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Note 1

The treatment corresponds to selected parts from Chapters 1 and 2 of [1] and Chapter 1 of [2]. The

presentation is at times informal. For rigorous treatments, students should consult the aforementioned

references and the other listed texts in the class syllabus.

1.1 Introduction

Control theory is a branch of applied mathematics that involves basic principles underlying the
analysis and design of (control) systems/processes. Systems can be engineered physical systems
(e.g., air conditioner, aircraft, CD player etc.), economic systems, biological systems and so on.
Every system is usually driven by its internal dynamics and forces or other forms of external
influences that are either actively (intentionally) or passively exerted on it. To control means that
one uses the active input channels of the system to influence the behavior of the system in a desirable
way: for example, in the case of an air conditioner, the aim is to control the temperature of a room
and maintain it at a desired level, while in the case of an aircraft, we wish to control its altitude at
each point of time so that it follows a desired trajectory.

Systems are normally described by underdetermined differential equations. This means that there
is some freeness in the choice of the variables satisfying the differential equation. To comprehend
the underdetermined-ness, consider the underdetermined algebraic equation is x+u = 10, where x,
u are positive integers. There is freedom in choosing, say u, and once u is chosen, then x is uniquely
determined. In the same manner, consider the differential equation

ẋ = f(x(t), u(t)), x(ti) = xi, t ≥ ti, (1.1.1)

where x(t) ∈ Rn, and u(t) ∈ Rm.

The objective in control theory

• Choose the control inputs to achieve stabilization and regulation of the system state variables.
For instance, we might want the state x to track some desired reference state xd, and there
must be stability under external disturbances.

• Impose performance on system behavior. The objective of optimal control is to determine the
control signals that will cause a process to satisfy the physical constraints and at the same
time minimize (or maximize) some performance criterion.

3
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Figure 1: An example of optimized response

You are familiar with some performance measures such as rise time, settling time, peak overshoot,
gain and phase margin and bandwidth for SISO systems. In this course, we will learn tools that
allow us to enforce performance measures that are more closely tied to the physical response of the
system, e.g., minimum energy, minimum fuel etc. Also, these techniques are applicable to MIMO
systems, as well.

1.2 Optimal control formulation

The following three elements constitute the optimal control formulation. Each of these elements
will be discussed in the proceeding subsections.

• model (a mathematical description) of the process/system to be controlled

• mathematical description of the (physical) constraints of the system

• a performance measure and its mathematical description

In this section we also discuss the form of the optimal control.

1.2.1 Model of the system

In this class we mainly deal with time-invariant systems whose model is described by

ẋ = f(x(t), u(t)), (1.2.1)

where x(t) =


x1(t)
x2(t)

...
xn(t)

 ∈ Rn is the state vector and u(t) =


u1(t)
x2(t)

...
um(t)

 ∈ Rm is the control vector of

the system.

Consider system (1.2.1) over some time interval t ∈ [t0, tf ].
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Definition 1 (Control history). A history of control input values during the interval [t0, tf ] is
denoted by u and is called a control history, or simply a control. �

Definition 2 (State trajectory). A history of state values during the interval [t0, tf ] is denoted by
x and is called a state trajectory. �

Controllability and observability are two important properties of a system in controller design. In
the most of the problems we consider throughout this course, the goal is to find a controller that
transfers a system from an arbitrary initial state to the origin while minimizing a performance
measure. Therefore, the controllability of the system is a necessary condition for the existence of
such a solution. In closed-loop controller design we use the output of the system to design the
controller. The output of the system can be only a subset of the state of the system or function
of a combination of them. In order to control all the states of the system, the states should be
observable from the knowledge about output and control input of the system. For full treatment
of the controllability and observability concepts refer to books on Linear System Theory or your
notes from MAE270A class.

Definition 3 (Controllability). If there is a finite time t1 ≥ t0 and a control u(t), t ∈ [t0, t1] , which
transfers the state x0 to the origin at time t1, the state x0 is said to be controllable at time t0. If all
values of x0 are controllable for all t0, the system is completely controllable, or simply controllable.
�

Definition 4 (Observability). If by observing the output y(t) during the finite time interval [t0, t1]
the state x(t0) = x0 can be determined, the state x0 is said to be observable at time t0. If all states
x0 are observable for every t0, the system is called completely observable, or simply observable. �

When the system function f is linear, that is f(x, u) = Ax(t) +Bu(t) for some ARn×n and BRn×m,
the system is said to be linear. The trajectories of linear system

ẋ =Ax+Bu, x(t0) = x0,

are described by

x(t) = eA(t−t0)x0 +

∫ tf

t0

eA(t−τ)Bu(τ) dτ, t ≥ t0,

A linear system is controllable if and only if

rank(C) = rank
( [
B AB A2B · · · An−1B

] )
= n.

A linear system is observable if and only if

rank(O) = rank
(


C
CA
CA2

...
CAn−1


)

= n.
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Continuous-time system (1.2.1) over some time interval [t0, tf ] can be approximated by a discrete
system by considering N equally spaced time increments in the time interval as follows

x(t+ ∆t)− x(t)

∆t
≈ f(x(t), u(t)),

or

x(t+ ∆t) = x(t) + ∆ f(x(t), u(t)).

