
Projected Forward Gradient-Guided Frank-Wolfe Algorithm
via Variance Reduction

Mohammadreza Rostami, Solmaz S. Kia, Senior member, IEEE

Abstract— This paper aims to enhance the use of the
Frank-Wolfe (FW) algorithm for training deep neural net-
works. Similar to any gradient-based optimization algorithm,
FW suffers from high computational and memory costs
when computing gradients for DNNs. This paper introduces
the application of the recently proposed projected forward
gradient (Projected-FG) method to the FW framework, offer-
ing reduced computational cost similar to backpropagation
and low memory utilization akin to forward propagation.
Our results show that trivial application of the Projected-
FG introduces non-vanishing convergence error due to the
stochastic noise that the Projected-FG method introduces in
the process. This noise results in an non-vanishing variance
in the Projected-FG estimated gradient. To address this,
we propose a variance reduction approach by aggregating
historical Projected-FG directions. We demonstrate rigor-
ously that this approach ensures convergence to the optimal
solution for convex functions and to a stationary point for
non-convex functions. Simulations demonstrate our results.

Index Terms— Frank-Wolfe Algorithm, Projected Forward
Gradient, Deep Neural Network, Backpropagation

I. INTRODUCTION

Deep neural networks (DNNs) have become essential tools
for solving function approximation problems over the past
decade [1]. Training DNNs involves optimizing the parameter
vector θ ∈ Rd (weights and biases) to minimize the loss
between predictions and training data. To improve generaliza-
tion, enhance interpretability, and reduce computational costs,
it is desirable to promote sparsity in the DNN parameters.
Traditionally, sparsity is achieved through post-training prun-
ing. However, recent methods demonstrate that incorporating
convex constraints directly into the training optimization prob-
lem enables one-shot pruning-aware training [2], [3]. These
constraints impose sparsity and boundedness on θ [4, Table 1].
For constrained DNN training, the Frank-Wolfe (FW) algorithm
[5] is often used, as it avoids costly projections onto constraint
sets, making it suitable for high-dimensional spaces.

As with any first-order optimization method, the FW algo-
rithm requires computing the gradient of the training cost func-
tion. However, computing the gradient in DNNs is not a trivial
task; it demands special attention due to high-dimensional
matrix multiplications and the efficient management of com-
putational and memory resources needed for computing each
layer’s activations. This letter conducts a critical analysis of
applying a newly proposed approximate gradient computation
method with low computational and memory costs, known as

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California Irvine, Irvine, CA 92697,
{mrostam2,solmaz}@uci.edu.

Fig. 1: Using forward propagation to compute ∂f
∂θ0

in a network with
L− 1 hidden layers, each with n nodes.

the Projected Forward Gradient (Projected-FG) [6]–[9], within
the FW optimization framework.

For a DNN with cost f(θ) with L + 1 layers and one
output shown in Fig. 1, the gradient g(θ) = ∇f(θ) =
(∂f∂θ0

, · · · , ∂f
∂θL

), where θi ∈ Rdi is the parameter vector of
the ith layer, i ∈ L = {0, 1, 2, ..., L}, is given by

gi(θ) =
∂xi
∂θi︸︷︷︸
di×mi

× ∂xi+1

∂xi︸ ︷︷ ︸
mi×mi+1

×. . .× ∂xL
∂xL−1︸ ︷︷ ︸
mL−1×mL

× ∂f

∂xL︸︷︷︸
mL×1

. (1)

Here, gi(θ) = ∂f
∂θi

and xi = hi(xi−1,θi) ∈ Rmi is the
activation (output) vector of ith layer and × denotes matrix
multiplication. The gradient (1) in DNNs is typically computed
using either forward propagation (Fig. 1) or backpropaga-
tion. In forward propagation, starting from ∂xi

∂θi
, the gradient

calculation involves multiplying L − 1 Jacobian matrices of
dimensions mi × mi−1 from left to right up to the final
term ∂f

∂xL
, a vector of size mL−1. Although computationally

expensive due to high-dimensional matrix multiplications, this
method effectively utilizes memory since xi of each layer
i ∈ L can be computed sequentially and overwritten at the
same memory location. Backpropagation starts at the output
layer’s ∂f

∂xL
(a vector) and propagates backward, computing

the gradient by backward multiplication between a vector and
a high-dimensional matrix. While computationally efficient,
backpropagation requires substantial memory to store all layer
activations xi, i ∈ L [10].

