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This article provides a comprehensive exploration of submodular maximization problems, fo-
cusing on those subject to uniform and partition matroids. Crucial for a wide array of applica-
tions in fields ranging from computer science to systems engineering, submodular maximization
entails selecting elements from a discrete set to optimize a submodular utility function under
certain constraints. We explore the foundational aspects of submodular functions and matroids,
outlining their core properties and illustrating their application through various optimization
scenarios. Central to our exposition is the discussion on algorithmic strategies, particularly the
sequential greedy algorithm and its efficacy under matroid constraints. Additionally, we extend
our analysis to distributed submodular maximization, highlighting the challenges and solutions
for large-scale, distributed optimization problems. This work aims to succinctly bridge the gap
between theoretical insights and practical applications in submodular maximization, providing a
solid foundation for researchers navigating this intricate domain.

– Submodular Functions and Practical Applications: The chapter highlights how submodular
maximization, especially with matroid constraints, serves as a cornerstone for solving various
optimization problems in computer science, systems engineering, and beyond. Its applications
range from data summarization and sensor placement to network resource management, demon-
strating submodularity’s wide-ranging impact.

– Algorithmic Strategies for Optimization: A significant portion of the chapter delves into cru-
cial algorithmic approaches like the sequential greedy algorithm and the continuous greedy al-
gorithm. These methods are not only foundational for achieving polynomial-time solutions to
submodular maximization problems but also exhibit guaranteed performance bounds, making
them vital tools in optimization theory.

– Adaptations for Distributed Environments: The discussion extends to the adaptation of sub-
modular maximization strategies in distributed settings, reflecting the growing need for opti-
mization solutions that cater to privacy concerns and the decentralized nature of modern compu-
tational and network systems.

– Innovative Research Directions: Lastly, the chapter concludes with an overview of emerging
research areas within the field, such as deep submodular functions, online maximization, and
fairness in optimization. These forefront research topics signal the ongoing evolution of sub-
modular maximization theory and its expanding applicability to new, complex problems.
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1 INTRODUCTION

1 Introduction
In the modern landscape of intelligent systems, the demand for optimization algorithms that facilitate
optimal decision-making for efficient resource allocation and policy making is at an all-time high.
Optimization algorithms enabling these optimal decision-makings are expected to be computationally
efficient and come with reasonable communication cost to deliver timely and efficient solutions for
in-network operations. Some of the optimal resource allocation and policy-making problems faced
for such systems are in the form of a combinatorial optimization problem

max f (S) subject to S ∈ F (P), (1)

where the goal is to choose a subset S of discrete elements from a ground set P that maximizes a
utility, described by function f : 2P → R≥0 while respecting constraints captured by F , the discrete
set of feasible solutions.

Combinatorial optimization problems of the form (1) are often NP-hard, meaning that their com-
plexity class are intrinsically harder than those that can be solved by a nondeterministic Turing ma-
chine in polynomial time. The quest thus is focused on finding suboptimal solutions with guaranteed
optimality gap that measures the distance between the suboptimal solution and the optimal one. That
is, we seek polynomial time suboptimal solutions with well-characterized optimality gap 0 < α < 1
satisfying

α f (S⋆) ≤ f (S̄) ≤ f (S⋆), (2)

where S⋆ is the global maximizer of (1) and S̄ is the decision set delivered by the suboptimal solver.
For a certain class of optimization problem (1), namely problems with monotone submodular util-

ity functions subject to matroid constraints, there is a significant body of work in the literature that
provides suboptimal solutions with fully characterized optimality gap when the problem is solved
in a centralized manner. In a distributed setting, either the utility function f or the elements of the
ground set P in (1) are fragmented and distributed among the players/agents (devices/subsystems)
of the optimization problem. Distributed operations bring about new set of challenges that can ex-
asperate the established optimality gaps and require special considerations to manage the inter-agent
communication costs. Additional concerns, such as scalability and the demand for privacy preser-
vation, compound the complexity of distributed algorithms. Distributed algorithms for submodular
maximization are not as extensively explored and established as the centralized algorithms.

Submodular maximization theory has been widely acknowledged as an effective approach for
solving combinatorial resource allocation problems in the field of computer science. Many problems
such as agglomerative clustering, exemplar-based clustering [1], categorical feature compression [2],
recommender systems [3], search result diversification [4], data subset selection [5], social networks
analysis [6] are cast as submodular maximization problems subject to matroid constraints. Classical
combinatorial optimization problems like minimum spanning tree, global minimum cut, maximum
matching, traveling salesman problem, max clique, max cut, set cover and knapsack, among the oth-
ers, are also another set of combinatorial optimization problems that can be modeled as submodular
maximization problems. These classical problems often appear as optimal decision-making mecha-
nism in many system and engineering problems. Thus, robust solution to the NP-hard submodular
maximization problems can serve as the backbone of optimal decision-making in modern industries
such as transportation, supply chain, energy, finance, and scheduling. However, submodular maxi-
mization problems may not be as well known in the systems and control field as in computer science
field. Submodular maximization generalizes many classic problems in combinatorial optimization
and has recently found a wide range of applications in operational planning/task. Some example
problems include sensor and actuator placement problems [7, 8, 9, 10, 11, 12], energy storage place-
ment [13, 14], measurement scheduling [15], voltage control in smart grid [16], persistent monitoring
via mobile robots [17].
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2 SUBMODULAR FUNCTIONS AND MATROID CONSTRAINTS

Figure 1: Properties of submodular functions.

This article will focus on solution approaches, application examples and distributed implementa-
tion of the two most well-know submodular maximization problems that are selecting elements from
a finite discrete ground set P to maximize a submodular utility function, namely

• Submodular maximization subject to uniform matroid constraint

S⋆ = arg max
S⊂P

f (S) subject to |S| ≤ κ, (3)

for a given κ ∈ Z≥1.

• Submodular maximization subject to partition matroid constraint

S⋆ = arg max
S⊂P

f (S) subject to |S ∩ Pi| ≤ κi, i ∈ {1, · · · ,N} (4)

or a given κ ∈ Z≥1. Here, P ∪N
i=1 Pi and Pi ∩ P j = ∅ for all i , j.

