type (i): left/left convex	Type (ii): left/left non-convex	Type (iii): right/right convex	Type (iv): right/right non-convex	Type (v): left/right convex	Type (vi): left/right non-convex
Example:	Example:	Example:	Example:	Example:	Example:

Sweeping Trapezoidation Algorithm: 'Smarter' Implementation

 \succ Maintain a list S of the obstacle segments intersected by the sweeping line L.

- The obstacle segments are stored in decreasing order of their y-coordinates at the intersection point with L.
- S changes only when L hits a new vertex.
- \blacktriangleright when the new vertex v is encountered, steps 4: and 5: update the list of trapezoids \mathcal{T} and the list of obstacle segments \mathcal{S} , as follows
 - 4.1 determine the type of vertex v

4.2: update S by adding obstacle segments starting at v and removing obstacle segments ending at v (i.e., add two

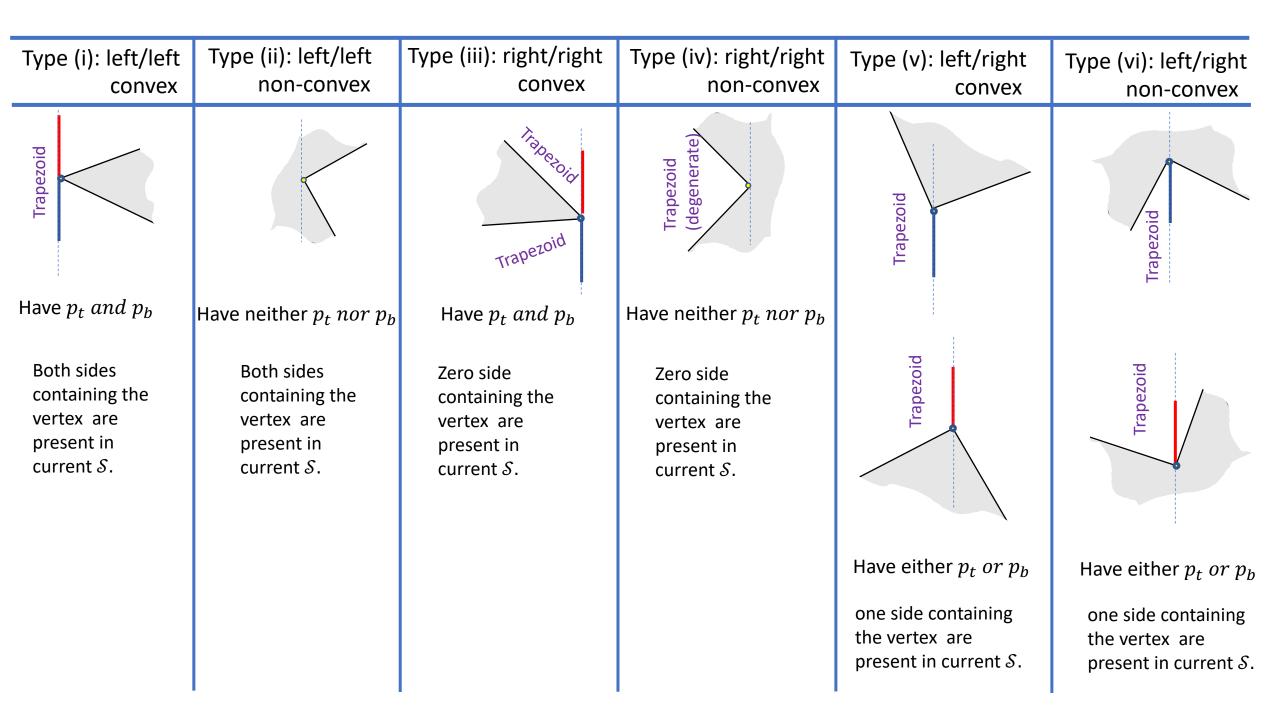
segments, remove one segment and add one segment, or remove two segments, depending on vertex type as shown in the next page)

4.3: use S to extend vertical segments upwards and downwards from v, that is, to find intersection points p_t and p_b above and below v (if any) — more detail on this computation is given in the paragraph below

