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Chapter 2: Motion Planning via Decomposition and Search

Ø study techniques for decomposing the continuous robot workspace into convex regions,

Ø define roadmaps, which encode the decomposed workspace, and

Ø introduce graph algorithms for computing point-to-point paths in roadmaps.
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Problem Setup and Modeling Assumptions

Ø a robot described by a moving point

Ø A workspace 𝑊 ⊂ 𝑅$;

Ø Some obstacles 𝑂&, 𝑂$,⋯ , 𝑂);

Ø 𝑊+,-- = 𝑊\(𝑂& ∪ 𝑂$ ∪ ⋯∪ 𝑂))

Ø A start point 𝑝456,5 and a goal point 𝑝7869; 

Assumptions on the capabilities and knowledge of the robot
• knows the start and goal locations, and
• knows the workspace and obstacles.
• the robot’s motion is omni-directional (i.e., the robot can move in every 

possible direction)

Environment Assumptions
• the workspace is a bounded polygon,
• there are only a finite number of obstacles that are polygons inside the 

workspace, and
• the start and goal points are inside the workspace and outside all 

obstacles.
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A set 𝑆 is convex if for any two points p and q in 𝑆, the entire segment 𝑝𝑞 is 
also contained in S. Examples of convex and non-convex sets:

For polygons, convexity is related to the interior angles at each vertex of the 
polygon (each vertex of a polygon has an interior and an exterior angle): a 
polygonal set is convex if and only if each
vertex is convex, i.e., it has an interior angle less than 𝜋. A vertex is instead 
called non-convex if its interior angle is larger than 𝜋. 
.

Convex setPolygons

Vertex (corner) Side (edge)
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Graphs
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In mathematics, especially graph theory, graphs are mathematical structures used to model pairwise relations between 
objects.

Graph: 𝐺(𝑉; 𝐸) where 
• 𝑉 is a set of nodes (also called vertices)
• 𝐸 is a set of edges (also called links or arcs).

Every edge is a pair of nodes.
If {𝑢, 𝑣} is an edge, then 𝑢 and 𝑣 are said to be 
neighbors.

Graphs as defined here are sometimes referred to as 
unweighted and undirected graphs.



Graphs

• A path is an ordered sequence of nodes such that from each node there is an edge to the next node in the sequence. 

• The length of a path is the number of edges in the path from start node to end node.

• Two nodes in a graph are path-connected if there is a path between them. 

• A graph is connected if every two nodes are path-connected.
• If a graph is not connected, it is said to have multiple connected components. More precisely, a connected component is a 

subgraph in which (1) any two nodes are connected to each other and (2) all nodes outside the subgraph are not connected 
to the subgraph. 

• A shortest path between two nodes is a path of minimum 
length between the two nodes. Note that a shortest path 
does not need to be unique.

• The distance between two nodes is the length of a shortest 
path connecting them, i.e., the minimum number of edges 
required to go from one node to the other. 

• A cycle is a path with at last three distinct nodes and with no 
repeating nodes, except for the first and last node which are 
the same. A graph that contains no cycles and is connected 
is called a tree.
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Big O (Time Complexity of Algorithms) 

Big O notation is a mathematical notation that describes 
the limiting behavior of a function when the argument tends 
towards a particular value or infinity.

• Finding a specific number in an array of n numbers

• Finding the maximum in an array of n numbers 

• Traveling salesman problem

https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Argument_of_a_function
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Planning in non-convex sets via convex decompositions

Ø If 𝑝456,5 and 𝑝7869 are in a convex free workspace, then the line connecting them also will be in free workspace; if not

Ø Decompose the free workspace to convex cells and traverse through these convex sub spaces of the free workspace 
according to the motion planning algorithm.

• the triangulation of a polygon is the decomposition 
of the polygon into a collection of triangles, and

• the trapezoidation of a polygon is the decomposition 
of the polygon into a collection of trapezoids. (We 
allow some trapezoids to have a side of zero length 
and therefore be triangles.)

2

1 7

3

6

54



©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm

Vertex points of polygons are 
marked.

Upper and lower edge extensions of 
a polygon vertex is depicted.

Determined Trapezoidal Cells.

Each trapezoidal cell lies between two 
successive polygon vertex.



Sweeping Trapezoidation Algorithm: Naïve Implementation

Ø Input to the algorithm is a list of polygons, each represented by a list of vertices.

Ø First step: to sort the vertices based on the x-coordinate of each vertex
• Many sorting algorithms like bubble sort, merge sort, quick sort exists. Best 

of them takes 𝑂(𝑛 log 𝑛) time and 𝑂(𝑛) storage

Ø Next step: to determine the vertical extensions.
• For each vertex 𝑣H, a naïve algorithm can intersect a line through 𝑣H with each 

edge 𝑒J for all 𝑗. This takes 𝑂 𝑛$ time to construct the trapezoidal 
decomposition.
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𝑛: number of vertices (or edges)

Can we do better?
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Consider a workspace in which

Ø the boundary is an axis-aligned rectangle

Ø every obstacle vertex has a unique x-coordinate

Ø Represent each segment with the x coordinate of its left and right end 
points:  𝑠H = ℓH, 𝑟H

Ø define a sweeping vertical line L moving from left to right

Ø Determine the vertex type

𝑠&

𝑠$
𝑠O

𝑠P

𝑠Q

𝑠R
𝑠S𝑠T

𝑠U

𝑠&V

𝑥

𝑦

Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right                              
non-convex

Example: Example: Example: Example: Example: Example:
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Ø Maintain a list 𝒮 of the obstacle segments intersected by the sweeping line L. 
• The obstacle segments are stored in decreasing order of their y-coordinates at the intersection point with L. 
• 𝒮 changes only when L hits a new vertex. 