The remainder of this article is organized as follows. Section 2 provides a brief overview of the fun-
damental properties of the submodular functions and matroid constraints. Section 3 provides some
example applications of submodular maximization theory. Section 4 reviews the existing central-
ized optimization algorithms to solve submodular maximization problems. Section 5 reviews various
distributed submodular maximization problems, the challenges in solving these problems and some
existing algorithms and their design methods. And finally, Section 6 gives our concluding remarks.

2 Submodular functions and matroid constraints
In what follows, we introduce what submodular function and matroid constraints are. We provide an
overview of the relevant components of these concepts pertaining to the two submodular maximiza-
tion problems (3) and (4), which we want to discuss in this article. Interested readers can consult
references such as [18] and [19] for a more detailed and comprehensive overview.

Consider a finite ground set P of n discrete elements, which without loss of generality, is assumed
to be P = {1, · · · , n}.

Definition 1 (Normal set function). A set function f : 2P → R≥0 is said to be normal if f (∅) = 0.

Definition 2 (Monotone increasing set function). A set function f : 2P → R≥0 is said monotone
increasing if and only if

f (S) ≥ f (R), ∀R ⊂ S ⊂ P.
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2 SUBMODULAR FUNCTIONS AND MATROID CONSTRAINTS

Definition 3 (Submodular function). The function f : 2P → R≥0 is submodular if and only if

f (R) + f (S) ≥ f (R ∪ S) + f (R ∩ S), ∀S,R ∈ P. (5)

The relationship (6) fundamentally highlights how submodular functions evaluate redundancy or
overlap between sets. Specifically, (6) suggests that if a utility function is submodular, the loss of
utility at joint evaluation of any two subsets, i.e., at R ∪ S, of the ground set compared to the sum
of the utility of the individual subsets R and S is more than or equal to the utility of the overlap
R ∩ S, see Fig. 2(a). Thus, the relation elegantly penalizes redundancy or overlap within the sets’
arguments, quantitatively expressing that the function f attributes a lower incremental value to shared
or overlapping elements between R and S, effectively encouraging diversity within the sets. When
this loss is equal to the utility of the overlap the set function f is said to be modular.

Definition 4 (Modular set function). The function f : 2P → R≥0 is submodular if and only if

f (R) + f (S) = f (R ∪ S) + f (R ∩ S), ∀S,R ∈ P. (6)

If f is modular then there is a weight function w : P → R≥0 such that f (R) =
∑

r∈R w(r).
For a set value function f : 2P → R≥0, the marginal gain,

∆ f (p|S) = f (S ∪ {p}) − f (S), (7)

quantifies how much the function f , which maps sets to real numbers, increases as a result of adding
an element p ∈ P to S ⊂ P. Marginal gain often is also called the discrete derivative of f at S with
respect to p. In the context of f being a utility function, marginal gain measures the additional value
or utility obtained by including the element p into the set S. Marginal gain is a crucial concept in
optimization, especially when dealing with set functions, because it helps in understanding the benefit
of including an additional element in a set given the current context, i.e., the elements already selected
in the set S. Submodular functions are characterized by their diminishing return, i.e., a set function
f : 2P → R≥0 is submodular if and only if

f (S ∪ {p}) − f (S) ≥ f (R ∪ {p}) − f (R), ∀S ⊂ R ⊂ P, p ∈ P\R; (8)

see Fig. 2(b). The diminishing return property makes submodular functions particularly appealing for
problems where resources are being allocated, tasks are being assigned, or selections are being made
from a set, and the goal is to maximize some notion of utility or coverage subject to constraints (like
size, budget, or time). This property ensures that as solutions grow, the incremental gains diminish,
leading to natural “saturation” points that help in defining “optimal” or ”near-optimal” solutions to
such problems. For the special case of modular functions, the utility of adding an element to a set is
independent of the set’s current composition—paralleling linear functions in numerical optimization.
That is for modular functions

f (S ∪ {p}) − f (S) = f (R ∪ {p}) − f (R), ∀S ⊂ R ⊂ P, p ∈ P\R; (9)

For submodular functions, the total curvature c ∈ [0, 1] of the function, defined as

c = 1 − min
S⊂P, p<S

∆ f (p|S)
∆ f (p|∅)

. (10)

This definition aims to capture the least proportional increase in the function value when adding an
element to any set, relative to adding it to the empty set. For modular functions,(9) implied that c = 0.
Thus, the total curvature c of a submodular function is a measure of how far the function is from being
linear. On the other hand, if c = 1, this typically indicates the case where the function experiences the
greatest reduction in marginal gains for adding elements to a set. Specifically, it signifies that there is
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2 SUBMODULAR FUNCTIONS AND MATROID CONSTRAINTS

Figure 2: Multilinear extension extends a submodular function f (R) to the continuous space defined on hyper-
cube [0, 1]n. F(x) agrees with f (R) on the vertices of the hypercube (for integral x).

at least one situation where adding an element to a larger set grants no additional value compared to
adding it to some smaller set, thus reflecting a scenario with the maximum possible loss in marginal
gain as the set size increases.

It is worth noting that submodularity is preserved under taking nonnegative linear combinations,
i.e., if f1, · · · , fm : 2P → R≥0 is submodular then f (S) =

∑m
i=1 αi fi(S) is submodular for any

α1, · · · , αm ∈ R≥0. Monotone submodularity is also preserved under truncation, i.e., if f : 2P → R≥0

is submodular, then so is f (S) = min{ f (S), c} for any constant c ∈ R. Submodularity is also preserved
when we take the residual, i.e., if f : 2P → R≥0 is submodular, and R,S ⊂ P are any disjoint sets,
then the residual g : 2R → R≥0 defined as g(Q) = f (S ∪ Q) − f (Q) for any Q ⊂ R is submodular.

Set functions with ground set of n elements can be cast as a vector function defined on vertices of
hypercube {0, 1}n as shown in Fig. 2. [20] proposed to use the multilinear extension of submodular set
functions to extend the submodular utility function f : 2P → R≥0, which is defined on the vertices of
the n−dimensional hypercube {0, 1}n, to the continuous multilinear function F(x) defined as

F(x) =
∑
R⊂P

f (R)
∏
p∈R

[x]p

∏
p<R

(1 − [x]p), x ∈ [0, 1]n, (11)

in the continuous space, where [x]p is the pth element of x. The multilinear extension agrees with
f (S) ar the integral values of x. More precisely, for any R ⊂ P, we have F(1R) = f (R) where 1R is
a vector whose elements corresponding to set R are 1 and the rest are 0. This multilinear extension
plays a crucial role in solving submodular maximization problems through a technique known as
continuous relaxation, which will be elaborated upon in Section (4).

