Introduction to Robot Motion
Planning & Navigation
Module 2

Solmaz S. Kia (solmaz.eng.uci.edu)
solmaz@uci.edu
Mechanical and Aerospace Engineering Department
University of California Irvine

©Solmaz Kia, UCI

Chapter 2: Motion Planning via Decomposition and Search

» study techniques for decomposing the continuous robot workspace into convex regions,
» define roadmaps, which encode the decomposed workspace, and

» introduce graph algorithms for computing point-to-point paths in roadmaps.

©Solmaz Kia, UCI

Problem Setup and Modeling Assumptions

Assumptions on the capabilities and knowledge of the robot
Peoat | o knows the start and goal locations, and
* knows the workspace and obstacles.
- the robot’s motion is omni-directional (i.e., the robot can move in every
possible direction)

O

Pstart W

» arobot described by a moving point

2
C R4; . i
» Aworkspace W c R*; Environment Assumptions

* the workspace is a bounded polygon,

* there are only a finite number of obstacles that are polygons inside the
workspace, and

* the start and goal points are inside the workspace and outside all
obstacles.

» Some obstacles 04, 05, -, Oy;
> Wrree = WA\(O,L U0z U U Oy)

» A start point pg; .-+ and a goal point Pgoal;

©Solmaz Kia, UCI

Polygons

-

Vertex (corner)

\

Side (edge)

Convex set

A set S is convex if for any two points p and g in S, the entire segment pq is
also contained in S. Examples of convex and non-convex sets:

convex set non-convex set non-convex set

For polygons, convexity is related to the interior angles at each vertex of the
polygon (each vertex of a polygon has an interior and an exterior angle): a

polygonal set is convex if and only if each
vertex is convey, i.e., it has an interior angle less than m. A vertex is instead
called non-convex if its interior angle is larger than .

< 44

convex nnon-convex

vertex vertex ©Solmaz Kia, UCI

Graphs

In mathematics, especially graph theory, graphs are mathematical structures used to model pairwise relations between
objects.

Graph: G(V; E) where
* Vs aset of nodes (also called vertices)
« FEis a set of edges (also called links or arcs).

Every edge is a pair of nodes.

If {u, v} is an edge, then u and v are said to be
neighbors.

Graphs as defined here are sometimes referred to as
unweighted and undirected graphs.

)) . V:{nla---anll}
(d) A prototypical robotic roadmap gen- (e) A sample graph from equation (2.1)

Frated by g E = {81 :{nla n2}7 €2 = {n1, n3}, €3 ={n11-, n5}7 €4= {n67 n7},
€5 = {nl, n4}, €6 — {nl, ne}, €r= {n4, n1o}, €8 = {n4, ne},

eg={ng, N0}, e10={ns. no}.e11={nz.no},e12={ns,n11}}. ©solmaz Kia, UCI

Graphs

A path is an ordered sequence of nodes such that from each node there is an edge to the next node in the sequence.

The length of a path is the number of edges in the path from start node to end node.
Two nodes in a graph are path-connected if there is a path between them.

A graph is connected if every two nodes are path-connected.

If a graph is not connected, it is said to have multiple connected components. More precisely, a connected component is a
subgraph in which (1) any two nodes are connected to each other and (2) all nodes outside the subgraph are not connected

to the subgraph.

A shortest path between two nodes is a path of minimum
length between the two nodes. Note that a shortest path
does not need to be unique.

The distance between two nodes is the length of a shortest
path connecting them, i.e., the minimum number of edges
required to go from one node to the other.

A cycle is a path with at last three distinct nodes and with no
repeating nodes, except for the first and last node which are
the same. A graph that contains no cycles and is connected
is called a tree.

€11

ng

€r

o

©Solmaz Kia, UCI

Big O (Time Complexity of Algorithms)

Big O notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards a particular value or infinity.

Finding a specific number in an array of n numbers

Time to complete (in operations)

Finding the maximum in an array of n numbers

Size of input data

Traveling salesman problem Big O Notation
0(n?)

o(n)
f
g
=

- o(1)

Input Size —

https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Argument_of_a_function

Planning in non-convex sets via convex decompositions

» If Pstare and Pgoqr are in a convex free workspace, then the line connecting them also will be in free workspace; if not

» Decompose the free workspace to convex cells and traverse through these convex sub spaces of the free workspace

according to the motion planning algorithm.

