
Introduction to Robot Motion
Planning & Navigation

Module 2
Solmaz S. Kia (solmaz.eng.uci.edu)

solmaz@uci.edu
Mechanical and Aerospace Engineering Department

University of California Irvine

©Solmaz Kia, UCI

Chapter 2: Motion Planning via Decomposition and Search

Ø study techniques for decomposing the continuous robot workspace into convex regions,

Ø define roadmaps, which encode the decomposed workspace, and

Ø introduce graph algorithms for computing point-to-point paths in roadmaps.

©Solmaz Kia, UCI

Problem Setup and Modeling Assumptions

Ø a robot described by a moving point

Ø A workspace 𝑊 ⊂ 𝑅$;

Ø Some obstacles 𝑂&, 𝑂$,⋯ , 𝑂);

Ø 𝑊+,-- = 𝑊\(𝑂& ∪ 𝑂$ ∪ ⋯∪ 𝑂))

Ø A start point 𝑝456,5 and a goal point 𝑝7869;

Assumptions on the capabilities and knowledge of the robot
• knows the start and goal locations, and
• knows the workspace and obstacles.
• the robot’s motion is omni-directional (i.e., the robot can move in every

possible direction)

Environment Assumptions
• the workspace is a bounded polygon,
• there are only a finite number of obstacles that are polygons inside the

workspace, and
• the start and goal points are inside the workspace and outside all

obstacles.

©Solmaz Kia, UCI

𝑂&
𝑂$

W

A set 𝑆 is convex if for any two points p and q in 𝑆, the entire segment 𝑝𝑞 is
also contained in S. Examples of convex and non-convex sets:

For polygons, convexity is related to the interior angles at each vertex of the
polygon (each vertex of a polygon has an interior and an exterior angle): a
polygonal set is convex if and only if each
vertex is convex, i.e., it has an interior angle less than 𝜋. A vertex is instead
called non-convex if its interior angle is larger than 𝜋.
.

Convex setPolygons

Vertex (corner) Side (edge)

©Solmaz Kia, UCI

Graphs

©Solmaz Kia, UCI

In mathematics, especially graph theory, graphs are mathematical structures used to model pairwise relations between
objects.

Graph: 𝐺(𝑉; 𝐸) where
• 𝑉 is a set of nodes (also called vertices)
• 𝐸 is a set of edges (also called links or arcs).

Every edge is a pair of nodes.
If {𝑢, 𝑣} is an edge, then 𝑢 and 𝑣 are said to be
neighbors.

Graphs as defined here are sometimes referred to as
unweighted and undirected graphs.

Graphs

• A path is an ordered sequence of nodes such that from each node there is an edge to the next node in the sequence.

• The length of a path is the number of edges in the path from start node to end node.

• Two nodes in a graph are path-connected if there is a path between them.

• A graph is connected if every two nodes are path-connected.
• If a graph is not connected, it is said to have multiple connected components. More precisely, a connected component is a

subgraph in which (1) any two nodes are connected to each other and (2) all nodes outside the subgraph are not connected
to the subgraph.

• A shortest path between two nodes is a path of minimum
length between the two nodes. Note that a shortest path
does not need to be unique.

• The distance between two nodes is the length of a shortest
path connecting them, i.e., the minimum number of edges
required to go from one node to the other.

• A cycle is a path with at last three distinct nodes and with no
repeating nodes, except for the first and last node which are
the same. A graph that contains no cycles and is connected
is called a tree.

©Solmaz Kia, UCI

Big O (Time Complexity of Algorithms)

Big O notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards a particular value or infinity.

• Finding a specific number in an array of n numbers

• Finding the maximum in an array of n numbers

• Traveling salesman problem

https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Argument_of_a_function

©Solmaz Kia, UCI

Planning in non-convex sets via convex decompositions

Ø If 𝑝456,5 and 𝑝7869 are in a convex free workspace, then the line connecting them also will be in free workspace; if not

Ø Decompose the free workspace to convex cells and traverse through these convex sub spaces of the free workspace
according to the motion planning algorithm.

• the triangulation of a polygon is the decomposition
of the polygon into a collection of triangles, and

• the trapezoidation of a polygon is the decomposition
of the polygon into a collection of trapezoids. (We
allow some trapezoids to have a side of zero length
and therefore be triangles.)

2

1 7

3

6

54

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm

Vertex points of polygons are
marked.

Upper and lower edge extensions of
a polygon vertex is depicted.

Determined Trapezoidal Cells.

Each trapezoidal cell lies between two
successive polygon vertex.