Backpropagation is favored for its relatively low computa-
tional cost, and efforts have been made to reduce its memory
usage. One approach involves checkpointing, where only a
subset of activations is stored as checkpoints instead of saving
every intermediate activation [11], [12]. During the backward
pass, these checkpoints are used to recompute the necessary in-
termediate activations that were not stored, reducing the mem-

ory footprint by performing recomputation on-the-fly. Another
strategy is to eliminate the need to store activations altogether
in reversible networks. In reversible networks, the input to
each layer can be reconstructed from the output using the
inverse function. Studies such as [13], [14] exploit this property
by recomputing activations backward during backpropagation.
While these methods achieve memory savings, they come with
an increased computational cost.

The Projected-FG [6]–[9] is a directional derivative com-
puted in a forward fashion but with low computational cost:

Definition 1 (Projected Forward Gradient). Give a function
f : Rd → R the Projected-FG is defined as defined as ĝ(θ) =
⟨g(θ),u⟩u, where u ∈ Rd is a random vector with each entry
ui independently and identically distributed (i.i.d) with zero
mean and unit variance.1 □

Using left-to-right forward multiplication starting with vector
ui∈Rdi×1, i∈L, results in subsequent multiplications between
a row vector and a matrix in

ĝi(θ) =
(

u⊤
i︸︷︷︸

1×di

×∂xi
∂θi

× ∂xi+1

∂xi
× . . .× ∂xL

∂xL−1
× ∂f

∂xL

)
×ui,

providing the computational efficiency of backpropagation with
the memory-efficient strategies of forward propagation.

However, the use of Projected-FG in optimization algorithms
is not straightforward, as ĝ(θ) is a noisy estimate of g(θ). In
this letter, we demonstrate that the straightforward application
of the Projected-FG method within the FW algorithm results
in convergence to only a neighborhood of the optimal solution.
We attribute this non-exact convergence to the non-vanishing
variance in estimating the gradient with ĝ(θ). To address
the stochastic errors in gradient approximation, we propose
an algorithm that reduces variance by averaging historical
Projected-FG directions. Inspired by momentum-based meth-
ods that accelerate gradient descent [15], our approach uniquely
incorporates the Projected-FG method to systematically reduce
noise in gradient estimates. Unlike traditional momentum meth-
ods, which primarily use past gradients for faster convergence
[16]–[18], our algorithm aggregates historical Projected-FG
directions, enhancing the convergence of the FW algorithm.
Through rigorous proofs, we show that our method provides a
biased variance-reduced Projected-FG direction that converges
to the true gradient with diminishing variance, ensuring con-
vergence to the optimal solution for convex functions and to a
stationary point for non-convex functions. A numerical example
demonstrates the results.

II. OBJECTIVE STATEMENT

Consider the constrained DNN training optimization problem

min
θ∈C

f(θ), (2)

where C ⊂ Rd denotes a compact convex constraint set.

1‘Projected’ here refers to the operation ⟨g(θ),u⟩u, which projects the
gradient g(θ) on vector u.

Algorithm 1 Projected-FG Frank-Wolfe (FGFW)
1: Require: αk
2: Input: θ0 ∈ C
3: Output: θK+1
4: for k = 1, 2, ...,K do
5: Sampleuk ∼ N (0, Id) and compute ĝ(θk)=⟨g(θk),uk⟩uk
6: Compute sk ∈ argmins∈C ⟨ĝ(θk), s⟩
7: θk+1 = (1− αk)θk + αksk
8: end for

Assumption 1 (Properties of the constraint set C). The convex
set C is bounded with diameter D ∈ R>0, i.e.,

∥θ − θ̂∥ ≤ D, ∀θ, θ̂ ∈ C.

Assumption 2 (Assumption on M -smoothness of the cost
function). The cost function is M -smooth (or have an M -
Lipschitz continuous gradient) in C, i.e, there exists a constant
M ∈ R>0 such that

∥g(θ)− g(θ̂)∥ ≤M∥θ − θ̂∥, ∀θ, θ̂ ∈ C.

Recall that for a M -smooth f(θ), we have f(θ) ≤ f(θ̂) +
⟨g(θ̂),θ − θ̂⟩+ M

2 ∥θ − θ̂∥2, for any θ, θ̂ ∈ C [19].
To solve optimization problem (2), Algorithm 1 presents the

FW algorithm utilizing the Projected-FG gradient estimation,
where the computation of gradient g in line 5 is replaced by
ĝ. Our objective in this paper is to investigate the impact of
using the Projected-FG estimate of the gradient within the FW
algorithm and devise strategies to counteract any performance
degradation caused by the use of the noisy ĝ. To aid in
our convergence analysis and algorithm design, we begin by
reviewing some auxiliary results about the Projected-FG.