Multilinear extension essentially allows each element’s inclusion in a set to be considered as
a probability, smoothing the transition from discrete to continuous space for optimization. More
precisely, interpreting x ∈ [0, 1]n as the membership probability vector and positing Rx ⊂ P as a
random set where each element p ∈ P = {1, · · · , n} is included in Rx with probability [x]p, equation
(11) translates to

F(x) = E[ f (Rx)]. (12)

Vondrák’s work reveals that the first derivative of F(x) with respect to [x]p, as shown in

∂F
∂[x]p

(x) = E[ f (Rx ∪ {p}) − f (Rx \ {p})], (13)

consistently remains non-negative for monotone increasing submodular functions. Furthermore, the
analysis extends to the second derivative of F(x), indicating

∂2F
∂[x]p∂[x]q

(x) = E[ f (Rx ∪ {p, q}) − f (Rx ∪ {q} \ {p}) − f (Rx ∪ {p} \ {q}) + f (Rx \ {p, q})], (14)

5



3 APPLICATION EXAMPLES

which, by virtue of submodularity, guarantees ∂2F
∂[x]p∂[x]q

(x) ≤ 0.
The multilinear extension function, as detailed in equation (11), is positioned within the broader

category of continuous Diminishing Returns (DR) submodular functions. These functions constitute a
distinct subclass within the spectrum of non-convex/non-concave continuous functions. The problem
of optimizing DR-submodular functions over a convex set has attracted considerable interest in both
the machine learning and theoretical computer science communities due to its wide applicability in
data mining, machine learning, economics, and statistics. Readers keen on a deeper exploration of
this domain may find valuable insights in seminal work such as [21] or recent work such as [22].

Having reviewed the submodular functions, we next introduce matroids, which play a crucial role
in addressing complex problems such as submodular maximization, particularly when constrained
by a uniform matroid, a fundamental concept in combinatorial optimization. Matroids provide a
powerful abstract framework that generalizes the notion of linear independence from vector spaces
to more versatile combinatorial structures. A matroidM over a finite ground set P is a collection of
independent subset of P. When speaking of a matroid, we denote it as a pair (P,M), whereM ⊂ 2P.

Definition 5. We sayM ⊂ 2P is a matroid if and only if

1. M , ∅; if R ∈ M and S ⊂ R then S ∈ M (downward closed; independence system property)

2. If S,R ∈ M and |S| > |R| then there exists a p ∈ S\R such that R ∪ {p} ∈ M (augmentation
property).

Among matroids, the uniform and partition types stand out for their widespread application.

Definition 6 (Uniform Matroid). For some κ ∈ Z>0, the uniform matroid over a ground set P is
defined as (P,M), whereM =

{
S ⊂ P

∣∣∣ |S| ≤ κ}.
A uniform matroid is intuitively understood as allowing any combination of elements, as long as

their number does not exceed a specified limit.

Definition 7 (Partition Matroid). For some κi ∈ Z>0, i ∈ {1, · · · ,N}, the partition matroid over a
ground setP is defined as (P,M), whereM =

{
S ⊂ P

∣∣∣ |S ∩ Pi| ≤ κi, i ∈ {1, · · · ,N}
}
, whereP1, · · · ,PN

are non-overlapping partition of P, i.e., P = ∪N
i=1Pi and Pi ∩ P j = ∅ for any i , j.

A partition matroid intuitively groups items into distinct categories, allowing only a specified
maximum number of selections from each group.

3 Application examples
Many discrete optimal resource allocation problems involve strategic choices to maximize utility,
including goals like maximizing entropy, mutual information, symmetric mutual information, cut ca-
pacity, weighted coverage, and facility location. As discussed in [23], these utilities have been char-
acterized as submodular functions, permitting the framing of combinatorial optimization involving
these utilities as submodular maximization problems. However, adapting some problems to conform
to the standard submodular maximization framework often requires pre-processing steps that adjust
the decision variables and the ground set to reconfigure the constraints into a matroid format. In
what follows, we present some classic examples of submodular maximization problems, which have
broad relevance in various decision-making contexts. We also demonstrate through application exam-
ples how problem settings can be restructured to align with one of the standard forms of submodular
maximization, particularly those subject to uniform or partition matroids.

Exemplar-based clustering, as introduced by [24], aims to identify a subset of exemplars that op-
timally represent a large dataset by solving the k-medoid problem. This method seeks to minimize the
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cumulative pairwise dissimilarities between chosen exemplars P and dataset elementsD, formulated
as

L(R) =
∑

p∈R
min
d∈D

dist(p, d), (15)

for any subset R ⊂ P, where dist(p, d) ≥ 0, not necessarily symmetric or obeying the triangle in-
equality, defines the dissimilarity, or distance, between elements. In exemplar clustering, we seek a
subset R ⊂ P, subject to constraints like cardinality, that minimizes L. This problem can be posed as
a submodular maximization problem by defining the utility function

f (R) = L({d0}) − L(R ∪ {d0}), (16)

where d0 is an added hypothetical auxiliary element in the exemplar space. This utility function (16)
quantifies the reduction in the loss associated with the active set versus the loss with merely the
phantom placement location, and maximizing this function corresponds to minimizing the loss (15).
The utility function (16) is shown to be submodular and monotonically increasing [25].

Consider now an information harvesting problem where we aim to collect information from a
countable set of sources D, distributed across a two-dimensional finite space W ⊂ R2. Suppose
we want to deploy κ ∈ Z>1 data harvester devices at a set of pre-specified data retrieval points B
withinW, with the condition that |B| > κ. We assume the most effective information transfer from
an information point d ∈ D to a harvester device located at b ∈ B occurs when the distance between
b and d is minimized. Therefore, for each information point d ∈ D, the nearest information retrieval
point b ∈ B with a deployed device is assigned to harvest information. The optimal deployment can
be achieved by framing the problem as an exemplar clustering problem with the submodular utility
function (16), where the distance dist(b, d) = ∥b− d∥ represents the Euclidean distance between point
b ∈ B and data point d ∈ D. The resulted problem becomes a submodular maximization subject
to a uniform matroid, as we aim to select κ elements from the ground set B that maximize utility.
In a multi-agent variation of this problem, we envision a scenario where a group of N agents each
aims to deploy κi ∈ Z≥1, i ∈ {1, · · · ,N}, data harvesters in W. Every agent i ∈ {1, · · · ,N} has
access to a subset Bi ⊂ B of retrieval points, where κi < |Bi|; the sets of potential retrieval points
among agents can overlap. In this setup, the optimal deployment strategy still involves maximizing
the submodular utility function (16), with dist(b, d) = ∥b−d∥. However, the matroid constraint is now
a partition matroid, with non-overlapping local ground sets defined for each agent i ∈ {1, · · · ,N} as
Pi = {(i, b) | b ∈ Bi}.