Ø when the new vertex 𝑣 is encountered, steps 4: and 5: update the list of trapezoids 𝒯 and the list of obstacle 
segments 𝒮 , as follows

4.1 determine the type of vertex 𝑣

4.2: update 𝒮 by adding obstacle segments starting at 𝑣 and removing obstacle segments ending at 𝑣 (i.e., add 
two

segments, remove one segment and add one segment, or remove two segments, depending on vertex type as
shown in the next page)

4.3: use 𝒮 to extend vertical segments upwards and downwards from 𝑣, that is, to find intersection points 𝑝5 and 
𝑝[ above and below 𝑣 (if any) — more detail on this computation is given in the paragraph below

5.1: add to 𝒯 zero, one or two new trapezoids depending on vertex type (see figures in the next page)

5.2: update the left endpoints of the obstacle segments in 𝒮 above and below the vertex v

The type of 𝑣 can be determined by checking its convexity and looking at the number of obstacle segments in 𝒮 that 
have 𝑣 as an endpoint.

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation



Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right                              
non-convex

Have 𝑝5 𝑎𝑛𝑑 𝑝[ Have 𝑝5 𝑎𝑛𝑑 𝑝[

Have either 𝑝5 𝑜𝑟 𝑝[ Have either 𝑝5 𝑜𝑟 𝑝[

Have neither 𝑝5 𝑛𝑜𝑟 𝑝[ Have neither 𝑝5 𝑛𝑜𝑟 𝑝[
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Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation
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Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation (Example from textbook)
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by using a more sophisticated data structure for S that allows us to insert and delete 
segments more quickly. In particular, a binary search tree can be used to maintain the 
ordered segments in S. A segment can be inserted/deleted in O(log(n)), instead of 
O(n) time for the simple array implementation. With a binary tree, the sweeping 
decomposition algorithm can be implemented with a run-time belonging to O(n log(n)) 
for a free workspace with n vertices.

Sweeping Trapezoidation Algorithm: Time Complexity



Navigation on Roadmaps

As a result of this algorithm we obtain a roadmap specified as 
follows: 

(1) a collection of center points (one for each trapezoid), 
and 

(2) a collection of paths connecting center points (each 
path being composed of 2 segments, connecting a 
center to a midpoint and the same midpoint to a 
distinct center).
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Navigation on Roadmaps

©Solmaz Kia, UCI



• Multiple paths might exist from start to goal. 
Which one to choose?

Path with shortest length
But how to find that path

Obtain the dual graph of 
the road map
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Solve the shortest-path problem: 
Given a graph with a start node and a goal node, find a 
shortest path from the start node to the goal node. We will use the breadth-first search (BFS) algorithm

Navigation on Roadmaps: Optimality
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BFS Algorithm

1
6
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BFS Algorithm: The Queue Solution Approach

A queue (also called first-in-first-out (FIFO) queue) is a variable-size data container
§ Two operations

Ø 𝑖𝑛𝑠𝑒𝑟𝑡 𝑄, 𝑣 : inserts an item into the back of the queue

Ø 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑄 : returns the item that sits at the front of the queue

§ Can be run such that each insert and retrieve runs in O(1) time 
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BFS Algorithm: The Queue Solution Approach

1
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Representing a Graph

Representation #1 (Adjacency Table/List):  a lookup table, that is, an array whose 
elements are lists of varying length: the i-th entry is a list of all neighbors of node i. 

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 1 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 2 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 3 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 4 =

Representation #2 (Adjacency Matrix): a symmetric 
matrix whose (i,j) entry is equal to 1 if the graph 
contains the edge {i,j} and is equal to 0 otherwise. 

Representation #3 (Edge List): an array, where each entry 
is an edge in the graph. This representation of edges is 
called an edge list. 

1
6

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 5 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 6 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 7 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 8 =

𝐴 =
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Runtime of BFS

Ø Is BFS algorithm complete?

1 6 1 6
Start

goal

Start

goal
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Runtime of BFS

Ø How quickly does it run?

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).

1 6
Start

goal

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices 
and m edges, along with a start
and goal node. Then the runtime of the breadth-first-search algorithm is
• O(n + m) if G is represented as an adjacency table,
• O(n2) if G is represented as an adjacency matrix, and
• O(n.m) if G is represented as an edge list.
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Initialization

Outer while loop

Inner for loop

• If a graph is connected, then 𝑚 ≥ 𝑛 − 1
• for any undirected graph 𝑚 ≤ ) )s&

$
. 

• 𝑚 ∈ 𝑂 𝑛$
From this we see that the best graph 
representation for
BFS is an adjacency table, followed by an 
adjacency matrix, followed by an edge list.
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Ø How quickly does it run?

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).
1 6
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goal

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices 
and m edges, along with a start
and goal node. Then the runtime of the breadth-first-search algorithm is
• O(n + m) if G is represented as an adjacency table,
• O(n2) if G is represented as an adjacency matrix, and
• O(n.m) if G is represented as an edge list.

• If a graph is connected, then 𝑚 ≥ 𝑛 − 1
• for any undirected graph 𝑚 ≤ ) )s&

$
. 

• 𝑚 ∈ 𝑂 𝑛$
From this we see that the best graph representation for BFS is an adjacency table, 
followed by an adjacency matrix, followed by an edge list.
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Runtime of BFS
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