Lemma II.1 (Unbiasedness of the PF-Gradient [8]). The PF-
Gradient in Definition 1 is an unbiased estimate of g(θ), i.e.
E[ĝ(θ)] = g(θ). □

Lemma II.2 (Upper bound on the PF-Gradient [8]). The PF-
Gradient in Definition 1 satisfies

E[∥ĝ(θ)∥2] ≤ (n+ 4)∥g(θ)∥2. (3)

Lemma II.3 (Variance of the PF-Gradient). Under Assump-
tions 1 and 2, the PF-Gradient in Definition 1 satisfies

E[∥ĝ(θ)− g(θ)∥2] ≤ G = (n+ 3)M2D2, ∀θ ∈ C. (4)

In what follows, f(θ⋆) is the optimal value of (2). Moreover,
the proofs of the formal results are presented in the appendix.

III. FRANK WOLFE ALGORITHM WITH PROJECTED
FORWARD GRADIENT

Starting with θ0 ∈ C, in each iteration, FW consults
an oracle to identify a descent direction in C from sk =
argmins∈C ⟨g(θk), sk⟩. The process proceeds with the update
θk+1 = (1 − αk)θk + αksk, αk ∈ [0, 1], which is a convex
combination of two vectors in C resulting in θk+1 remaining
feasible within C. Consequently, this method avoids projecting
the updated point back into C, thereby attributing a projection-
free nature to the FW algorithm. The convergence of FW for
convex functions is achieved by a rate of O(1/k) and O(1/

√
k)

Algorithm 2 Averaged Projected FG Frank Wolfe (AFGFW)
1: Require: αk, γk
2: Input: θ0 ∈ C,v0 = 0
3: Output: θK+1
4: for k = 1, 2, ...,K do
5: Sampleuk ∼ N (0, Id) and compute ĝ(θk)=⟨g(θk),uk⟩uk
6: Compute vk = (1− γk)vk−1 + γkĝ(θk)
7: Compute sk ∈ argmins∈C ⟨vk, s⟩
8: θk+1 = (1− αk)θk + αksk
9: end for

for non-convex functions [20], [21]. Next, we analyze the
convergence behavior of Algorithm 1, showing that incorpo-
rating Projected-FG naively in FW framework introduces a
convergence error. To simplify the study, we focus on smooth
and convex costs.

Lemma III.1 (Trajectories of Algorithm 1 remain in C). Let
f in (2) be differentiable. For any convex set C, Algorithm 1,
initialized at θ0 ∈ C results in θk ∈ C for all k ∈ Z≥0. □

Lemma III.1’s proof follows the same reasoning as the
original FW algorithm, using mathematical induction [21].
Since θ0 ∈ C and, by construction, sk ∈ C for all k ∈
Z≥0 (see line 6 of Algorithm 1), therefore, θk+1 , being a
convex combination of two vectors in C, will also reside in
the convex set C for all k ∈ Z≥0 . Lemma III.1 demonstrates
that Algorithm 1 preserves the FW algorithm’s “interior point
property.” However, as we will show next, exact convergence
is not maintained.

Theorem III.1 (Convergence bound of Algorithm 1 for convex
functions). Let f in (2) be convex and Assumptions 1 and 2
hold. Let αk be a decaying function of k with an order of
O(1/k) and ψ1 =MD2

√
n+ 3. Then, Algorithm 1 results in

lim
k→∞

E[f(θk)− f(θ⋆)] =
ψ1

1− β
, (5)

for 0<β<1, with a convergence rate of order O(1/k). □

Theorem III.1 shows Algorithm 1 converges with a sublinear
rate to an error neighborhood of size ψ1 of the optimal function
value, indicating Projected-FG cannot be trivially implemented
within FW framework. To remove this convergence error, we
propose Algorithm 2, which we present next.

IV. VARIANCE-REDUCED FRANK WOLFE ALGORITHM
WITH PROJECTED FORWARD GRADIENT

By examining the proof of Theorem III.1, the error com-
ponent ψ1 is due to the second term in equation (10), i.e.,√

E[∥g(θk)− ĝ(θk)∥2]. This connects the convergence error
in Algorithm 1 to the non-vanishing variance of the Projected-
FG gradient estimator. To address this error, we introduced Al-
gorithm 2, which improved the convergence characteristics by
estimating the gradient using aggregated historical F-Gradients.
This was achieved through vk = (1 − γk)vk−1 + γkĝ(θk) in
line 6 of Algorithm 2. Rather than interpreting this line as a
method for extrapolating the iterates [22], [23], we view vk as
a biased variance-reduced gradient estimator. This perspective
is formally confirmed in Lemma IV.1 below.

Lemma IV.1 (The variance of the averaged projected forward
gradient estimator of Algorithm 2 converges to zero). Consider
optimization problem (2). Let Assumption 2 holds, and αk to
be a decaying function of k with an order of O(1/k), and
ηk = αk

γk
. Then, if limk→∞ηk=0, Algorithm 2 results in

lim
k→∞

E[∥vk − g(θk)∥2] = 0, (6)

with the rate of min{O(η2k), O(γk)}. □

The next results show that the asymptotic variance reduction
of the gradient estimator vk leads to Algorithm 2 achieving
exact convergence. Here, we rely on the fact that since vk ∈ C
a similar argument, as in Lemma III.1, can be established for
Algorithm 2 (The details are omitted due to space limitations.)