Using the shorthand notation x(k) = x(k∆t) we can write then

x(k + 1) = x(k) + ∆ f(x(k), u(k)),

which we will denote by

x(k + 1) = fD(x(k), u(k)).

When the system function fD is linear, that is f(x(k), u(k)) = A(k)x(k) + B(k)u(k) for some
A(k)Rn×n and B(k)Rn×m, k ∈ Z≥0, the system is said to be linear. If the system and control
matrix are constant for all k ∈ Z≥0, the system is said to be linear time-invariant

xk =Axk +Buk, x(0) = x0.

The trajectories of this system is described by

xk = Akx0 +
∑k−1

i=0
Ak−i−1Bui, k ∈ Z≥0.

1.2.2 Constraints on system state and control

The control and states of a system can be constrained for various reasons. A common form of
control constraint is the saturation constrains which is due to the limited control authority of
physical system. This constraint is described as

umin
i ≤ ui(t) ≤ umax

i , i ∈ {1, . . . ,m}, t ∈ [0, tf ].

The states of a system can be constrained, as well. For example in control of an aircraft, the state
describing the angle of attack of the system should be constraint by the stall angle (stall angle is an
angle which beyond it the flow on the wing is separated and the control over aircraft can be lost). If
the angle of attack is a state of the aircraft this constraint can be described by αmin ≤ α(t) ≤ αmax

for all t ∈ [0, tf ]. If the states of the aircraft are pitch angle θ(t) and the flight path angle (slope
angle) γ(t) then given α(t) = θ(t) − γ(t) (see Fig. 2), the state constraint can be described as
αmin ≤ θ(t) − γ(t) ≤ αmax for all t ∈ [0, tf ]. Notice that the initial and final conditions x(t0) = x0

and x(tf ) = xf are also form of state constraints. The constraint also can be a coupled equation
of both state and control variable of a system. For example, consider a car whose equations of
motion are described by ẋ1 = x2 and ẋ2 = u, where x1 and x2 are position and velocity and u is the
acceleration control of the car. The fuel consumption of the car is proportional to both acceleration
and speed of the car with constants, respectively, γ1 and γ2. If the car starts with F gallon of fuel
initially, any optimal policy designed for this car while its moving on a straight line from a point A
at time t0 to point B at time tf is constrained by∫ tf

t0

(γ1 |u(t)|+ γ2 |x2(t)|)dt ≤ F.
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Figure 2: Angle is of an aircraft in vertical plane.

Definition 5 (Admissible control). A control history which satisfies the control constraints during
the entire time interval [t0, tf ] is called an admissible control. We denote the set of admissible
controls by U and the notation u ∈ U indicates that the control history u is admissible. �

Definition 6 (Admissible trajectory). A state trajectory x which satisfies the state variable con-
straints during the entire time interval [t0, tf ] is called an admissible trajectory. We denote the set
of admissible trajectories by X and the notation x ∈ X indicates that the state trajectory x is
admissible. �

Admissibility is an important concept. For physical systems acting beyond admissible ranges can
result in catastrophic outcomes for system. From technical perspective, admissibility can be useful
as it restricts our search region from the entire space to parts defined in admissible ranges.

1.2.3 Performance measure

A performance measure is a mathematical description of the desired behavior we wish the system
under study to exhibit. Sometimes capturing this desired behavior is straightforward, e.g., “transfer
the system from point A to point B as quickly as possible” clearly means that the performance
measure is the time elapsed to go from point A to point B starting at some time t0. In other times,
description of the desired behavior may be qualitative, and leaves some room for the designer to
decide how to design the performance measure, “Maintain the position and velocity of the system
close to zero with a small expenditure of control energy”.

Some of the common forms of the performance measure are as follows.

• Minimum-time problem: To transfer a system from arbitrary initial state x(t0) = x0 to a
specified target set S in minimum time

J = tf − t0 =

∫ tf

t0

dt, (1.2.2)

where tf is the first instant of time when x(t) and S intersect.

For discrete-time systems, minimum-time performance can be cast as

J =N =
∑N−1

k=0
1.
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• Terminal control problem: to minimize the deviation of the final state of a system from
its desired value r(tf ) ∈ Rn

J =
∑n

i=1
(xi(tf )− ri(tf ))2 = (x(tf )− r(tf )>(x(tf )− r(tf )) = ‖x(tf )− r(tf )‖2. (1.2.3)

Notice that the error is squared as both positive and negative deviations are undesirable.
Given the system model and the constrains, x(tf ) = r(tf ) may not be accomplished. In this
case, we may wish to put more weight or penalty on the deviation of certain state more than
others. We can realize such a wish by inserting a symmetric positive semi-definite n×n matrix
H to obtain

J = (x(tf )− r(tf ))>H (x(tf )− r(tf )) = ‖x(tf )− r(tf )‖2
H . (1.2.4)

Notice that the elements of H should be adjusted to normalize the numerical values encoun-
tered. A good example of this kind of adjustment is given in [1] as follows. Consider the
ballistic missile shown in Fig. 3. The position of the missile at time t is specified by the
spherical coordinate l(t), α(t) and θ(t), which are, respectively, the distance from origin of
the coordinate system, the elevation angle and azimuth angle. If l(tf) = 5000 miles, an az-
imuth error of 0.01 radian (0.57 degree) results in missing the target S by 50 miles!. If the
performance measure is

J = h11(l(tf )− 5000)2 + h22(θ(tf ))
2,

then we would select h22 = (50/0.01)2 h11 to weight equally deviation in range and azimuth.
Alternatively, the variables θ and l could be normalized in which case we will use h11 = h22.