Sweeping Trapezoidation Algorithm: Naïve Implementation

Ø Input to the algorithm is a list of polygons, each represented by a list of vertices.

Ø First step: to sort the vertices based on the x-coordinate of each vertex
• Many sorting algorithms like bubble sort, merge sort, quick sort exists. Best

of them takes 𝑂(𝑛 log 𝑛) time and 𝑂(𝑛) storage

Ø Next step: to determine the vertical extensions.
• For each vertex 𝑣H, a naïve algorithm can intersect a line through 𝑣H with each

edge 𝑒J for all 𝑗. This takes 𝑂 𝑛$ time to construct the trapezoidal
decomposition.

©Solmaz Kia, UCI

𝑛: number of vertices (or edges)

Can we do better?

©Solmaz Kia, UCISweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

Consider a workspace in which

Ø the boundary is an axis-aligned rectangle

Ø every obstacle vertex has a unique x-coordinate

Ø Represent each segment with the x coordinate of its left and right end
points: 𝑠H = ℓH, 𝑟H

Ø define a sweeping vertical line L moving from left to right

Ø Determine the vertex type

𝑠&

𝑠$
𝑠O

𝑠P

𝑠Q

𝑠R
𝑠S𝑠T

𝑠U

𝑠&V

𝑥

𝑦

Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right
non-convex

Example: Example: Example: Example: Example: Example:

©Solmaz Kia, UCI

Ø Maintain a list 𝒮 of the obstacle segments intersected by the sweeping line L.
• The obstacle segments are stored in decreasing order of their y-coordinates at the intersection point with L.
• 𝒮 changes only when L hits a new vertex.

Ø when the new vertex 𝑣 is encountered, steps 4: and 5: update the list of trapezoids 𝒯 and the list of obstacle
segments 𝒮 , as follows

4.1 determine the type of vertex 𝑣

4.2: update 𝒮 by adding obstacle segments starting at 𝑣 and removing obstacle segments ending at 𝑣 (i.e., add
two

segments, remove one segment and add one segment, or remove two segments, depending on vertex type as
shown in the next page)

4.3: use 𝒮 to extend vertical segments upwards and downwards from 𝑣, that is, to find intersection points 𝑝5 and
𝑝[above and below 𝑣 (if any) — more detail on this computation is given in the paragraph below

5.1: add to 𝒯 zero, one or two new trapezoids depending on vertex type (see figures in the next page)

5.2: update the left endpoints of the obstacle segments in 𝒮 above and below the vertex v

The type of 𝑣 can be determined by checking its convexity and looking at the number of obstacle segments in 𝒮 that
have 𝑣 as an endpoint.

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

Type (i): left/left
convex

Type (ii): left/left
non-convex

Type (iii): right/right
convex

Type (iv): right/right
non-convex

Type (v): left/right
convex

Type (vi): left/right
non-convex

Have 𝑝5 𝑎𝑛𝑑 𝑝[Have 𝑝5 𝑎𝑛𝑑 𝑝[

Have either 𝑝5 𝑜𝑟 𝑝[Have either 𝑝5 𝑜𝑟 𝑝[

Have neither 𝑝5 𝑛𝑜𝑟 𝑝[Have neither 𝑝5 𝑛𝑜𝑟 𝑝[

Tr
ap

ez
oi

d

Trapezoid

Trapezoid

Tr
ap

ez
oi

d

Tr
ap

ez
oi

dTr
ap

ez
oi

d
(d

eg
en

er
at

e)

Tr
ap

ez
oi

d

Tr
ap

ez
oi

dBoth sides
containing the
vertex are
present in
current 𝒮.

Both sides
containing the
vertex are
present in
current 𝒮.

Zero side
containing the
vertex are
present in
current 𝒮.

Zero side
containing the
vertex are
present in
current 𝒮.

one side containing
the vertex are
present in current 𝒮.

one side containing
the vertex are
present in current 𝒮.

𝑠&

𝑠$

𝑠O

𝑠P

𝑠Q

𝑠R

𝑠S 𝑠T

𝑠U

𝑠&V

𝑥

𝑦

𝑝&

𝑝$

𝑝O

𝑝Q

𝑝P

𝑝R

𝑝S

𝑝T

𝑝U

𝑠&&

𝑠&$

𝑝&V

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation

©Solmaz Kia, UCI

Sweeping Trapezoidation Algorithm: ‘Smarter’ Implementation (Example from textbook)

©Solmaz Kia, UCI

by using a more sophisticated data structure for S that allows us to insert and delete
segments more quickly. In particular, a binary search tree can be used to maintain the
ordered segments in S. A segment can be inserted/deleted in O(log(n)), instead of
O(n) time for the simple array implementation. With a binary tree, the sweeping
decomposition algorithm can be implemented with a run-time belonging to O(n log(n))
for a free workspace with n vertices.