Next, we shift our focus to another pivotal concept in the landscape of discrete optimization:
the Optimal Welfare problem [20]. In the Optimal Welfare problem m items in a discrete set Q =
{1, · · · ,m} should be distributed among N agents such that the sum of local utilities of the agents is
maximized [26], i.e,

max
S1,··· ,SN⊂Q

f (∪N
i=1Si) =

∑N

i=1
fi(Si), s.t.,

Si ∩ S j = ∅, i , j, i, j ∈ {1, · · · ,N};

The local cost at each agent, fi, i ∈ {1, · · · ,N} is, normal, monotone increasing and submodular. We
know that the sum of submodular functions is submodular, however, optimal Welfare in its original
form does not conform to a standard submodular maximization subject to matroid condition. Luckily,
this problem can be cast as submodular maximization subject to partition matroid by defining the
subsets Pi’s in (4) as Pi = {(i, j) | j ∈ {1, · · · ,N}}, i ∈ {1, · · · ,m} and setting κi = 1, which limits
the assignment of item i to only one agent. In this problem setting, f i(Ri) = f i(R̄i) where R̄i = { j ∈
Q | (i, j) ∈ R}.

Let us now transition to another compelling area of study within set function maximization: sensor
placement problems. These scenarios are especially prevalent when operational constraints dictate
predetermined locations for deploying sensors. In these problems, we deal with the task of finding

7



3 APPLICATION EXAMPLES

the best possible locations for sensors such that best performance is achieved by utility maximization
via the limited resources/sensors available. A pertinent instance of this type of problem is detailed
in [27], focusing specifically on sensor placement within traffic networks in the absence of routing
information. The traffic network is represented by a graph G = (V,L), whereV is the set of network
nodes (e.g., intersections), and L ⊂ V×V is the set of network links. The traffic network is modeled
from a macroscopic point of view, in which for each link l ∈ L, fl is the amount of vehicular flow
on link l (vehicles per unit of time). The sensor placement objective is to locate sensors, e.g., loop
detectors, such that the maximum number of link flows can be identified from a set of measurements
at limited number of the nodes. In such a scenario, the goal is to maximize the identifiability of link
flows provided that a set of κ flow measurements are obtained. Let Lm be the set of links with flow
measurement sensors that deliver measurements yl = fl for l ∈ Lm. Furthermore, we know that at each
node, flow conservation must hold. Thus the flow equations consist of |Lm| + |V| linear equations,
which can be formalized as A f = b, where A ∈ R(|Lm |+|V|)×|L| is the matrix of linear equations, f is the
vector flow across the links and b is the concatenate measurement vectors and the vector 0|L|, the right
hand value of the conservation of flow equations. Flows considered unidentifiable reside within the
null space of matrix A. Accordingly, [27] casts the problem of maximizing the number of identifiable
flows as reducing the the null space of A, or, equivalently,

max
Lm⊂L

rank(A), s.t. |Lm| ≤ κ. (17)

By showing that rank(A) is a monotone increasing submodular function, [27] establishes that (17) is
an incidence of the standard submodular maximization subject to uniform matroid.

In some problem settings, it might not be immediately evident that the problem at hand can be
framed as set function optimization, especially in terms of submodular maximization subject to ma-
troid constraints. An illustrative example of such a scenario is provided in [17], which addresses a
multi-agent persistent monitoring problem over a connected graph through a submodular maximiza-
tion framework. Specifically, [17] examines the persistent monitoring of a set of finite V intercon-
nected geographical nodes by a finite set of mobile sensors/agentsA = {1, · · · ,N}, where |V| ≫ |A|.
The mobile agents are required to navigate through a set of prespecified edges E ⊂ V × V, such as
aerial or ground corridors, to visit the nodes. The travel time ta,e for each agent a ∈ A across each
edge e ∈ E is known. Each node v ∈ V is assigned a reward function,

Rv(t) =

0, t = t̄v,

ψv(t − t̄v), t > t̄v,
(18)

where ψv(t) is a nonnegative, concave, and increasing function of time, and t̄v represents the most
recent time node v has been visited by an agent. In scenarios such as data harvesting or health
monitoring, ψv(·) might represent the weighted idle time of node v, or in event detection, it might
indicate the probability of at least one event occurring during the intervals between visits. When any
agent a ∈ A arrives at any time t̄ ∈ R>0 at node v ∈ V, the agent immediately scans the node, and
the reward Rv(t̄) is scored for the patrolling team A; subsequently, t̄v of node v in (18) is updated to
t̄. If more than one agent arrives at node v ∈ V and scans it at the same time t̄, the reward collected
for the team is still Rv(t̄). The goal of optimal monitoring involves designing a dispatch policy that
determines the tours sequence of interconnected nodes to be visited and the timings of these visits),
and the specific agents allocated to each tour to achieve the maximum total reward for the team over
the mission horizon T . A dispatch policy for an agent a ∈ A over the given mission time horizon is
denoted by the tuple pa = (Va,Ta, a), where Va and Ta specify the inter-connected nodes and their
corresponding visitation times (tour) assigned to agent a. Given the policies for all agents in the team,
S = {p1, · · · ,pN}, the collective reward of the agents is computed as

R(S) =
∑
∀p∈S

∑np

l=1
RVp(l)(Tp(l)), (19)
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4 SOLVING SUBMODULAR MAXIMIZATION SUBJECT TO MATROID CONSTRAINTS

where np is the number of nodes to be visited when policy p ∈ S is implemented. The optimal
dispatch design, then, is to find S that maximizes the total reward R(S). Notably, overlapping tours,
i.e., arrivals at some node(s) v at the same time t̄ by more than one agent, are not desired as only one
reward Rv(t̄) will be collected for the team. For example, for a group of five agents, given any two
sets of policies such as S1 = {p1,p2} and S2 = {p3,p4,p5}, we know that

R(S1) + R(S2) ≥ R(S1 ∪ S2).