Figure 3: A ballistic missile aimed at target S (photo courtesy of [1]).

• Minimum-control-effort problems: to transfer a system from an arbitrary initial state
x(t0) = x0 to a specified target S, with a minimum expenditure of control effort. Given any
physical application, the form of the cost function depends on how one interprets “ minimum
control effort”. For example, for a space craft with control input u(t) as the thrust of the
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engine whose magnitude is proportional to the fuel consumption of the engine, the minimum-
control-effort cost can be cast as

J =

∫ tf

t0

|u(t)| dt.

For a discrete-time system with single input uk, to drive the system from x0 to a desired final
state x at a fixed time N using minimum fuel, we could use

J =
∑N−1

k=0
|uk|.

As another example, consider a electric network without energy storage element. Let a voltage
source u(t) control this network. The minimum source energy dissipation energy for this
problem can be with a cost function

J =

∫ tf

t0

u2(t) dt.

For several control inputs, we can write the cost function as

J =

∫ tf

t0

u>(t)Ru(t) dt =

∫ tf

t0

‖u(t)‖2
R dt,

where R ≥ is a weighting matrix with real elements. The elements of R can be function of
time if we wish to vary the weighting on control-effort expenditure over [t0, tf ].

For a discrete-time system, to drive the system from x0 to a desired final state xN at a fixed
time N with minimum energy, we could use

J =
1

2
x>NHxN +

1

2

∑N−1

k=0
(x>kQxk + u>k Ruk).

where H,Q,R ≥ 0 are positive semi-definite weighting matrices.

• Tracking problem: to maintain the system state x(t) as close as possible to the desired
state r(t) in the interval [t0, tf ]. The performance measure in this case is

J =

∫ tf

t0

(x(t)− r(t))>(t)Q(x(t)− r(t)) dt =

∫ tf

t0

‖x(t)− r(t)‖2
Q dt, (1.2.5)

where Q ≥ is a weighting matrix with real elements. The elements of Q can be function of
time if we wish to vary the weighting on closeness to the reference signal over [t0, tf ].

If we are minimizing the cost function subject to set of constraints that includes bounded
inputs, e.g., |ui(t)| ≤ 1 for i ∈ {1, . . . ,m}, then the cost function (1.2.5) is a reasonable
performance measure. However, if the control is not bounded, using the cost function (1.2.5)
may result in impulses in control and its derivatives. To remove the hard control bounds
from problem formulation or conserve energy while maintaining tracking it is customary to
modify (1.2.5) as follows

J =

∫ tf

t0

(‖x(t)− r(t)‖2
Q(t) + ‖u(t)‖2

R(t)) dt,



Solmaz Kia MAE 274 MAE, UCI

In some applications it is especially important that the states be close to their desired value
at final time. In this case, the cost function is described by

J = ‖x(tf )− r(tf )‖2
H +

∫ tf

t0

(‖x(t)− r(t)‖2
Q(t) + ‖u(t)‖2

R(t)) dt.

where H ≥ 0 is the weighting matrix with real elements.

• Regulator problem: A regulator problem is a special case of tracking problem where the
reference signal is r(t) = 0 for t ∈ [t0, tf ].

All the performance measures discussed above are special cases of the general form

J = h(x(tf ), tf )︸ ︷︷ ︸
terminal cost

+

∫ tf

t0

g(x(t), u(t), t)dt︸ ︷︷ ︸
running cost

. (1.2.6)

For discrete-time systems, the general form of the cost function can be cast as

J = φ(xN , N)︸ ︷︷ ︸
terminal cost

+
∑N−1

k=0
Lk(xk, uk)dt︸ ︷︷ ︸

running cost

. (1.2.7)

1.2.4 The optimal control problem

Our objective in solving an optimal control is to find an admissible u? that causes ẋ = f(x(t), u(t), t)
to follow an admissible x? that minimize

J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt.

- u?: optimal control x?: optimal trajectory

J? = h(x?(tf ), tf ) +

∫ tf

t0

g(x?(t), u?(t), t)dt

≤ h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt, u ∈ U , x ∈ X .

• We are looking for global minimum

– Find all local minimum, and pick the smallest as global minimum

• Solution is not unique

– con: complicates computational procedures

– pro: choose among multiple possibilities accounting for other measures
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1.2.5 Form of the optimal control

Let u?(t) denote the optimal control that minimizes the performance measure (cost function) subject
to system and control constraints.

Definition 7 (Optimal control law). If there exists a functional form

u?(t) = f(x(t), t), (1.2.8)

that describes the optimal control at time t ∈ [t0, tf ], then the function f is called the optimal
control law, or the optimal policy.

Notice here that the reason for not using x?(t), the optimal state, in (1.2.8) is to emphasis that
the control law is optimal for all admissible x(t), not just for some special state value at time t.
Function f is a rule that specifies the optimal control at time t for any (admissible) stat value at
that time. If

u?(t) = K x(t),

where K ∈ Rm×n, the control law is called linear time-invariant feedback of the state.