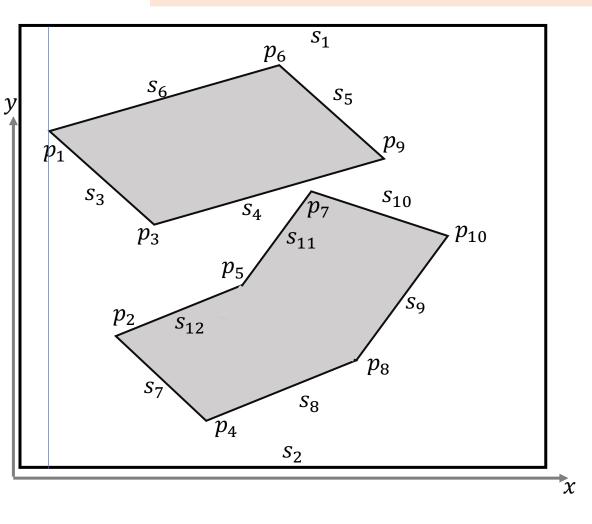
5.1: add to T zero, one or two new trapezoids depending on vertex type (see figures in the next page)

5.2: update the left endpoints of the obstacle segments in \mathcal{S} above and below the vertex v

The type of v can be determined by checking its convexity and looking at the number of obstacle segments in S that have v as an endpoint.



Sweeping Trapezoidation Algorithm: 'Smarter' Implementation



Sweeping Trapezoidation Algorithm: 'Smarter' Implementation (Example from textbook)

 s_1

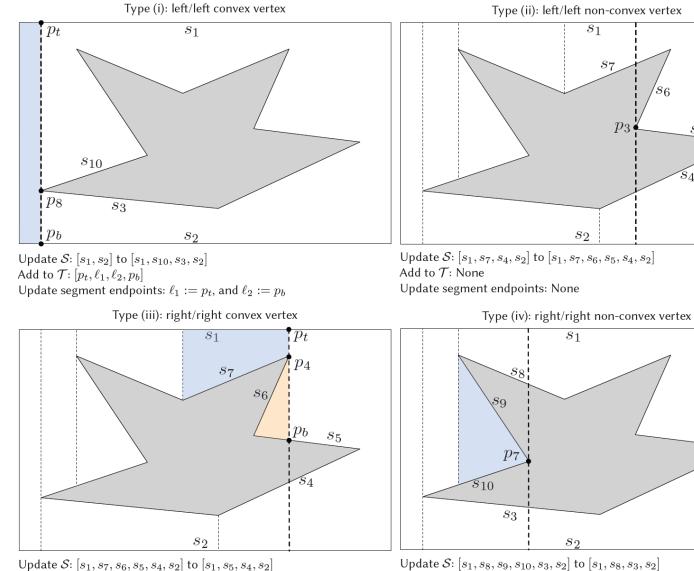
 s_2

 s_1

 S_7

 p_3

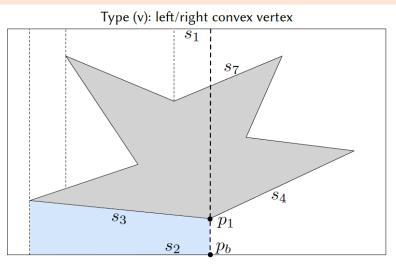
 S_5



Add to $\mathcal{T}: [p_t, \ell_1, \ell_7, p_4]$, and $[p_4, \ell_6, p_b]$

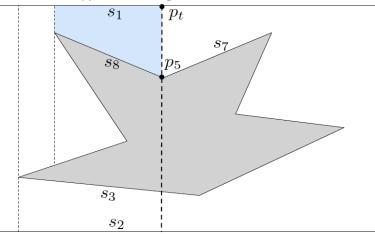
Update segment endpoints: $\ell_1 := p_t$, and $\ell_5 := p_b$

 S_{2} Update $S: [s_1, s_8, s_9, s_{10}, s_3, s_2]$ to $[s_1, s_8, s_3, s_2]$ Add to $\mathcal{T}: [p_7, \ell_9, \ell_{10}]$ Update segment endpoints: None



Update $S: [s_1, s_7, s_3, s_2]$ to $[s_1, s_9, s_3, s_2]$ Add to \mathcal{T} : $[p_1, \ell_3, \ell_2, p_b]$ Update segment endpoints: $\ell_2 := p_b$

Type (vi): left/right non-convex vertex

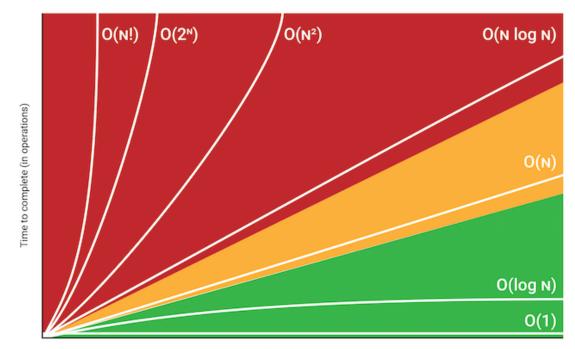


Update $S: [s_1, s_8, s_3, s_2]$ to $[s_1, s_7, s_3, s_2]$ Add to \mathcal{T} : $[p_t, \ell_1, \ell_8, p_5]$ Update segment endpoints: $\ell_1 := p_t$