A\

Pgoal
O

(|
Pstart

- =p

(m]
Pstart

- =l

Pgoal
a

the triangulation of a polygon is the decomposition
of the polygon into a collection of triangles, and

the trapezoidation of a polygon is the decomposition
of the polygon into a collection of trapezoids. (We
allow some trapezoids to have a side of zero length
and therefore be triangles.)

maz Kia, UCI

Sweeping Trapezoidation Algorithm

sweeping trapezoidation algorithm

Input: a polygon possibly with polygonal holes
Output: a set of disjoint trapezoids, whose union equals the polygon
1: initialize an empty list 7 of trapezoids
2: order all vertices (of the obstacles and of the workspace) horizontally from left to right
3: for each vertex selected in a left-to-right sweeping order :
4 extend vertical segments upwards and downwards from the vertex until they intersect an obstacle or the workspace

boundary

5: add to T the new trapezoids, if any, generated by these segment(s)

"2/

>y

Vertex points of polygons are
marked.

R

0

Upper and lower edge extension
a polygon vertex is depicted.

s of Determined Trapezoidal Cells.

Each trapezoidal cell lies between two
successive polygon vertex.

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm: Naive Implementation

sweeping trapezoidation algorithm

Input: a polygon possibly with polygonal holes
Output: a set of disjoint trapezoids, whose union equals the polygon
1: initialize an empty list 7 of trapezoids
2: order all vertices (of the obstacles and of the workspace) horizontally from left to right
3: for each vertex selected in a left-to-right sweeping order :
4 extend vertical segments upwards and downwards from the vertex until they intersect an obstacle or the workspace
boundary
add to T the new trapezoids, if any, generated by these segment(s)

o

: N : . n: number of vertices (or edges
» Input to the algorithm is a list of polygons, each represented by a list of vertices. (ges)

> First step: to sort the vertices based on the x-coordinate of each vertex O(N log N)

* Many sorting algorithms like bubble sort, merge sort, quick sort exists. Best
of them takes O(nlogn) time and O(n) storage 3

» Next step: to determine the vertical extensions.
* For each vertex v;, a naive algorithm can intersect a line through v; with each
edge e; for all j. This takes 0 (n?) time to construct the trapezoidal

decomposition. =

Size of input data

Can we do better?

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

Consider a workspace in which

» the boundary is an axis-aligned rectangle

» every obstacle vertex has a unique x-coordinate

» Represent each segment with the x coordinate of its left and right end

points: s; = [¥;,17]

» define a sweeping vertical line L moving from left to right

» Determine the vertex type

a

©Solmaz Kia, UCI

y

I
°1

Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right
non-convex

Example:

Example:

Example:

Example:

Example:

Example:

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

» Maintain a list § of the obstacle segments intersected by the sweeping line L.

* The obstacle segments are stored in decreasing order of their y-coordinates at the intersection point with L.
* S changes only when L hits a new vertex.

» when the new vertex v is encountered, steps 4: and 5: update the list of trapezoids 7" and the list of obstacle
segments S , as follows
4.1 determine the type of vertex v

4.2: update S by adding obstacle segments starting at v and removing obstacle segments ending at v (i.e., add
two

segments, remove one segment and add one segment, or remove two segments, depending on vertex type as
shown in the next page)

4.3: use S to extend vertical segments upwards and downwards from v, that is, to find intersection points p; and
pp above and below v (if any) — more detail on this computation is given in the paragraph below

5.1: add to T zero, one or two new trapezoids depending on vertex type (see figures in the next page)
5.2: update the left endpoints of the obstacle segments in § above and below the vertex v

The type of v can be determined by checking its convexity and looking at the number of obstacle segments in § that
have v as an endpoint.

©Solmaz Kia, UCI

Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right
non-convex

Trapezoid

Have p; and py

Both sides
containing the
vertex are
present in
current §.

Have neither p, nor p,

Both sides
containing the
vertex are
present in
current §.

Have p; and py,

Zero side
containing the
vertex are
present in
current S.

Trapezoid
(degenerate

Have neither p; nor p,

Zero side
containing the
vertex are
present in
current S.

Trapezoid

Trapezoid

Have either p; or py

one side containing
the vertex are
present in current S.

Trapezoid

Trapezoid

Have either p; or py,

one side containing
the vertex are
presentin current S.