Figure 4: (a) Open-loop optimal control, (b) optimal control

Definition 8 (open-loop control). If the optimal control is determined as a function of time for a
specified initial state x(t0), i.e.,

u?(t) = f(x(t0), t), t ∈ [t0, tf ],

then the optimal control is said to be in open-loop form.
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Therefore, the optimal open-loop control is optimal only for a particular initial state value, whereas,
if the optimal control law is known, the optimal control history starting from any state value can
be generated. Fig. 4 demonstrates the conceptual difference between an optimal control law and an
open-loop control. Notice that the mere presence of connection from the states to a controller does
not, in general, guarantee an optimal control law.

Although closed-loop control solutions are normally more desirable in optimal control, there are
cases that open-loop control may be feasible and an adequate answer. For example, in the radar
tracking of a satellite, once the orbit is set very little can happen to cause an undesired change in
the trajectory parameters. In this situation a pre-programmed control for the radar antenna might
well be used.

A typical example of feedback control is in the classic servomechanism problem where the actual
and desired outputs are compared and any deviation produces a control signal that attempts to
reduce the discrepancy to zero.



Note 2

The treatment corresponds to selected parts from Chapter 1 of [3] and Chapters 7 and 8 of [4]. The

presentation is at times informal. For rigorous treatments, students should consult the aforementioned

references and the other listed texts in the class syllabus.

2.1 Parameter optimization

In this section we discuss parameter optimization for static problems, i.e., when time is not a pa-
rameter. The discussion is preparatory to dealing with time-varying systems in subsequent lectures.
To introduce important concepts, mathematical style, and notation, the parameter minimization
problem is formulated and conditions for local optimality are determined. By local optimality we
mean that optimality can be verified about a small neighborhood of the optimal point. First, the
notions of first- and second order local necessary conditions for unconstrained parameter minimiza-
tion problems are derived. Next, the notion of first- and second-order local necessary conditions for
parameter minimization problems is extended to include algebraic equality constraints.

An example of static problems in optimal control is controller design for multi-stage systems over
finite horizon.

• Single-stage system: consider a system with n states x ∈ Rn initially at known state x(0) =
x0 ∈ Rn. A choice of a m dimensional input u(0) ∈ Rm, takes the state of the system to stage
x(1). The transition equation is described as follows

x(1) = f 0(x(0), u(0)), x(0) = x0 ∈ Rn, (2.1.1)

which is shown schematically as follows

f 0x(0)

u(0)

x(1)

Optimal control problem for this system can be described as: we wish to choose u(0) to
minimize a performance index of the form

J(u) = φ(x(1)) + L0(x(0), u(0)),

13
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subject to equality constraint (2.1.1).

• Multi-stage system with no terminal cost: consider a multi-stage system with n states x ∈ Rn

initially at known state x(0) = x0 ∈ Rn. At every stage i ∈ {0, · · · , N − 1}, a choice of a m
dimensional input u(i) ∈ Rm, takes the state of the system from x(i) to stage x(i + 1). The
transition equations are described as follows

x(i) = f i(x(i), u(i)), x(0) = x0 ∈ Rn i ∈ {0, · · · , N − 1}, (2.1.2)

which can be represented schematically as follows

f 0x(0)

u(0)

f 1

u(1)

· · · · · · fN−1 x(N)

u(N−1)

x(1) x(2) x(N−1)

Figure 5: Schematic representation of a multi-stage system over N steps.

Optimal control problem for this system can be described as: we wish to choose sequence
of control inputs {u(0), u(1), · · · , u(N − 1)} that minimizes (or maximizes) a performance
index of the form

J(u) = φ(x(N)) +
∑N−1

i=1
Li(x(i), u(i)),

subject to equality constraints (2.1.2).

2.1.1 Unconstrained static optimization

Consider F (u), where F : Rm → R is a differentiable cost function and u ∈ Rm is the control or
decision vector, be a scalar performance index. It is desired to determine the value of u that results
in a minimum value of F (u), i.e, to determine

u? = argmin
u∈Rm

F (u). (2.1.3)

In an investigation of the general problem (2.1.3) we distinguish two kinds of solutions: local min-
imum points and global minimum point. We also distinguish between strong (strict) and weak
minimum points (see Fig. 8).

Definition 9 (Local minimum). A point u? ∈ Rm is said to be a (weak) local minimum point of F
over Rm if there exists an ε > 0 such that F (u) ≥ F (u?) for all u ∈ Rm within a distance ε of u?

(that is, u ∈ Rm and ‖u− u?‖ < ε). If F (u) > F (u?) for all u ∈ Rm, u 6= u?, within a distance ε of
u?, then u? is said to be a strong (strict) local minimum point of F over Rm. �

Definition 10 (Global minimum). A point u? ∈ Rm is said to be a (weak) global minimum point
of F over Rm if F (u) ≥ F (u?) for all u ∈ Rm. If F (u) > F (u?) for all u ∈ Rm, then u? is said to be
a strong (strict) global minimum point of F over Rm. �
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Figure 6: (a) strong local minimum, (b) weak local minimum, (c) saddle
point.