Theorem IV.1 (Convergence analysis of Algorithm 2 for
convex functions). Let f in (2) be convex and Assumptions 1
and 2 hold. Let αk be a decaying function of k with an order
of O(1/k). Then, Algorithm 2 results in limk→∞ E[f(θk) −
f(θ⋆)] → 0 with a sublinear convergence rate of order
min{O(αk

γk
), O(γk)}. □

According to Theorem IV.1, by selecting γk = O(1/
√
k),

Algorithm 2 achieves its optimal convergence rate of O(1/
√
k).

This improves over Algorithm 1 by reducing noise through the
incorporation of past Projected-FG directions.

In DNNs, often the cost function is non-convex. The fol-
lowing theorem presents the convergence guarantee of Algo-
rithm 2 for non-convex functions. For non-convex constrained
optimization problems, the convergence criterion typically used
is the so-called FW gap, defined as

K(θ) = max
s∈C

⟨s− θ,−g(θ)⟩,

where K(θ) = 0 if and only if θ is a stationary point [20].

Theorem IV.2 (Convergence analysis of Algorithm 2 for
non-convex functions). Consider Algorithm 2 under Assump-
tions 1 and 2. Let αk and γk be decaying functions of
k with orders of O(1/k) and O(1/

√
k), respectively. Then,

limK→∞ E[K(θK)] = 0 with an order of O
(

1
logK

)
, satisfying

the upper bound

E [K (θK)] ≤ f (θ0)− f (θ⋆)

logK
+ E, k ∈ {1, 2, . . . ,K},

where f(θ⋆) is the optimal value of problem (2) and E is a
decaying term of the order O

(
1

logK

)
. □

Theorem IV.2 shows Algorithm 2 achieves a convergence
rate of O(1

logK) to a stationary point for non-convex functions.

V. NUMERICAL EVALUATION
We evaluate the training loss and memory reduction of

Algorithms 1 and 2 when training a DNN with constrained
parameters for a multinomial classification task. The data set
we use, the MNIST dataset [24], consists of 28 × 28 pixel
grayscale images of handwritten digits ranging from 0 to 9.
Here, the purpose of training is to classify each digit correctly,
aiming to create a model that can precisely predict the digit
represented in any input image. We utilize a DNN with a depth

(a): Training loss

(b): Accuracy
Fig. 2: Training loss and accuracy with respect to the number of
epochs for Algorithm 1 and 2 over 20 epochs.

of 5 layers, each containing 10 neurons. A ReLU activation
function is applied across all layers. The model is trained for
50 epochs. To encourages sparsity in the model, we use an ℓ1-
norm constraint on the parameters in all layers, whose bound
is set at 10−4. To implement Algorithms 1 and 2, we choose
γk = 1√

k
and αk = 1

k . For Algorithm 1, we set αk = 2
k+2

which is a standard step size in the FW Algorithm.
Figure 2(a) shows the training loss for the FW algorithm

and Algorithms 1 and 2. As predicted by Theorem III.1, the
naive adaptation of the Projected-FG method within the FW
framework in Algorithm 1 results in a steady-state error due to
the non-vanishing noise in the gradient estimate ĝ(θk).

On the other hand, Algorithm 2 shows convergence behavior
as proved in Theorem IV.2, albeit slower than Algorithm FW
algorithm. But, FW algorithm achieves faster convergence by
using the full gradient computed via backpropagation, which
requires higher memory usage. The maximum memory usage
during training with Projected-FG in both Algorithms 1 and
2 is approximately 990 MiB ± 10% (where 1 mebibyte
(MiB) = 1024 kibibytes (KiB)) per epoch. In contrast, using
backpropagation to calculate the gradient results in a memory
usage of about 2150 MiB ± 10% per epoch. This demonstrates
the advantage of Projected-FG methods in training DNNs by
significantly reducing memory consumption compared to the
backpropagation method used in FW algorithm.

Figure 2(b) shows the test dataset accuracy for the FW
algorithm, Algorithm 1, and Algorithm 2, with accuracies of
94.29%, 65.13%, and 89.63%, respectively, after 20 epochs.
Notably, enforcing the ℓ1-norm constraint sparsified the DNN
parameters, setting 2, 387 of 8, 290 elements of the optimized
θ to zero, which improved generalization to unseen datasets.
Without this constraint, accuracy drops to 86.31%, highlighting
the benefits of constraints in DNN training.