Sweeping Trapezoidation Algorithm: Time Complexity

Navigation on Roadmaps

As a result of this algorithm we obtain a roadmap specified as
follows:

(1) a collection of center points (one for each trapezoid),
and

(2) a collection of paths connecting center points (each
path being composed of 2 segments, connecting a
center to a midpoint and the same midpoint to a
distinct center).

©Solmaz Kia, UCI

Navigation on Roadmaps

©Solmaz Kia, UCI

• Multiple paths might exist from start to goal.
Which one to choose?

Path with shortest length
But how to find that path

Obtain the dual graph of
the road map

5

3

8

4 6

7 9
10

11
12

13

19
18

17
16

15

14

23

2021
22

2

1

Solve the shortest-path problem:
Given a graph with a start node and a goal node, find a
shortest path from the start node to the goal node. We will use the breadth-first search (BFS) algorithm

Navigation on Roadmaps: Optimality

©Solmaz Kia, UCI

BFS Algorithm

1
6

©Solmaz Kia, UCI

BFS Algorithm: The Queue Solution Approach

A queue (also called first-in-first-out (FIFO) queue) is a variable-size data container
§ Two operations

Ø 𝑖𝑛𝑠𝑒𝑟𝑡 𝑄, 𝑣 : inserts an item into the back of the queue

Ø 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑄 : returns the item that sits at the front of the queue

§ Can be run such that each insert and retrieve runs in O(1) time

©Solmaz Kia, UCI

BFS Algorithm: The Queue Solution Approach

1
6

©Solmaz Kia, UCI

Representing a Graph

Representation #1 (Adjacency Table/List): a lookup table, that is, an array whose
elements are lists of varying length: the i-th entry is a list of all neighbors of node i.

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 1 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 2 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 3 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 4 =

Representation #2 (Adjacency Matrix): a symmetric
matrix whose (i,j) entry is equal to 1 if the graph
contains the edge {i,j} and is equal to 0 otherwise.

Representation #3 (Edge List): an array, where each entry
is an edge in the graph. This representation of edges is
called an edge list.

1
6

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 5 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 6 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 7 =

𝐴𝑑𝑗𝑇𝑎𝑏𝑙𝑒 8 =

𝐴 =

©Solmaz Kia, UCI

Runtime of BFS

Ø Is BFS algorithm complete?

1 6 1 6
Start

goal

Start

goal

©Solmaz Kia, UCI

Runtime of BFS

Ø How quickly does it run?

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).

1 6
Start

goal

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices
and m edges, along with a start
and goal node. Then the runtime of the breadth-first-search algorithm is
• O(n + m) if G is represented as an adjacency table,
• O(n2) if G is represented as an adjacency matrix, and
• O(n.m) if G is represented as an edge list.

©Solmaz Kia, UCI

Initialization

Outer while loop

Inner for loop

• If a graph is connected, then 𝑚 ≥ 𝑛 − 1
• for any undirected graph 𝑚 ≤))s&

$
.

• 𝑚 ∈ 𝑂 𝑛$
From this we see that the best graph
representation for
BFS is an adjacency table, followed by an
adjacency matrix, followed by an edge list.

©Solmaz Kia, UCI

Runtime of BFS

Ø How quickly does it run?

Input to the algorithm: a graph G with node set V (|V|=n) and edge set E (|E|=m).
1 6

Start

goal

Theorem (Run-time of the BFS algorithm) Consider a graph G = (V;E) with n vertices
and m edges, along with a start
and goal node. Then the runtime of the breadth-first-search algorithm is
• O(n + m) if G is represented as an adjacency table,
• O(n2) if G is represented as an adjacency matrix, and
• O(n.m) if G is represented as an edge list.

• If a graph is connected, then 𝑚 ≥ 𝑛 − 1
• for any undirected graph 𝑚 ≤))s&

$
.

• 𝑚 ∈ 𝑂 𝑛$
From this we see that the best graph representation for BFS is an adjacency table,
followed by an adjacency matrix, followed by an edge list.

©Solmaz Kia, UCI

Runtime of BFS

References:
• F. Bullo and S. L. Smith. Lecture notes on robotic planning and kinematics
• H. Choset, K. Lynch, S. Hutchinson, G. Kantor, et al. Principles of Robot Motion, Theory, Algorithms, and Implementations.

©Solmaz Kia, UCI