Indeed, [17] shows that the collective reward function is a submodular set function. It then proceeds
to determine the optimal dispatch policy by solving the submodular set function maximization subject
to a partition matroid defined by

max
S⊂P

R(S), s.t. |S ∩ Pa| ≤ 1, ∀a ∈ A = {1, · · · ,N}, (20)

where Pa is the set of all feasible policies for agent a, and P = ∪a∈APa. When T is large, constructing
the entire set of feasible policies for each agent can become prohibitively costly. To manage this
cost, [17] proposes a moving horizon approach where the problem defined in (20) is considered over
a shorter planning horizon. The objective then becomes to identify the optimal policy for this shorter
time frame, apply a portion of the policy, and iteratively repeat this process for the remainder of the
mission horizon. This strategy enables also a more adaptable and efficient response to the dynamic
aspects of the monitoring task.

4 Solving submodular maximization subject to matroid constraints
Research on problems involving the maximization of submodular functions dates back to the work
of Nemhauser, Wolsey, and Fisher in the 1970’s [28, 29, 30]. For monotone-increasing submodular
maximization subject to uniform matroid constraint, the celebrated result by Nemhauser et al. [29]
showed that the simple sequential greedy (SG) algorithm, which starts atS0 = ∅ and iterates according
to

Si = Si−1 ∪ max
p∈P\Si−1

∆ f (p|Si−1), i ∈ {1, · · · , κ}, (21)

yields an optimality gap, as defined in (2), of αuniform = 1 − 1
e ≈ 0.63, i.e., f (SSG) ≥ (1 − 1

e ) OPT ,
where SSG = Sκ and OPT = f (S⋆). This optimality gap is established elegantly by invoking the
monotone increasing and submodularity of the utility function as demonstrated below. In what follows
let S⋆ = {s⋆1 , · · · , s

⋆
κ }.

f (S⋆) ≤ f (S⋆ ∪ Si) (monotone increasing)
= f (Si) +

∑κ
j=1 ∆ f (s⋆j |Si ∪ {s⋆1 , · · · , s

⋆
j−1}) (telescoping sum)

≤ f (Si) +
∑κ

j=1 ∆ f (s⋆j |Si) (submodularity)
≤ f (Si) +

∑κ
j=1( f (Si+1) − f (Si)) (greedy selection to build Si+1)

= f (Si) + κ ( f (Si+1) − f (Si)).

Now defining δi = f (S⋆) − f (Si) and recalling that f (∅) = 0, we can show that

f (S⋆) − f (Si) ≤ (1 −
1
κ

)i( f (S⋆) − f (S0)) ≤ ei/κ f (S⋆)→ (1 −
1
e

) f (S⋆) ≤ f (SSG).

If the total curvature c, defined in (10), of the utility function is known, the optimality gap can be pre-
cisely adjusted by incorporating the curvature. Detailed analysis of the greedy algorithm, contingent
on c, was provided in [31], which established that αuniform =

1
c

(
1 − 1

ec

)
. It is important to remember

9



4 SOLVING SUBMODULAR MAXIMIZATION SUBJECT TO MATROID CONSTRAINTS

that curvature c quantifies the diminishing returns characteristic of a set function. A curvature of
c = 0 signifies a modular function, for which f ({p1, p2}) = f ({p1}) + f ({p2}), where p1, p2 ∈ P. In
this case, αuniform = 1, indicating that the sequential greedy algorithm achieves the optimal solution
within a finite number of steps for modular functions, a result applicable under any matroid con-
straint. Conversely, a curvature of c = 1 suggests the presence of at least one element that, under
certain conditions, does not enhance the function f . In scenarios where the total curvature remains
undetermined, adopting a conservative approach by setting c = 1 is prudent to prepare for the most
challenging case.

Owing to the intrinsic matroid characteristics such as downward-closeness and augmentation, the
sequential greedy algorithm, initially developed for problems constrained by uniform matroids, can
indeed be adapted to tackle submodular maximization under any matroid constraint. These funda-
mental properties ensure that the algorithm maintains the feasibility of the solution at each step and
guarantees that the provided solution is both suboptimal and feasible, thereby highlighting the broad
applicability and efficacy of the greedy method across a multitude of optimization scenarios. It has
been demonstrated that, for monotone increasing submodular utility functions within an optimization
problem (1) where F (P) is a matroid, i.e., F (P) = (P,M), the sequential greedy algorithm

Si = Si−1 ∪ max
p<SSG,Si−1∪{p}∈M

∆ f (p|Si−1), (22)

proceeds until no additional p makes Si−1 ∪ {p} a feasible selection withinM. This process is guar-
anteed to yield a solution with an optimality gap of α = 1

2 , that is, f (SSG) ≥ 1
2 ·OPT , where SSG = Sκ

and OPT = f (S⋆). Specifically, in the context of submodular maximization subject to a partition ma-
troid (4), the guaranteed optimality gap achieved by the sequential greedy algorithm is documented
as αpartition =

1
2 .

For submodular maximization subject to a partition matroid (4), the sequential greedy algorithm
can be implemented more efficiently by making sequential greedy choices starting from P1, choosing
κ1 elements from this set, then fixing these choices before proceeding to set P2 to choose the κ2

elements, and so on, until the last κN choices are made after fixing the first κ1, . . . , κn−1 choices. The
process can be explained as starting with S0 = ∅ and R0 = ∅ and iterating over

S j =S j−1 ∪ Rκi , j = {1, · · · ,N}, (23)
Ri = Ri−1 ∪ max

p∈Pi\Ri−1
∆ f (p|Ri−1), i ∈ {1, · · · , κi};

this process outputs SSG = SN . To illustrate the role of submodularity in setting the optimality gap
of αpartition =

1
2 for the sequential greedy algorithm (23), next, we provide a concise overview of the

proof. For simplicity, let us assume κi = 1, indicating our goal to select one element from each
subset Pi, for all i ∈ {1, · · · ,N} in (4). Mirroring the steps from the proof of the optimality gap in
submodular maximization under a uniform matroid, we can establish, given that the utility function
is normal, monotone increasing, and submodular, the following inequality:

f (S⋆) ≤ f (SN) +
∑N

j=1
∆ f (s⋆j |SN), (24)

where s⋆1 , · · · , s
⋆
N are the elements of S⋆, that is, S⋆ = {s⋆1 , · · · , s

⋆
N}. Let s̄⋆1 , · · · , s̄

⋆
N be the elements

of SN , implying SN = {s̄⋆1 , · · · , s̄
⋆
N}. Note that s⋆i and s̄⋆i belong to Pi for each i ∈ {1, · · · ,N}. Thus,

we can write

∆ f (s⋆i |SN) = f (Si−1 ∪ {s̄i, · · · , s̄N} ∪ {s⋆i }) − f (Si−1 ∪ {s̄i, · · · , s̄N})
≤ f (Si−1 ∪ {s⋆i }) − f (Si−1) (by submodularity)
≤ f (Si) − f (Si−1) (by greedy selection to construct Si).