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

P1o

><V y

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation (Example from textbook)

Type (i): left/left convex vertex

Type (ii): left/left non-convex vertex

bt 51

B . ittt

Pb S9

o T
S1 1
|
1
]

S7

S9 |

Update S: [s1, s2] to [s1, 10, S3, S2]
Add to T: [pt,él,eg,pb]
Update segment endpoints: ¢1 := p¢, and o := py

Type (iii): right/right convex vertex

UPdate S: [Sh 57,54, 52] to [Sh 57, 56, S5, 54, S2
Add to T: None
Update segment endpoints: None

Type (iv): right/right non-convex vertex

§ TS 1Pt

S7

52 |

S1

T
|
I
I
|
88:

53

52

Update S: [Sla 87, 56,55, 54, 52] to [S].? S5, 54, 52]
Add to T [pe, €1, 07, ps], and [pa, Cs, o)
Update segment endpoints: ¢1 := p¢, and 5 := py

Update S: [s1, 58, 59, 510, 53, S2] to [s1, 8, 53, S2]
Add to T: [p7, lg, EIO]
Update segment endpoints: None

Type (v): left/right convex vertex

| L S1

! p1
52 ipb

Update S: [81, S7, 83, 82] to [51, Sg, S3, 82]
Add to T [p1, €3, (2, po]
Update segment endpoints: {5 := pyp

Type (vi): left/right non-convex vertex

§ i 51 1 Dt

53

S92

Update S: [s1, ss, s3, s2] to [s1, S7, s3, S2]
Add to T: [ptv glv p8’p5]
Update segment endpoints: ¢1 := p;

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm: Time Complexity

by using a more sophisticated data structure for S that allows us to insert and delete
segments more quickly. In particular, a binary search tree can be used to maintain the
ordered segments in S. A segment can be inserted/deleted in O(log(n)), instead of
O(n) time for the simple array implementation. With a binary tree, the sweeping
decomposition algorithm can be implemented with a run-time belonging to O(n log(n))
for a free workspace with n vertices.

Size of input data

©Solmaz Kia, UCI

Navigation on Roadmaps

roadmap-from-decomposition algorithm

Input: the trapezoidation of a polygon (possibly with holes)
Output: a roadmap
1: label the center of each trapezoid with the symbol ¢
2: label the midpoint of each vertical separating segment with the symbol e
3: for each trapezoid :
4 connect the center to all the midpoints in the trapezoid
5: return the roadmap consisting of centers and connections between them through midpoints

As a result of this algorithm we obtain a roadmap specified as
follows:
(1) a collection of center points (one for each trapezoid),
and
(2) a collection of paths connecting center points (each
path being composed of 2 segments, connecting a
center to a midpoint and the same midpoint to a
distinct center).

p start

©Solmaz Kia, UCI

Navigation on Roadmaps

planning-via-decomposition+search algorithm

Input: free workspace W, start point pg.r and goal point pya

Output: a path from pgarn to pgoal if it exists, otherwise a failure notice. Either outcome is obtained in finite time.
1: compute a decomposition of Ws.. and the corresponding roadmap
2: in the decomposition, find the start trapezoid Ay, containing ps.« and the goal trapezoid Ayy, containing pgoal
3: in the roadmap, search for a path from Ay, to Agy
4: if no path exists from Ag,r t0 Agoa

5 return failure notice

6

7

. else

return path by concatenating;:
the segment from pg.t to the center of Agian,
the path from the Ay, to Agoar, and
the segment from the center of Aggy 0 Pyoal-

©Solmaz Kia, UCI

Navigation on Roadmaps: Optimality

* Multiple paths might exist from start to goal. Atart
Which one to choose?
Path with shortest length

|
But how to find that path
Obtain the dual graph of 4‘
the road map |
o
pstart Agoal

Solve the shortest-path problem:

) ‘

Given a graph with a start node and a goal node, find a

shortest path from the start node to the goal node. We will use the breadth-first search (BFS) algorithm

©Solmaz Kia, UCI

RN DDA WY =

10:

BFS Algorithm

begin with the start node and mark as visited // The start node forms Layer 0
for each unvisited neighbor u of the start node :
mark u as visited, and set the start node as the parent of u. // The nodes u form Layer 1
for each unvisited neighbor v of the nodes in Layer 1:
mark v as visited and record the neighbor from Layer 1 as the parent of v
repeat the process until you reach a layer that has no unvisited neighbors
if the goal node has been visited :
follow the parent values back to the start node, and return this sequence of vertices as the shortest path from start to
goal
else
return a failure notice (i.e., the start and goal node are not path-connected)

©Solmaz Kia, UCI

BFS Algorithm: The Queue Solution Approach

A queue (also called first-in-first-out (FIFO) queue) is a variable-size data container
= Two operations