VI. CONCLUSION

This paper presented an enhanced approach to the FW
algorithm for training DNNs by integrating the Projected-FG

method. Our study demonstrated that while the straightforward
application of Projected-FG within the FW framework reduced
computational and memory costs, it introduced non-vanishing
convergence errors due to stochastic noise. To address this
challenge, we proposed a novel algorithm that incorporated
variance reduction by averaging historical Projected-FG direc-
tions. This approach not only mitigated the noise but also en-
sured convergence to the optimal solution for convex functions
and to a stationary point for non-convex functions. Through
theoretical analysis and numerical simulations, we validated
the effectiveness and efficiency of our proposed method. The
results highlighted the potential of using Projected-FG to
achieve memory-efficient training of DNNs without compro-
mising convergence properties. Future work will explore the
proposed method in distributed settings aligned with network
topologies. We will also investigate using other distributions for
sampling uk, including the symmetric and binary Rademacher
distribution, known for its variance reduction attribute. This can
lead to more stable performance in algorithms as demonstrated
for example in [25], [26].

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] M. Lu, X. Luo, T. Chen, W. Chen, D. Liu, and Z. Wang, “Learning
pruning-friendly networks via frank-wolfe: One-shot, any-sparsity, and
no retraining,” in International Conference on Learning Representations,
2022.

[3] M. Zimmer, C. Spiegel, and S. Pokutta, “Compression-aware training of
neural networks using Frank-Wolfe,” arXiv, 2022.

[4] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization,” in International conference on machine learning, pp. 427–435,
2013.

[5] S. Pokutta, C. Spiegel, and M. Zimmer, “Deep neural network training
with frank-wolfe. arxiv e-prints, art,” arXiv preprint arXiv:2010.07243,
2020.

[6] D. Silver, A. Goyal, I. Danihelka, M. Hessel, and H. van Hasselt,
“Learning by directional gradient descent,” in International Conference
on Learning Representations, 2021.

[7] D. Silver, A. Goyal, I. Danihelka, M. Hessel, and H. van Hasselt,
“Learning by directional gradient descent,” in International Conference
on Learning Representations, 2022.

[8] A. G. Baydin, B. A. Pearlmutter, D. Syme, F. Wood, and P. Torr,
“Gradients without backpropagation,” arXiv, 2022.

[9] D. Krylov, A. Karamzade, and R. Fox, “Moonwalk: Inverse-forward
differentiation,” arXiv, 2024.

[10] G. Novikov, D. Bershatsky, J. Gusak, A. Shonenkov, D. Dimitrov,
and I. Oseledets, “Few-bit backward: Quantized gradients of activation
functions for memory footprint reduction,” 2022.

[11] J. Martens and I. Sutskever, “Training deep and recurrent networks with
hessian-free optimization,” in Neural Networks: Tricks of the Trade:
Second Edition, pp. 479–535, Springer, 2012.

[12] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves,
“Memory-efficient backpropagation through time,” Advances in neural
information processing systems, vol. 29, 2016.

[13] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible
residual network: Backpropagation without storing activations,” Advances
in neural information processing systems, vol. 30, 2017.

[14] K. Mangalam, H. Fan, Y. Li, C.-Y. Wu, B. Xiong, C. Feichtenhofer, and
J. Malik, “Reversible vision transformers,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10830–10840, 2022.

[15] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[16] C. Liu and M. Belkin, “Accelerating SGD with momentum for over-
parameterized learning,” arXiv, 2018.

[17] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning
via momentum gradient descent,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[18] G. Nakerst, J. Brennan, and M. Haque, “Gradient descent with
momentum—to accelerate or to super-accelerate?,” arXiv, 2020.

[19] Y. Nesterov, Introductory lectures on convex optimization: A basic course,
vol. 87. Springer Science & Business Media, 2013.

[20] S. Lacoste-Julien, “Convergence rate of frank-wolfe for non-convex
objectives,” ArXiv, vol. abs/1607.00345, 2016.

[21] M. Frank, P. Wolfe, et al., “An algorithm for quadratic programming,”
Naval research logistics quarterly, vol. 3, no. 1–2, pp. 95–110, 1956.

[22] Y. Liu, Y. Gao, and W. Yin, “An improved analysis of stochastic gradient
descent with momentum,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[23] R. Kidambi, P. Netrapalli, P. Jain, and S. Kakade, “On the insufficiency
of existing momentum schemes for stochastic optimization,” in 2018
Information Theory and Applications Workshop, pp. 1–9, 2018.

[24] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[25] J. C. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE transactions on automatic
control, vol. 37, no. 3, pp. 332–341, 1992.

[26] M. Rostami and S. Kia, “Fedscalar: A communication efficient federated
learning,” arXiv preprint arXiv:2410.02260, 2024.