Therefore, from (24), we conclude that f (S⋆) ≤ 2 f (SSG), thus establishing that αpartition =
1
2 . It is

important to note that this optimality gap represents the worst-case scenario and is independent of the

10



4 SOLVING SUBMODULAR MAXIMIZATION SUBJECT TO MATROID CONSTRAINTS

order in which the disjoint components P1, · · · ,PN of the ground set P are engaged in the sequential
greedy selection process outlined in (23).

It is important to note that while the sequential greedy algorithm delivers an optimality gap of
α = 1

2 , more recent advancements in the field have introduced algorithms aiming for a tighter ap-
proximation bound. The literature has shown that for monotone submodular function maximization
subject to a matroid constraint, it is computationally hard to approximate this problem within a factor
better than 1−1/e ≈ 0.63% [32]. A suboptimal solution, aiming at such bound is proposed in [20] and
explained in further detail in [33]. The approach introduced by [20] utilizes the multilinear extension
of submodular set functions, as defined in (11), along with a continuous relaxation of the partition
matroid, to solve for a fractional solution of the continuous relaxation of (4). A suboptimal solution
for (4) is then recovered through a lossless rounding procedure. In the following, we provide a brief
overview of this sophisticated approach.

To simplify our notation, in the remainder of this article, we assume without loss of generality that
the ground set is given by P =

⋃N
j=1P j = {1, · · · , n} and for any i ∈ A we have Pi = {l, l+1, · · · ,m} ⊂

{1, · · · , n} and Pi+1 = {m + 1,m + 2, · · · , q} ⊂ {1, · · · , n}.
The matroid polytope, which is the continuous extension of the partition matroid described in

Definition 7, is

P(M) =
{
x ∈ [0, 1]n

∣∣∣ ∑
p∈Pi

[xi]p ≤ κi,∀i ∈ A
}
. (25)

Let x = [x⊤1 , ..., x
⊤
N]⊤, where xi ∈ [0, 1]|Pi | is the membership probability vector of Pi that defines the

probability of choosing policies from Pi for each agent i ∈ A. Then, the matroid polytope (25) is the
convex hull of the partition matroid in the space of the membership probability vector.

With the multilinear extension and matroid polytope defined, the continuous relaxation of prob-
lem (4) is expressed as

max F(x), s.t., x ∈ P(M). (26)

[20] has shown that OPT = maxx∈P(M) F(x), OPT is the optimal value of the submodular maximiza-
tion problem (4). Therefore, by finding the maximizer of (26) and employing a lossless rounding,
we can determine the submodular maximization problem (4). But, optimization problem (26) is non-
convex/non-concave maximizer, which implies that numerical solutions to this problem do not always
guarantee convergence to the global maximizer.

The solution proposed by [20] for (26), known as the *continuous greedy* algorithm, involves
moving in the direction of maximum ascent within P(M) by following the flow:

dx
dt
= v(x) where v(x) = arg max

w∈P(M)
(w · ∇F(x)), (27)

over the time interval [0, 1]. This approach can be seen as a variation of the so-called Frank-Wolfe
algorithm, also referred to as the conditional gradient, introduced by [34]. The Frank-Wolfe algorithm
is a straightforward first-order iterative constrained optimization algorithm designed for optimizing
smooth functions over closed, bounded convex sets.

[20] showed that x(t), generated by (27), stays within P(M) for t ∈ [0, 1], as it forms a convex
combination of vectors in P(M). Additionally, x(1) reaches the boundary of P(M). [20] further
showed that by following (27), we achieve F(x(1)) ≥ (1 − 1/e) F(x⋆), and thus F(x(1)) ≥ (1 −
1/e) OPT , where OPT = f (S⋆). Next, by employing the Pipage rounding method proposed by [35]
or its stochastic variant as described in, the fractional solution x(1) is transformed into an integral point
x̄ within (P,M). This integral solution x̄, represented as [x̄⊤1 , ..., x̄

⊤
N]⊤ and confined to the set {0, 1}n,

meets the condition F(x̄) ≥ F(x(1)). As a result, S̄ = Sx̄ within (P,M) constitutes a deterministic
feasible set that not only satisfies f (S̄) ≥ F(x(1)) but also ensures f (S̄) ≥ (1 − 1/e)OPT . While the
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5 DISTRIBUTED SUBMODULAR MAXIMIZATION

specifics of the Pipage rounding method are omitted here for brevity, it is crucial to acknowledge that
the ability to reach the boundary of P(M)—that is,

x(1) ∈
{
x ∈ [0, 1]n

∣∣∣ ∑
p∈Pi

[xi]p = κi,∀i ∈ A
}
,

plays a pivotal role in achieving lossless rounding through the Pipage rounding method.
Although elegant, a number of issues need to be addressed regarding the continuous greedy al-

gorithm (27) to make it a practical and computationally reasonable solution. One challenge is com-
puting the conditional gradient v(x) in (27), which, at first glance, seems to require solving a linear
program. However, given that the gradient ∇F(x) consists of nonnegative elements, one solution for
v(x) = [v⊤1 , ..., v

⊤
N]⊤ is vi ∈ {0, 1}|Pi | with vi = 1Ci , where Ci is the set of the indexes of κi largest

elements of ∇F(x)i. Here, we partitioned ∇F(x) as [∇F(x)⊤1 , ...,∇F(x)⊤N]⊤.
The next challenge addressed is adopting a more practical solution through the use of a numerical

iterative process:

x(t + 1) = x(t) +
1
T

v(t), where v(t) = arg max
w∈P(M)