We are generally interested in finding global minimum point of a problem, however, the practical
reality, from both theoretical and computational viewpoints, in many problems we are made to be
content with local minimum points. For example, in deriving necessary and sufficient conditions
for optimality we use differential calculus to investigate how the value of the function is changing
nearby a minimum point candidate. Or when we use iterative numerical algorithms to search for
minimum point, comparison of values of nearby points is all we have, therefore, the point we can
identify is a local minimum point. Global conditions and global solutions can, as a rule, only be
found if the problem posses certain convexity properties that essentially guarantees that any local
minimum is a global minimum.

Next, we derive the first order and second order necessary and sufficient optimality conditions for
u? in unconstrained optimization problem (2.1.3). These conditions may not be used directly to
compute the minimum points but, nevertheless, these conditions form a foundation for the theory,
and guidelines to construct iterative algorithms that are used to solve problem (2.1.3).

Let F (u) be twice differentiable. For any point u, F (u) in some small neighborhood of u can be
approximated by Taylor series expansion

F (u+ du) = F (u) + Fu(u)> du+
1

2
du>Fuu(u)du+O(3)

, where

u =

u1
...
um

 , Fu =
∂F

∂u
=


∂F
u1
...
∂F
um

 , Fuu =
∂2F

∂u∂u
=


∂2F

∂u1∂u1
· · · ∂2F

∂u1∂um
...

. . .
...

∂2F
∂um∂u1

· · · ∂2F
∂um∂um

 .
Definition 11 (critical or stationary point). A stationary or critical point of F is a point that the
increment dF is zero for all increment du, i.e.,

Fu =
dF

du
= 0. (2.1.4)

�

• First-order optimality condition: consider the first order (first two terms) of Taylor
approximation. Given the ambiguity of sign of the term Fu(u)>du, we can only avoid F (u+
du) < F (u) if Fu = 0.
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– Therefore, a necessary condition for a point to be minimum is Fu = 0.

– Notice that Fu(u) = 0 is a necessary and sufficient condition for a point u to be a
stationary point, but it is only a necessary condition for u to be a minima. A stationary
point can be a maximum or a saddle point. We need to investigate higher order Taylor
series approximations to obtain further information.

– Example: Consider the problem

minimize F (u1, u2) = u2
1 − u1u2 + u2

2 − 3u2.

Setting Fu = 0 gives

2u1 − u2 = 0,

− u1 + 2u2 − 3 = 0,

which gives the unique solution u1 = 1, u2 = 2 as unique global minimum point of F in
R2.

Figure 7: (a) strong minimum, (b) strong maximum , (c) saddle point.

• Second-order optimality conditions: suppose that we are at a critical point, that is
Fu(u

?) = 0. The Taylor series expansion of F (u) around this point is

F (u? + du) = F (u?) +
1

2
du>Fuu(u

?)du+O(3).

– Using second order approximation, a necessary condition for a stationary point to be a
minimum point is du>Fuu(u

?)du ≥ 0 for du in all directions, which is equivalent to Fuu
being positive semi-definite. When Fuu = 0 the higher order terms can play a role to
still make F (u? + du) ≥ F (u?).

– Fuu being positive definite (Fuu > 0), is a sufficient condition for the critical point to be
a local minima. Notice that when Fuu(u

?) > 0, we can write 1
2
du>Fuu(u

?)du ≥ a‖du‖2

for some a > 0. Therefore we have

F (u? + du)− F (u?) =
1

2
du>Fuu(u

?)du+ o(‖du‖2) ≥ a‖du‖2 + o(‖du‖2).

For small ‖du‖, the first term on the right dominates the second, implying that both
sides are positive for small du.
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– If Fuu is negative definite, the critical point is a local maxima. If Fuu is indefinite, the
critical point is a saddle point.

– If Fuu is semi-definite, then higher order terms of the Taylor series expansion is needed
to determine the type of the critical point (see Fig. 7).

Summary:

Proposition 2.1.1 (Second-order necessary optimality condition for (2.1.3)). Consider the mini-
mization problem (2.1.3). Let u? be a local minimum point of twice differentiable function F . Then

• Fu(u?) = 0,

• Fuu(u?) ≥ 0.

Proposition 2.1.2 (Second-order sufficient optimality condition for (2.1.3)). Consider the mini-
mization problem (2.1.3). Assume that F is twice differentiable and there exists a u? ∈ Rm such
that

• Fu(u?) = 0,

• Fuu(u?) > 0.

Then, u? is a strong (strict) local minimum point of F .

Iterative solution methods for unconstrained minimization

The first order necessary and sufficient condition for optimality, Fu(u
?) = 0 gives m equations (one

for each component of Fu) that can be solved algebraically to obtain the minimum point. However,
such an approach may not be feasible for high dimensional or highly nonlinear systems. Typically,
iterative algorithms are used to solve minimization problems. That is, starting from some initial
guess we take steps in directions which successively reduce the value of the function until we hit a
minimum point

u(k + 1) = u(k) + du(k) = u(k) + α(k)s(k), u(0) = u0,

where s(k) ∈ Rm is the search direction and α(k) ∈ R is the step that we take in the search
direction.

We can obtain feasible search directions using Taylor series expansion of the function around the
current estimate u(k) .

• Gradient decent algorithm: Using first order Taylor series approximation we have

F (u(k + 1)) = F (u(k) + α(k)s(k)) ≈ F (u(k)) +
∂F

∂u
α(k)s(k).