[27] Y. Nesterov, Lectures on convex optimization, vol. 137. Springer, 2018.
[28] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall,

3 ed., 2002.

APPENDIX

Proof: [Proof of Lemma II.3] We note that

E[∥ĝ(θ)− g(θ)∥2] (a)
= E[∥ĝ(θ)∥2]− ∥g(θ)∥2

(b)
≤

(n+ 3)∥g(θ)∥2
(c)
≤ (n+ 3)M2∥θ − θ⋆∥2

(d)
≤ (n+ 3)M2D2.

Right hand side (RHS) of equality (a) follows from Lemma II.1,
RHS of inequality (b) follows from Lemma II.2, RHS of in-
equality (c) follows from Assumption 2 and RHS of inequality
(d) follows from Assumption 1.

Proof: [Proof of Theorem III.1] Given Lemma III.1
that ensures θk ∈ C and using Assumption 2, we can
write E[f(θk+1)|θk] ≤ f(θk) +

〈
g(θk),E[θk+1 − θk|θk]

〉
+

M
2 E

[
∥θk+1 − θk∥2

∣∣θk]. Then, θk+1 = (1 − αk)θk + αksk
results in

E[f(θk+1)|θk] ≤ f(θk) + α
k
⟨g(θk),E[sk − θk|θk]

〉
+
Mα2

k

2
E
[
∥sk − θk∥2

∣∣θk]
(a)
=f(θk) + α

k
⟨g(θk)− ĝ(θk),E[sk − θk|θk]

〉
+

αk⟨ĝ(θk),E[sk − θk|θk]
〉
+
Mα2

k

2
E
[
∥sk − θk∥2

∣∣θk], (7)

where RHS of equality (a) in (7) follows from adding and sub-
tracting αk⟨ĝ(θk),E[sk − θk|θk]

〉
. Applying total expectation

on both sides of (7) we have

E[f(θk+1)] ≤ E[f(θk)] + α
k
E[⟨g(θk)− ĝ(θk), sk − θk⟩]

+ αk E[⟨ĝ(θk), sk − θk⟩] +
Mα2

k

2
E
[
∥sk − θk∥2

]
(a)
≤E[f(θk)] + α

k
E[⟨g(θk)− ĝ(θk), sk − θk⟩]

+ αk E[⟨ĝ(θk),θ⋆ − θk⟩] +
Mα2

k

2
E
[
∥sk − θk∥2

]
, (8)

where in RHS of inequality (a) in (8), ⟨sk, ĝ(θk)⟩ is re-
placed by its upper bound ⟨θ⋆, ĝ(θk)⟩ because ⟨θ⋆, ĝ(θk)⟩ ≥

mins∈C {⟨s, ĝ(θk)⟩} = ⟨sk, ĝ(θk)⟩. Adding and subtracting
αk E[⟨g(θk),θ⋆ − θk⟩] in (8) results in

E[f(θk+1)] ≤ E[f(θk)] + α
k
E[⟨g(θk)− ĝ(θk), sk − θ⋆⟩]

+ αk E[⟨g(θk),θ⋆ − θk⟩] +
Mα2

k

2
E
[
∥sk − θk∥2

]
,

(a)
≤E[f(θk)] + α

k
E[⟨g(θk)− ĝ(θk), sk − θ⋆⟩]

+ αk E[f(θ⋆)− f(θk)] +
Mα2

k

2
E
[
∥sk − θk∥2

]
,

(b)
≤E[f(θk)] + α

k
DE[∥g(θk)− ĝ(θk)∥]

+ αk E[f(θ⋆)− f(θk)] +
Mα2

kD
2

2
. (9)

RHS of inequality (a) in (9) follows from the convexity property
of the cost function f

(
i.e., f(θ⋆)−f(θk) ≥ ⟨g(θk), θ⋆−θk⟩

)
,

RHS of inequality (b) in (9) follows from Cauchy-Schwarz
inequality and Assumption 1. Adding and subtracting f(θ⋆)
on the both sides of (9), we get

E[f(θk+1)−f(θ⋆)] ≤ (1− αk)E[f(θk)− f(θ⋆)] +

α
k
DE[∥g(θk)− ĝ(θk)∥] +

Mα2
kD

2

2
.