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm: Time Complexity

by using a more sophisticated data structure for S that allows us to insert and delete segments more quickly. In particular, a binary search tree can be used to maintain the ordered segments in S. A segment can be inserted/deleted in O(log(n)), instead of O(n) time for the simple array implementation. With a binary tree, the sweeping decomposition algorithm can be implemented with a run-time belonging to $O(n \log(n))$ for a free workspace with n vertices.



Size of input data

Navigation on Roadmaps

roadmap-from-decomposition algorithm

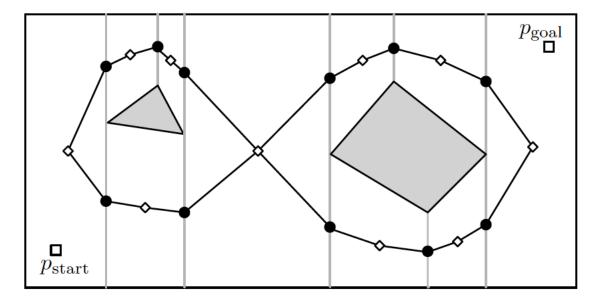
Input: the trapezoidation of a polygon (possibly with holes)

Output: a roadmap

- 1: label the center of each trapezoid with the symbol \diamond
- 2: label the midpoint of each vertical separating segment with the symbol •
- 3: **for** each trapezoid :
- 4: connect the center to all the midpoints in the trapezoid
- 5: **return** the roadmap consisting of centers and connections between them through midpoints

As a result of this algorithm we obtain a roadmap specified as follows:

- (1) a collection of center points (one for each trapezoid), and
- (2) a collection of paths connecting center points (each path being composed of 2 segments, connecting a center to a midpoint and the same midpoint to a distinct center).



Navigation on Roadmaps

planning-via-decomposition+search algorithm

Input: free workspace W_{free} , start point p_{start} and goal point p_{goal}

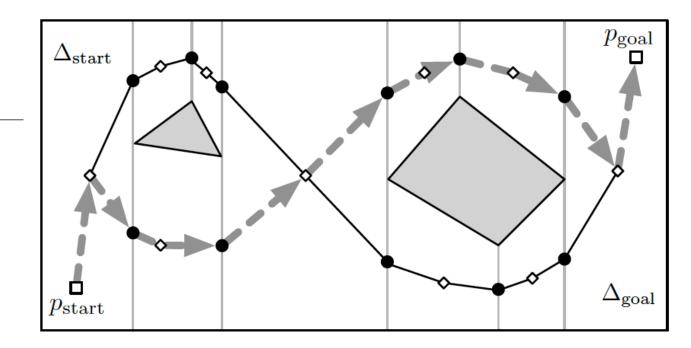
Output: a path from p_{start} to p_{goal} if it exists, otherwise a failure notice. Either outcome is obtained in finite time.

- 1: compute a decomposition of W_{free} and the corresponding roadmap
- 2: in the decomposition, find the start trapezoid Δ_{start} containing p_{start} and the goal trapezoid Δ_{goal} containing p_{goal}
- 3: in the roadmap, search for a path from Δ_{start} to Δ_{goal}
- 4: if no path exists from Δ_{start} to Δ_{goal} :
- 5: **return** *failure* notice

6: **else**

7: **return** path by concatenating:

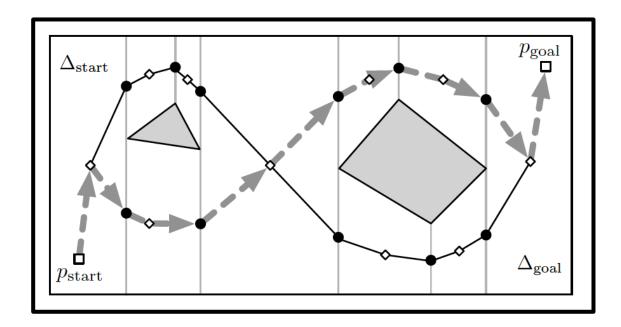
the segment from p_{start} to the center of Δ_{start} , the path from the Δ_{start} to Δ_{goal} , and the segment from the center of Δ_{goal} to p_{goal} .