Let α(k) > 0, then to ensure decrease in the function value we can choose

s(k) = −(
∂F

∂u
)> = −Fu(u(k))> = −g(u(k)),
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which is the direction of steepest decent.

Gradient decent algorithm: u(k + 1) = u(k)− α(k) g(u(k)), u(0) = u0.

The desired value for α(k) is a value which will cause maximum reduction in function value at
x(k+ 1). Notice that the gradient decent algorithm is based on the first order approximation
of the function. Larger steps can violate our first order approximation’s validity and as a
result, the desired reduction in the function value may not happen.

Example: Consider the cost function F (u1, u2) = 1
4
u4

1 − u2u1 − u2 + u2
2. Let u(0) =

[
0
0

]
.

Consider the gradient decent algorithm for the first step

u(1) = u(0)− α(0)Fu(u(0)).

Notice that Fu(u(0)) =

[
u3

1 − u2

−u1 − 1 + 2u2

] ∣∣∣
u(0)

=

[
0
−1

]
. Then,

u(1) =

[
0
0

]
− α(0)

[
0
−1

]
,

which gives G(α(0)) = F (u(1)) = 0− 0−α(0) +α(0)2. For minimum reduction, we pick α(0)
as follows

∂G

∂α
= −1 + 2α(0) = 0⇒ α?(0) =

1

2
.

Therefore,

u(1) =

[
0
0

]
− 1

2

[
0
−1

]
=

[
0
1
2

]
.

Minimizing G(α(k)) = F (u(k)−α(k)Fu(u(k))) with respect to α(k) at each time step to obtain
the optimal step size become hard for high dimensional or highly nonlinear cost functions.
Because G(α(k)) is a univariate function we can use line search methods like Golden section
or bisection search methods or polynomial approximations to obtain an estimate of optimal
α(k) at each time step. For further details, see [4].

• Newton and Quasi-Newton algorithms: Newton and Quasi-Newton algorithms are based
on the second order Taylor series approximation. These algorithms typically provide faster
termination but they are numerically expensive and complex due to need to compute Fuu.
For details, see [4].

Matlab fminunc function

‘fminunc’ is a nonlinear programing solver, which finds the minimum of unconstrained multivariable
function. For more details see http://www.mathworks.com/help/optim/ug/fminunc.html

• does not need gradients, however, can be faster and more reliable when you provide derivatives

• the choices of algorithms are ‘trust-region’ (default) or ‘quasi-newton’.

http://www.mathworks.com/help/optim/ug/fminunc.html
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– ‘trust-region’ (default). The ‘trust-region’ algorithm requires you to provide the gradient,
or else fminunc uses the ‘quasi-newton’ algorithm.

– BFGS Quasi-Newton method with a cubic line search procedure.

– initial guess x0 is usually very important. The recommended procedure is to try many
different initial to look for global minimum.

x
-10 -5 0 5 10

f(
x
)

1

1.5

2

2.5

3

3.5

X: -1.93
Y: 1.476

X: -4.02
Y: 1.045

Figure 8: f(x) = 2 + cos(x) + 0.5 cos(2x− 0.5) has multiple local and
global minimizer. Starting fminunc with x0 = −2.61 results in converging to

x = −1.9277, however, starting fminunc with x0 = −2.65 results in
converging to x = −4.0221.

2.1.2 A class of parameter optimization problems with equality con-
straints

Let the performance measure be differentiable function F (x, u) : Rn×Rm → R, which is a function
of the control vector u ∈ Rm and an auxiliary (state) vector x ∈ Rn. The optimization problem is
to determine the control vector u ∈ Rm that minimizes L(x, u) and at the same time satisfy the
constraint equation f(x, u) = 0, where f : Rn × Rm → Rp is a differential vector function, i.e.,

u? =argmin
u∈Rm

F (x, u), s.t., (2.1.5a)

f(x, u) = 0. (2.1.5b)

One way of solving this problem is to find x in terms of u from f(x, u) = 0. Then substitute
this value for x in F (x, u). Then one can solve the constrained optimization using unconstrained
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approach discussed earlier. For example, consider the optimization problem below

minimizeF (x, u) = x2 + u2, s.t.

x+ u+ 2 = 0.

To find a minimum point, use the constraint to write x = −2− u. Then, the cost becomes

F (u) = (−u− 2)2 + u2 = 2u2 + 4u+ 4.

Using first order necessary condition

∂F

∂u
= 4u+ 4 = 0,

we obtain x? = u? = 1.

As can seen from this example, this method works the best for linear f . However, when f is
nonlinear it is quite possible that finding x in terms of u can not be done in a tractable manner.
Next, we will derive some necessary conditions for the candidate local minimum points by analyzing
the changes in cost function in the neighborhood of the candidate points on the feasible set.

The difference between the constrained and unconstrained minimization analysis is that now our
search for the minimum point is restricted to the feasible set defined by the constraint equations,
i.e., the set Sfeas defined by

Sfeas = {(x, u) ∈ Rm × Rn|f(x, u) = 0}.

For minimum point, we look for (x?, u?) such that{
f(x?, u?) = 0,

F (x?, u?) ≤ F (x, u) ∀(x, u) ∈ Sfeas.