It follows from Lyapunov’s inequality [27] that E[∥g(θk) −
ĝ(θk)∥] ≤

√
E[∥g(θk)− ĝ(θk)∥2]; therefore, using the bound

in Lemma (II.3), we can write

E[f(θk+1)−f(θ⋆)] ≤ (1− αk)E[f(θk)− f(θ⋆)]

+ α
k
MD2

√
n+ 3 +

Mα2
kD

2

2
. (10)

By defining δk+1 = E[f(θk+1)− f(θ⋆)], then, we have

δk+1 ≤ (1− αk)δk + ψ1αk + ψ2α
2
k, ∀k ≥ 0,

where ψ1 = MD2
√
n+ 3 and ψ2 = MD2

2 . Invoking Com-
parison Lemma [28] and Lyapunov convergence analysis, we
consider Vk= |δk| as our candidate Lyapunov function to write

Vk+1 − Vk = |(1− αk)δk + αk(ψ1 + ψ2αk)| − |δk|
≤ −αk|δk|+ αk(ψ1 + ψ2αk)

= −βαk|δk| − (1− β)αk|δk|+ αk(ψ1 + ψ2αk),

where 0 < β < 1. Then if |δk| ≥ ψ1+ψ2αk

1−β , we have
exponentially convergence to the ball with radius ψ1+ψ2αk

1−β .
Therefore, we can write limk→∞ E[f(θk) − f(θ⋆)] = ψ1

1−β ,
with the rate determined by O(αk).

Proof: [Proof of Lemma IV.1] In Algorithm 2, we have

∥vk − g(θk)∥2 = ∥(1− γk)vk−1 + γkĝ(θk)− g(θk)∥2

= ∥(1− γk)(vk−1 − g(θk)) + γk(ĝ(θk)− g(θk))∥2

= (1− γk)
2∥(vk−1 − g(θk))∥2 + γ2k∥(ĝ(θk)− g(θk))∥2

+ 2γk(1− γk)(vk−1 − g(θk))
⊤(ĝ(θk)− g(θk))

= (1− γk)
2∥vk−1 − g(θk)

+ g(θk−1)− g(θk−1)∥2 + γ2k∥(ĝ(θk)− g(θk))∥2

+ 2γk(1− γk)(vk−1 − g(θk))
⊤(ĝ(θk)− g(θk)). (11)

Conditional expectation on both sides of (11) leads to

E[∥vk − g(θk)∥2|σ0:k] = (1− γk)
2 E[∥vk−1 − g(θk)

+ g(θk−1)− g(θk−1)∥2|σ0:k]

+ γ2k E[∥(ĝ(θk)− g(θk))∥2|σ0:k], (12)

where σ0:k is a vector containing all the randomness up to
iteration k.

Express g(θk−1)−g(θk) = ζkpk, where pk is a normalized
vector (∥pk∥ = 1) and ζk ∈ R>0. Next note that, from line
8 of Algorithm 2 we have ∥θk − θk−1∥ = αk∥sk − θk∥ ≤
αkD (recall line 8). Then, under Assumption 2 we can write
∥g(θk) − g(θk−1)∥ ≤ M∥θk − θk−1∥ ≤ MαkD. Thus,
limk→∞ ζk = 0 at least as fast as αk.

Hence, if we choose αk and γk such that limk→∞
αk

γk
= 0,

then, we can write g(θk−1) − g(θk) = ηkγkpk where ηk =
αk

γk
∈ R>0 and limk→∞ ηk = 0. Lastly, taking total expectation

on both sides of (12), we have

E[∥vk − g(θk)∥2] = (1− γk)
2 E[∥vk−1 − g(θk−1)

+ ηkγkpk∥2] + γ2k E[∥(ĝ(θk)− g(θk))∥2]

= (1− γk)
2(1 + γk)

2 E[∥ 1

1 + γk

(
vk−1 − g(θk−1)

)
+

γk
1 + γk

ηkpk∥2] + γ2k E[∥(ĝ(θk)− g(θk))∥2]. (13)

Using the result from Lemma II.3 in (13), we have

E[∥vk − g(θk)∥2]

≤ (1− γk)
2(1 + γk)

2 E[∥ 1

1 + γk

(
vk−1 − g(θk−1)

)
+

γk
1 + γk

ηkpk∥2] + γ2kG. (14)

Subsequently, invoking Jensen’s inequality in (14), we have

E[∥vk−g(θk)∥2]≤(1−γk)2(1 + γk)E[∥vk−1− g(θk−1)∥2]
+ (1− γk)

2(1 + γk)γkη
2
k + γ2kG

(a)
≤(1− γk)E[∥vk−1 − g(θk−1)∥2] + (1− γk)γkη

2
k + γ2kG

(b)
≤(1− γk)E[∥vk−1 − g(θk−1)∥2] + γkη

2
k + γ2kG, (15)

RHS of inequality (a) in (15) follows from (1−γk)2(1+γk) =
(1−γk)(1−γ2k) ≤ (1−γk), RHS of inequlity (b) in (15) follows
from (1− γk) ≤ 1. Denoting δk = E[∥vk−g(θk)∥2], we have
δk ≤ (1− γk)δk−1 + γkη

2
k + γ2kG.