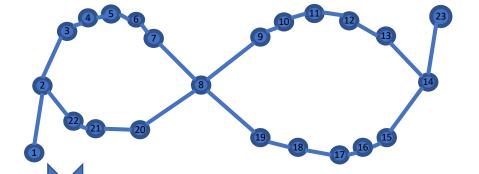


Navigation on Roadmaps: Optimality

Multiple paths might exist from start to goal.
Which one to choose?
Path with shortest length
But how to find that path

Obtain the dual graph of the road map





Solve the shortest-path problem:

Given a graph with a start node and a goal node, find a shortest path from the start node to the goal node.

We will use the breadth-first search (BFS) algorithm

©Solmaz Kia, UCI

BFS Algorithm

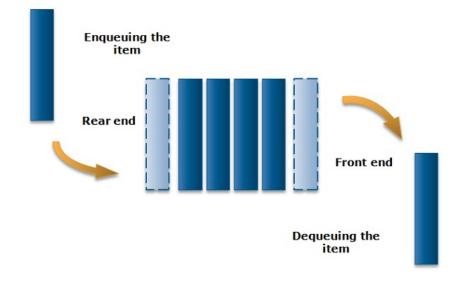
- 1: begin with the start node and mark as visited // *The start node forms Layer 0*
- 2: for each unvisited neighbor \boldsymbol{u} of the start node :
- 3: mark u as visited, and set the start node as the parent of u. // The nodes u form Layer 1
- 4: for each unvisited neighbor v of the nodes in Layer 1 :
- 5: mark v as visited and record the neighbor from Layer 1 as the parent of v
- 6: repeat the process until you reach a layer that has no unvisited neighbors
- 7: **if** the goal node has been visited :
- 8: follow the parent values back to the start node, and return this sequence of vertices as the shortest path from start to goal
- 9: **else**
- 10: return a failure notice (i.e., the start and goal node are not path-connected)



BFS Algorithm: The Queue Solution Approach

A queue (also called first-in-first-out (FIFO) queue) is a variable-size data container

- Two operations
 - \succ insert(Q, v): inserts an item into the back of the queue
 - \succ retrieve(Q): returns the item that sits at the front of the queue



QUEUE

Can be run such that each insert and retrieve runs in O(1) time

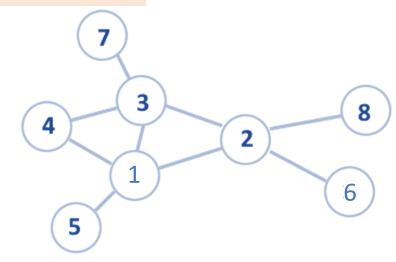
BFS Algorithm: The Queue Solution Approach

breadth-first search (BFS) algorithm

Input: a graph G, a start node v_{start} and goal node v_{goal} **Output:** a path from v_{start} to v_{goal} if it exists, otherwise a failure notice 1: **for** each node v in G: parent(v) := NONE2: 3: $parent(v_{start}) := SELF$ 4: create an empty queue Q and insert (Q, v_{start}) 5: while Q is not empty : $v := \operatorname{retrieve}(Q)$ 6: for each node u connected to v by an edge : 7: if parent(u) == NONE: 8: set parent(u) := v and insert(Q, u)9: if $u == v_{\text{goal}}$: 10: run *extract-path* algorithm to compute the path from start to goal 11: return success and the path from start to goal 12: 13: **return** *failure* notice along with the parent values.

extract-path algorithm

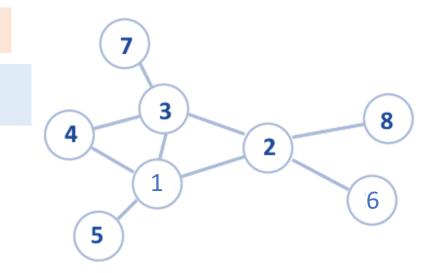
Input: a goal node v_{goal} , and the parent values Output: a path from v_{start} to v_{goal} 1: create an array $P := [v_{\text{goal}}]$ 2: set $u := v_{\text{goal}}$ 3: while parent $(u) \neq \text{SELF}$: 4: u := parent(u)5: insert u at the beginning of P6: return P



Representing a Graph

Representation #1 (Adjacency Table/List): a lookup table, that is, an array whose elements are lists of varying length: the i-th entry is a list of all neighbors of node i.