First-order necessary condition

Definition 12 (Stationary or critical point for (2.1.5)). At a stationary or a critical point dF is
equal to zero in the first-order approximation with respect to increments du when df is zero. �

• Let us consider a point (x, u) in the feasibility set (also can be phrased as on the constraint
manifold) and investigate the variation in the cost for the neighboring points on the constraint
manifold.

f(x+ dx, u+ du)≈f(x, u)+(fu)
>du+ (fx)

>dx︸ ︷︷ ︸,
F (x+ dx, u+ du)≈F (x, u)+(Fu)

>du+(Fx)
>dx︸ ︷︷ ︸

dF

,
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where

fx=
∂f

∂x
=



∂f1

∂x1

∂f2

∂x1
· · · ∂fn

∂x1

∂f1

∂x2

∂f2

∂x2
· · · ∂fn

∂x2
...

... · · · ...
∂f1

∂xn

∂f2

∂xn
· · · ∂fn

∂xn

 , fu=
∂f

∂u
=



∂f1

∂u1

∂f2

∂u1
· · · ∂fn

∂u1

∂f1

∂u2

∂f2

∂u2
· · · ∂fn

∂u2
...

... · · · ...
∂f1

∂um

∂f2

∂um
· · · ∂fn

∂um

 ,

Fx=
∂F

∂x
=


∂F
∂x1

∂F
∂x2
...
∂F
∂xn

 , Fu=
∂F

∂u
=


∂F
∂u1

∂F
∂u2
...

∂F
∂um

,

 .

Notice that f(x+ dx, u+ du) = 0, therefore, for the stationary points we need

(fu)
>du+ (fx)

>dx = 0, (2.1.6a)

(Fu)
>du+ (Fx)

>dx = 0. (2.1.6b)

From (2.1.6a), we obtain

dx︸︷︷︸
depends on du

= −(fx)
−>(fu)

> du︸︷︷︸
free to choose in any direction

. (2.1.7)

Substituting for dx in (2.1.6b), we obtain

((Fu)
> − (Fx)

>(fx)
−>(fu)

>)du = 0,

which, because of it has to be value for any value of du, results in the following necessary and
sufficient condition for a point (x, u) be a critical (stationary) point:

(Fu)
> − (Fx)

>(fx)
−>(fu)

> = 0, ⇔ Fu − fu (fx)
−1 Fx = 0.

Notice that

Fu − fu (fx)
−1 Fx =

∂F

∂u

∣∣
df
.

• An alternative strategy to characterize the first order optimality conditions can be obtained
using Lagrange multiplies method. In this method, we adjoin the constraint f(x, u) = 0 to
the cost using constants (Lagrange multipliers)

λ =
[
λ1, · · · , λn

]> ∈ Rn,

to obtain
H(x, u, λ) = F (x, u) + λ>f(x, u).
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Notice that the values of H and F along to points on the feasible set are the same.
Given values of x and u that satisfy f(x, u) = 0 consider differential changes to H due to
differential changes in x and u:

dH = H>x dx+H>u du

Since u is our decision variable, we would like to keep du but we will choose λ such that
Hx = 0:

Hx = Fx + λ>fx ⇒ λ> = (fx)
−1Fx

We are investigating the changes in the cost function for the points on the neighboring points
on the constraint manifold so to proceed, we must determine what changes are possible to the
cost keeping the equality constraint satisfied.
Changes to (x, u) such that f(x, u) = 0:

df = f>x dx+ f>u du = 0⇒ dx︸︷︷︸
dependent

= −f−>x f>u du︸︷︷︸
arbitrary

.

Now lets look at the cost fucntion

dF = F>x dx+ F>u du = (−F>x f−>x f>u︸ ︷︷ ︸
λ

+Fu)du = H>u du

You can also note that

H(x, u, λ) = F (x, u) + λ>f(x, u)⇒ dH(x, u, λ) = dF (x, u) + λ>df(x, u)

therefore, for valid variations, i.e., df(x, u) = 0 we have

dF = dH ⇒︸︷︷︸
Hx=0

dF = H>u du

So the gradient of cost F with respect to u while keeping the constraint f(x, u) = 0 is just
Hu. We need this gradient to be zero to have a stationary point so that dF = 0 for ∀du 6= 0.
Thus the necessary condition for a stationary value of F are

Hx = 0,

Hu = 0,

Hλ = f(x, u) = 0

2n+m unknown 2n+m equations!
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Constrained optimization: sufficient condition for optimality

To obtain sufficient conditions for a stationary (critical) point (x, u) ∈ X × U to be a minimum
point we look at the second-order order Taylor series expansion of F (x, u) and f(x, u):

f 1(x+ dx, u+ du)≈f 1(x, u)+(f 1
u)>du+ (f 1

x)>dx+
1

2
dx>f 1

xxdx+dx>f 1
xudu+

1

2
du>f 1

uudu︸ ︷︷ ︸
df1

,

...

fn(x+ dx, u+ du)≈fn(x, u)+(fnu )>du+ (fnx )>dx+
1

2
dx>fnxxdx+dx>fnxudu+

1

2
du>fnuudu︸ ︷︷ ︸

dfn

,

F (x+ dx, u+ du)≈F (x, u)+ (Fu)
>du+(Fx)

>dx+
1

2
dx>Fxxdx+dx>Fxudu+

1

2
du>Fuudu︸ ︷︷ ︸

dF

,

Fuu =
∂

∂u
(
∂F

∂u
), Fxu =

∂

∂x
(
∂F

∂u
), Fxx =

∂

∂x
(
∂F

∂x
)

f iuu =
∂

∂u
(
∂f i

∂u
), f ixu =

∂

∂x
(
∂f i

∂u
), f ixx =

∂

∂x
(
∂f i

∂x
), i = 1, · · · , n.