(w · ∇F(x)), (28)

where 1/T , with T ∈ Z>0, is the step size used to discretize [0, 1] instead of following the continuous
path in (27). However, a more significant issue is constructing the gradient ∇F(x) without the need to
compute f (R) for all R ∈ 2P. Given that multilinear extension requires this information, computing
∇F(x) becomes computationally intractable as the size of the ground set P increases. A practical
solution is provided by considering the stochastic interpretation (13) of the gradient. Drawing enough
set samples according to the membership probability vector x can yield an estimate of ∇F(x) at a
reasonable computational cost. The Chernoff-Hoeffding inequality [36] can be utilized to determine
the quality of this estimation given the number of samples. [20] shows that the optimality gap for this
practical approach is 1 − 1/e −O(1/T ) with the probability of 1 − 2Tne−

1
8T2 K , where K is the number

of samples. Further studies on the use of the multilinear extension for submodular maximization are
discussed in [37, 33, 38, 39, 40, 41].

5 Distributed Submodular maximization
In many submodular maximization problem settings, the volume of collected data is not only vast but
also expanding rapidly. The widespread deployment of sensors, for example, has resulted in the col-
lection of large quantities of physical world measurements. Similarly, data on mechanical and human
activities are being captured and stored at ever-increasing rates and with greater detail. These datasets
are often complex and high-dimensional, necessitating distributed storage and processing solutions.
Efforts to adapt the sequential greedy algorithm for tackling large-scale submodular maximization
problems have included attempts to reduce the problem size through approximations [42]. Given the
extensive algorithmic challenges, parallel computing naturally lends itself as a solution, with certain
distributed algorithmic solutions for submodular optimization already explored, primarily focusing on
submodular maximization subjected to uniform matroid constraints; see e.g., [43, 44, 45, 46, 47, 48].
Many of these efforts utilize the MapReduce method [49], which is arguably one of the most suc-
cessful models for reliable and efficient parallel computing. Within this method, the ground set is
distributed among m independent machines (the map phase), each with limited memory and process-
ing power. These machines then perform computations in parallel on their allotted data subsets. The
outcomes of these computations are then collated onto a single machine and further processed in the
final round to produce the result. It is during the shuffle phase that these machines can communicate
and exchange data.

While parallel computing plays a crucial role in addressing the challenges of large-scale data, the
shift towards distributed implementations of submodular maximization extends beyond the pursuit of
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5 DISTRIBUTED SUBMODULAR MAXIMIZATION

Figure 3: A simple schematic illustration of a distributed sensor deployment for data harvesting involving
a group of agents A. Each agent i ∈ A possesses κi data harvesting drones, which can be deployed at a
set of pre-assigned deployment points Bi, indicated by the same color used to depict the agent. The agents
communicate over a connected graph to determine the optimal deployment positions for the team, as defined
by the submodular maximization problem subject to a partition matroid described in Section 3.

computational efficiency. In some submodular maximization problems especially in cyber-physical
system (CPS) and networked system applications, the elements of the optimization problem—such as
the elements of the utility function or the discrete decision set—are often distributed across multiple
entities (agents), which, despite seeking the optimal solution, might not want to share their informa-
tion with a central authority. For such applications, the solution is desired in a distributed manner,
where agents arrive at the solution using local interactions. Many challenges must be faced when de-
signing distributed submodular maximization solvers. The algorithmic challenges stem from process-
ing the data that is distributed across several machines/agents while using minimal communication
and synchronization across the agents/machines. At the same time, it is important to deliver solutions
that are competitive with the centralized solution when all fragmented information is available to a
single authority.

Due to space limitations, we will elaborate only on the solution approaches for a class of dis-
tributed submodular maximization classified as distributed ground set, which is an instance of sub-
modular maximization subject to partition matroid. In this class of problems, the disjoint setsP1, · · · ,PN

each respectively belong to an agent i ∈ A = {1, · · · ,N} and are not known to other agents. The num-
ber of strategy choices of each agent i, κi, is also known only to the respective agent. The agents’
access to the utility function is through a black box that returns f (R) for any given set R ∈ P (value
oracle model). As an example, consider the data harvesting problem discussed in Section 3, where
we have a group of agents A, which communicate over a connected undirected graph and want to
decide via local interactions where to deploy their data harvester devices to maximize the utility func-
tion (16); see Fig. 3.

For distributed ground set problems, the sequential greedy algorithm, described in (23), readily
adapts to decentralization, either through sequential message-passing or by sharing messages sequen-
tially via the cloud, see [17]. However, decentralizing the sequential greedy algorithm introduces
communication routing overhead. When agents communicate over a connected graph, implement-
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5 DISTRIBUTED SUBMODULAR MAXIMIZATION

Figure 4: The top figures illustrate the communication topology (solid black arrows) and the message-passing
sequence (dashed red arrows). The bottom figures detail the information-sharing graph. In case (a), the com-
munication graph possesses a Hamiltonian path, enabling the shortest sequence for optimal message passing in
the sequential greedy algorithm. In case (b), the absence of a Hamiltonian path in the communication graph
requires the blue agent to participate twice in the message-passing process to implement the sequential greedy
algorithm. In case (c), with the communication graph disconnected, the information-sharing graph becomes
incomplete, preventing the precise execution of the sequential greedy algorithm. Consequently, the guaranteed
optimality gap decreases from 1/2.

ing sequential message-passing necessitates identifying a Hamiltonian path—a path that visits each
agent on the graph exactly once—which is an NP-hard problem. If a Hamiltonian path does not exist
within a graph, an alternative path that visits agents the fewest number of times must be identified
to ensure communication-efficient sequential message-passing. This concept is visually represented
in Figure 4(a) and (b), demonstrating scenarios with and without a Hamiltonian path, respectively.
Moreover, it has been demonstrated that the sequence order affects the actual approximation factor
of the solution derived from the sequential greedy algorithm [50]; see also [51] for further numerical
examples. The difficulty of pinpointing the sequence that yields the best solution grows exponentially
with the size and connectivity of the communication network.