AdjTable[1] =	AdjTable[5] =
AdjTable[2] =	AdjTable[6] =
AdjTable[3] =	AdjTable[7] =
AdjTable[4] =	AdjTable[8] =



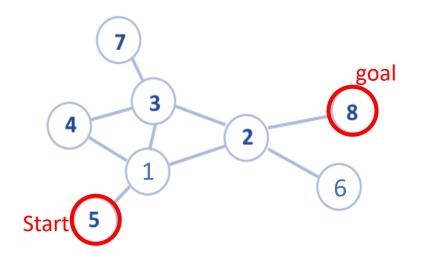
Representation #2 (Adjacency Matrix): a symmetric matrix whose (i,j) entry is equal to 1 if the graph contains the edge {i,j} and is equal to 0 otherwise.

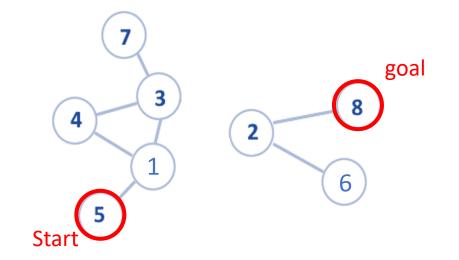
A =

Representation #3 (Edge List): an array, where each entry is an edge in the graph. This representation of edges is called an edge list.

Runtime of BFS

➢ Is BFS algorithm complete?

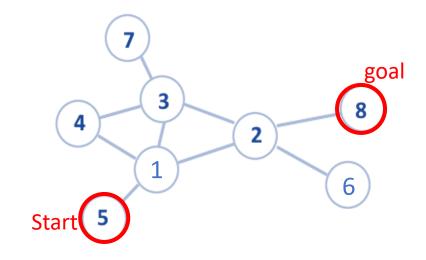




Runtime of BFS

➤ How quickly does it run?

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).



Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices and m edges, along with a start

and goal node. Then the runtime of the breadth-first-search algorithm is

- O(n + m) if G is represented as an adjacency table,
- O(n²) if G is represented as an adjacency matrix, and
- O(n.m) if G is represented as an edge list.

	. •		r	DEC
Ru	nti	me	OT	BFS
			•••	

If a graph is connected, then $m \ge n-1$

• for any undirected graph $m \leq \frac{n(n-1)}{2}$.

• $m \in O(n^2)$

From this we see that the best graph representation for

BFS is an adjacency table, followed by an adjacency matrix, followed by an edge list.

Input: a graph G, a start node v_{start} and goal node v_{goal} **Output:** a path from v_{start} to v_{goal} if it exists, otherwise a failure notice 1: **for** each node v in G: parent(v) := NONE2: Initialization 3: $parent(v_{start}) := SELF$ 4: create an empty queue Q and insert (Q, v_{start}) 5: while Q is not empty : Outer while loop $v := \operatorname{retrieve}(Q)$ 6: **for** each node *u* connected to *v* by an edge : 7: Inner for loop if parent(u) == NONE: 8: set parent(u) := v and insert(Q, u)9: if $u == v_{\text{goal}}$: 10: run *extract-path* algorithm to compute the path from start to goal 11: return success and the path from start to goal 12: 13: return *failure* notice along with the parent values.

extract-path algorithm

Input: a goal node v_{goal} , and the parent values Output: a path from v_{start} to v_{goal} 1: create an array $P := [v_{\text{goal}}]$ 2: set $u := v_{\text{goal}}$ 3: while parent $(u) \neq \text{SELF}$: 4: u := parent(u)5: insert u at the beginning of P6: return P

Runtime of BFS

➤ How quickly does it run?

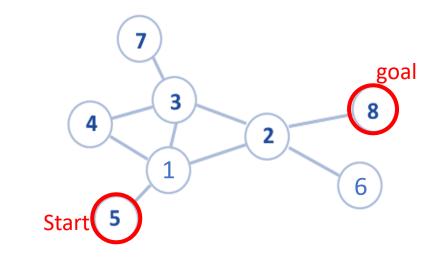
Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices and m edges, along with a start

and goal node. Then the runtime of the breadth-first-search algorithm is

- O(n + m) if G is represented as an adjacency table,
- O(n²) if G is represented as an adjacency matrix, and
- O(n.m) if G is represented as an edge list.
 - If a graph is connected, then $m \ge n-1$
 - for any undirected graph $m \leq \frac{n(n-1)}{2}$.
 - $m \in O(n^2)$

From this we see that the best graph representation for BFS is an adjacency table, followed by an adjacency matrix, followed by an edge list.



References:

- F. Bullo and S. L. Smith. Lecture notes on robotic planning and kinematics
- H. Choset, K. Lynch, S. Hutchinson, G. Kantor, et al. Principles of Robot Motion, Theory, Algorithms, and Implementations.