Invoking Comparison Lemma [28] and Lyapunov conver-
gence analysis, we consider Vk−1 = |dk−1| as our candidate
Lyapunov function to write

Vk − Vk−1 = |(1− γk)dk−1 + γkη
2
k + γ2kG| − |dk−1|

≤ −γk|dk−1|+ γkη
2
k + γ2kG

= −βγk|dk−1| − (1− β)γk|dk−1|+ γkη
2
k + γ2kG

where 0 < β < 1. Then if |dk−1| ≥ η2k+γkG
(1−β) , we have

exponentially convergence to the ball with radius η2k+γkG
(1−β) .

Then, the overall rate of the convergence of limk→∞ E[∥vk −
g(θk)∥2] = 0 is determined by min{O(η2k), O(γk)}.

Proof: [Proof of Theorem IV.1] Following the same proce-
dure as in the proof of Theorem III.1, we obtain E[f(xk+1)−
f(θ⋆)] ≤ (1−αk)E[f(xk)−f(θ⋆)]+αkD

√
E[∥g(θk)− vk∥2]+

Mα2
kD

2

2 . By defining δk+1 = E[f(θk+1)−f(θ⋆)] we can write
δk+1 ≤ (1 − αk)δk + ψ1αk + ψ2α

2
k, ∀k ≥ 0 where ψ1 =

D
√

E[∥g(θk)− vk∥]2 and ψ2 = MD2

2 . Same as the proof in
theorem III.1, choosing Vk = |δk| as our candidate Lyapunov
function, we obtain

Vk+1 − Vk ≤ −βαk|δk| − (1− β)αk|δk|+ αk(ψ1 + ψ2αk),

where 0 < β < 1. Then if |δk| ≥ ψ1+ψ2αk

1−β , we have
exponentially convergence to the ball with radius ψ1+ψ2αk

1−β .
Hence, using Lemma IV.1, the overall rate of conver-
gence of limk→∞ E[f(θk) − f(θ⋆)] = 0 is determined by
min{O(αk

γk
), O(γk)}.

Proof: [Proof of Theorem IV.2] Under Assumption 2,
we can write E[f(θk+1)|θk] ≤ f(θk) +

〈
g(θk),E[θk+1 −

θk|θk]
〉
+M

2 E
[
∥θk+1−θk∥2

∣∣θk]. Substituting the update rule
(line 8) of Algorithm 2 in this relationship leads to

f (θk+1)≤f (θk)+⟨g(θk),θk+1 − θk⟩+
M

2
∥θk+1 − θk∥2

= f (θk) + ⟨g(θk), αk (sk − θk)⟩+
M

2
∥αk (sk − θk)∥2

(a)
≤ f (θk) + αk ⟨g(θk), sk − θk⟩+

MD2α2
k

2
, (16)

RHS of inequality (a) in (16) follows from Assumption 1.
Adding and subtracting αk ⟨vk, sk − θk⟩ into (16) results in

f (θk+1) ≤ f (θk) + αk ⟨vk, sk − θk⟩ (17)

+ αk ⟨g(θk)− vk, sk − θk⟩+
MD2α2

k

2
(a)
≤f (θk)− αkK (θk) +Dαk ∥g(θk)− vk∥+

MD2α2
k

2
.

RHS of inequlity (a) in (17) follows from Assumption 1, use of
the definition of K (θk) and Cauchy-Schwarz inequality. Taking
total expectations on both sides, we obtain

E [f (θk+1)] ≤ E [f (θk)]− αk E [K (θk)]

+Dαk E[∥g(θk)− vk∥] +
MD2α2

k

2
(18)

≤ E [f (θk)]− αk E [K (θk)] +Dαk

√
E[∥g(θk)− vk∥2]+

MD2α2
k

2
≤ E [f (θk)]− αk E [K (θk)] +O(

1

k1.25
) +O(

1

k2
),

The last summands are used as a shorthand notation, for brevity,
to represent decaying terms (Recall Lemma IV.1). Rearranging
and summing k from 1 to K, we have∑K

k=1 αk E [K (θk)]∑K
k=1 αk

≤ f (θ0)− E [f (θK+1)]∑K
k=1 αk

+

∑K
k=1O(1

k1.25)∑K
k=1 αk

+

∑K
k=1O(1

k2)∑K
k=1 αk

(19)

≤ f (θ0)− f (θ⋆)∑K
k=1 αk

+

∑K
k=1O(1

k1.25)∑K
k=1 αk

+

∑K
k=1O(1

k2)∑K
k=1 αk

,

where both
∑K
k=1O(1

k1.25) and
∑K
k=1O(1

k2) are convergent
series which can be verified using the integral test. From (19)
and substituting

∑K
k=1 αk ≈ logK for large K, we have

E [K (θK)] ≤ f (θ0)− f (θ⋆)

logK
+ E (20)

where E is of order O(1
logK), which concludes the proof.