> insert(Q, v): inserts an item into the back of the queue

> retrieve(Q): returns the item that sits at the front of the queue

QUEUE

= Can be run such that each insert and retrieve runs in O(1) time

Enqueuing the
item

Rear end ‘
Front end

e

[———————
[—— 71
 IOS—

—_—
—

Dequeuing the
item

©Solmaz Kia, UCI

BFS Algorithm: The Queue Solution Approach

breadth-first search (BFS) algorithm

Input: a graph G, a start node vstart and goal node g,
Output: a path from vy, to v, if it exists, otherwise a failure notice
1:

R A A S >

—
e

11:
12:
13: return failure notice along with the parent values.

for each node v in G : 4

parent(v) := NONE
parent(vstt) := SELF
create an empty queue () and insert(Q), vstart)
while () is not empty :
v := retrieve(Q)
for each node u connected to v by an edge :
if parent(u) == NONE :
set parent(u) := v and insert(Q), u)
if U == Vgoq :
run extract-path algorithm to compute the path from start to goal
return success and the path from start to goal

extract-path algorithm

Input: a goal node vy, and the parent values
Output: a path from vsar t0 Vgl

1: create an array P := [vgoal
2: set u 1= Vgoa

3: while parent(u) # SELF :
4:
5
6

u := parent(u)
insert u at the beginning of P

. return P

©Solmaz Kia, UCI

Representing a Graph

7
Representation #1 (Adjacency Table/List): a lookup table, that is, an array whose
elements are lists of varying length: the i-th entry is a list of all neighbors of node i. 3 3
4
. 2
AdjTable[1] = AdjTable[5] = .
AdjTable[2] = AdjTable[6] = 6
AdjTable[3] = AdjTable|7] = >
AdjTable[4] = AdjTable[8] =
Representation #2 (Adjacency Matrix): a symmetric Representation #3 (Edge List): an array, where each entry
matrix whose (i,j) entry is equal to 1 if the graph is an edge in the graph. This representation of edges is
contains the edge {i,j} and is equal to O otherwise. called an edge list.
A=

©Solmaz Kia, UCI

Runtime of BFS

> |s BFS algorithm complete?

goal goal

©Solmaz Kia, UCI

Runtime of BFS

» How quickly does it run? !

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m). 3

Sta rt@

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices
and m edges, along with a start

and goal node. Then the runtime of the breadth-first-search algorithm is

e O(n + m) if G is represented as an adjacency table,

e O(n?) if G is represented as an adjacency matrix, and

* O(n.m) if G is represented as an edge list.

©Solmaz Kia, UCI

Runtime of BFS

breadth-first search (BFS) algorithm

Input: a graph G, a start node vstart and goal node g,
Output: a path from vy, to v, if it exists, otherwise a failure notice

R A U S

— — — —
Ny 2

for each node v in GG :

parent(v) := NONE Initialization
parent(vstart) = SELF
create an empty queue () and insert(Q), Vstart)
while @ is not empty : Outer while loop

v := retrieve(Q)
for each node u connected to v by an edge :
if parent(u) == NONE :

Inner for loop

set parent(u) := v and insert(Q, u)

if U == Vgoq :

run extract-path algorithm to compute the path from start to goal
return success and the path from start to goal
return failure notice along with the parent values.

extract-path algorithm

Input: a goal node vy, and the parent values
Output: a path from vsar t0 Vgl

1
2
3
4:
5
6

: create an array P 1= [Ugal
: set U 1= Vgeal
: while parent(u) # SELF :
u = parent(u)
insert u at the beginning of P
: return P

« If a graph is connected, thenm =>n —1

« for any undirected graph m < n(nz_l).

« meon?

From this we see that the best graph
representation for

BFS is an adjacency table, followed by an
adjacency matrix, followed by an edge list.

©Solmaz Kia, UCI

Runtime of BFS 7

:
> How quickly does it run? 4)

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m). 6

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices
and m edges, along with a start

and goal node. Then the runtime of the breadth-first-search algorithm is

e O(n + m) if G is represented as an adjacency table,

e O(n?) if G is represented as an adjacency matrix, and

* O(n.m) if G is represented as an edge list.

« If a graph is connected, thenm =>n —1

« for any undirected graph m < n(nz_l).

« meon?
From this we see that the best graph representation for BFS is an adjacency table,
followed by an adjacency matrix, followed by an edge list.

©Solmaz Kia, UCI

References:
 F BulloandS. L. Smith. Lecture notes on robotic planning and kinematics
 H. Choset, K. Lynch, S. Hutchinson, G. Kantor, et al. Principles of Robot Motion, Theory, Algorithms, and Implementations.

©Solmaz Kia, UCI