In the implementation of the sequential greedy algorithm through message-passing, an additional
key factor to consider is the impact of message drop-offs, or incomplete message-passing sequences,
on the optimality gap. Such drop-offs lead to an incomplete information sharing graph, GI . The lower
plots in Fig. 4 illustrate this graph, visualizing the flow of information as a result of the message-
passing process. Here, an arrow from agent i to agent j signifies successful information relay from i
to j, whether directly or indirectly through preceding agents. Research by [52] reveals that the opti-
mality gap is intricately linked to the clique number,W(GI), of the information graph. Specifically,
the clique number represents the size of the largest fully connected component in the information
graph’s undirected version. The findings demonstrate that the optimality gap expands as commu-
nication paths become disjointed, a phenomenon quantified as f (S̄S G) ≥ 1

2+n−W(GI )
f (S⋆). Notably,

this analysis guarantees reaching the well-known optimality gap of 1/2 for the problem of submod-
ular maximization under partition matroid constraints when the information graph is complete and
W(GI) = n, highlighting the critical role of information graph connectivity in algorithm performance.

The distributed implementation of the continuous greedy algorithm (28) over connected graphs
has been explored in the literature. However, for the class of problems where the ground set is dis-
tributed, results are relatively scarce. A notable contribution in this area was proposed by [53] and
[51]. Specifically, for the special class of submodular set functions with curvature c = 1, and when
each agent is restricted to choosing only a single strategy from its own strategy set (i.e., κi = 1), [53]
introduced an average consensus-based distributed algorithm to address the maximization problem
over connected graphs. The approach requires a closed-form expression of the multilinear extension
function. However, constructing the closed form of the multilinear extension of a submodular func-
tion and its derivatives exponentially increases in computational complexity relative to the size of the
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strategy set. Moreover, this result also depends on a centralized rounding scheme. An alternative so-
lution employing a max-consensus method for local interaction among agents was proposed in [51].
This method takes advantage of a sampling-based approach to approximate ∇F(x) and employs a dis-
tributed stochastic rounding procedure, allowing agents to locally derive their policy selection, thus
achieving a practical and fully distributed solution. We omit the technical details of these distributed
solutions for brevity. Nevertheless, it is essential to highlight a significant hidden challenge in the dis-
tributed continuous greedy algorithms that utilize the multilinear extension of the utility function. In
the distributed implementations of the continuous greedy algorithm (28) as seen in [53] and [51], each
agent maintains a local copy of the membership probability vector x and employs local interactions
through consensus protocols to align these local copies towards a common choice that approximates
the central solution. However, an inherent challenge involves the local computation of ∇F(.), which
necessitates access to all elements of any other agent’s local ground set for which the corresponding
element of the local copy of x is non-zero. This necessity implies that the distributed implementation
of the continuous greedy algorithm involves not only the local exchange of x among neighboring
agents but also the sharing of elements of the local ground sets of the agents across the network. [51]
proposes a mechanism for managing this information sharing. For further details, interested readers
are encouraged to refer to [51].

6 Concluding Remarks
In conclusion, this article has systematically explored submodular maximization problems subject to
uniform and partition matroids, uncovering their significant applications across various disciplines.
By diving into algorithmic solutions like the sequential greedy algorithm and its adaptations for dis-
tributed contexts, we highlight the vast potential for key advancements in optimization theory and
practical problem-solving. Further attention to the continuous greedy algorithm opens a gateway to
addressing the computational intricacies inherent in these problems, offering a refined tool for ap-
proaching submodular maximization within a continuous setting. This combined exploration of dis-
crete and continuous methods enriches the field’s theoretical base while expanding its applicability to
real-world challenges, affirming the pivotal role of matroid constraints in shaping solution strategies
for submodular maximization.

Submodular maximization theory, particularly when subjected to matroid constraints, is an ex-
panding field that continues to attract considerable interest. We close this article with a few recom-
mendations for further reading for the interested reader.

6.1 Further reading
Submodularity, a defining characteristic of set functions, provides a theoretical framework that aids in
developing systematic approaches to tackle complex optimization challenges. However, not all utility
functions inherently display submodular characteristics. This observation has prompted researchers to
extend their inquiries beyond classical submodularity, exploring variations such as weakly or propor-
tional submodularity as introduced in [54], along with lattice submodularity detailed in [55]. These
lines of investigation have significantly broadened the theoretical landscape, enabling the application
of optimization algorithms to a more diverse array of problems where traditional submodularity is not
directly applicable. For instance, applications leveraging these variants are discussed in [56] and [57].

Similarly, the concept of k-submodularity extends the principle of submodularity to scenarios
where decision-making involves multiple states beyond simple binary choices. Foundational con-
tributions to this topic, such as those by [58] and [59], illustrate how k-submodularity broadens the
traditional approach by accounting for functions in which elements can occupy one of k + 1 states,
not limited to mere presence or absence. This broader perspective supports more nuanced problem
modeling, especially in situations where elements engage at varying levels or capacities.
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Furthermore, while sequential greedy and sampling-based approximate continuous greedy algo-
rithms offer polynomial-time solutions, their computational demands can escalate with larger ground
sets. Here, the “lazy” evaluation strategy, which aims to minimize computational load by circum-
venting unnecessary function evaluations, plays a critical role in enhancing efficiency. As initially
proposed by [60] and further refined in the “Lazier than Lazy Greedy” by [61], these approaches
significantly streamline the process of maximizing submodular functions. They cleverly leverage the
diminishing returns property, updating marginal gains only for top-priority elements, thereby curbing
the requisite number of function evaluations.

Besides computational efficiency, modern applications of submodular maximization, particularly
in distributed environments, require privacy preservation. For instance, in distributed operations,
agents need assurance that their policy choices will remain confidential. While distributed approaches
reduce central data aggregation, communications between agents could still expose distributed net-
work operations to adversarial eavesdroppers. Research into privacy for submodular maximization
employs methods ranging from differential privacy as in [62] to novel strategies like the one by [63],
which leverages the stochastic rounding in continuous greedy algorithms for privacy guarantees.

The field of submodular maximization is rapidly advancing, continually extending the bound-
aries of optimization theory. Key emerging topics that exemplify the forefront of research in this do-
main include Deep Submodular functions [64], Online submodular maximization [65], Mixed-integer
programming approaches to generalized submodular optimization [66], Adaptive Submodular max-
imization [67], Streaming submodular maximization [68], Submodular reinforcement learning [69],
and Fairness in submodular maximization [70].

References
[1] P.-J. Honysz, A. Schulze-Struchtrup, S. Buschjäger, and K. Morik, “Providing
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