We are examining the increments in cost in neighboring points of a critical point on the constraint
manifold, therefore, df = 0. Recall H = F (x, u) +

∑n
i=1 λif

i(x, u). We like to obtain the second
order condition in terms of Hamiltonian. Notice that

dH = dF +
n∑
i=1

λidf
i(x, u) =

[
H>x H>u

] [dx
du

]
+

1

2

[
dx> du>

] [Hxx Hxu

Hux Huu

] [
dx
du

]
.

We are examining the increments in cost in neighboring points of a critical point on the constraint
manifold. From the first-order analysis we got that at the critical point we have Hx = 0, Hu = 0
and dx = −(fx)

−>(fu)
>du. So we can write

dF =
1

2
du>

[
−fu(fx)−1 I

] [Hxx Hxu

Hux Huu

] [
−(fx)

−>(fu)
>

I

]
du

Thus, a sufficient condition for a local minimum are

Hx = 0, Hu = 0 (2.1.8)[
−fu(fx)−1 I

] [Hxx Hxu

Hux Huu

] [
−(fx)

−>(fu)
>

I

]
> 0 (2.1.9)

Clearly, a necessary condition for local minimum is

Hx = 0, Hu = 0 (2.1.10)[
−fu(fx)−1 I

] [Hxx Hxu

Hux Huu

] [
−(fx)

−>(fu)
>

I

]
≥ 0 (2.1.11)
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Notice that

Hxx = Fxx +
n∑
i=1

λidf
i
xx, Hxx = Fxx +

n∑
i=1

λidf
i
xu, Huu = Fuu +

n∑
i=1

λidf
i
uu.

Numerical example: find the point nearest the origin on the line

x+ 2y + 3z = 10, x− y + 2z = 1,

where x, y, z are rectangular coordinates.

The optimization problem here is

minimize 0.5(x2 + y2 + z2), s.t.,

x+ 2y + 3z − 10 = 0,

x− y + 2z − 1 = 0.

We first write the Hamiltonian:

H = 0.5(x2 + y2 + z2) + λ1(x+ 2y + 3z − 10) + λ2(x− y + 2z − 1)

The first order condition for gives the following equations for critical point:

∂H

∂x
= x+ λ1 + λ2 = 0,

∂H

∂y
= y + 2λ1 − λ2 = 0,

∂H

∂z
= z + 3λ1 + 2λ2 = 0,

∂H

∂λ1

= x+ 2y + 3z − 10 = 0,

∂H

∂λ2

= x− y + 2z − 1 = 0.

You can use Matlab ‘linsolve’ command to solve the set of linear algebra equations above. For this
problem, the solution, the critical point, is x = 0.3220, y = 2.4746, z = 1.5763, λ1 = −0.9322
and λ2 = 0.6102. To check if this critical point is minimum point, we use the sufficient conditions
obtained above with treating x as decision variable u and (y, z) as states.

fx =
[
1 1

]
, f(y,z) =

[
2 −1
3 2

]
, H(y,z),(y,z) =

[
1 0
0 1

]
, H(y,z),x =

[
0
0

]
, Hxx = 1.

Then, [
−fx(f(y,z))

−1 I
] [H(y,z),(y,z) H(y,z),x

Hx,(y,z) Hxx

] [
−(f(y,z))

−>(fx)
>

I

]
=

[
0.1429 −0.4286 1

] 1 0 0
0 1 0
0 0 1

 0.1429
−0.4286

1

 = 1.2041 > 0.

Therefore, the critical point obtained earlier is the minimizer of our cost function over the feasible
set.
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Constrained optimization: numerical solution by a 1st-order gradient method

1. Select initial u

2. Determine numerical value of x from f(x, u) = 0 for the given u

3. Determine λ = −(∂f
∂x

)−1 ∂F
∂x

= −(fx)
−1 Fx.

4. Determine Hu = ∂F
∂u

+ ∂f
∂u
λ = Fu + fuλ (this ingeneral, will not be zero)

5. Interpreting Hu as a gradient vector, change the estimates of u by the amount ∆u = −αHu,
where α > 0 o a positive scalar constant. The predicted change in the cost is ∆F = −αH>u Hu.

6. Go to step 2 and use the new u to repeat the steps until ∆F = −αH>u Hu in the threshold
you set.

Matlab numerical solver for constrained optimization: fmincon and quadprog

Sample problem:

minimize F (x, u) = x4 + u2, .s.t.,

x2 + u2 − 2 = 0

Code for fmincon: (see http://www.mathworks.com/help/optim/ug/fmincon.html for further de-
tails)

• a function to list equality constraints

func t i on [ c , ceq ] = EqualFun ( x )

ceq = x (1)ˆ2 + x (2)ˆ2 −2;

c = [ ] ;

• the main code

fun = @( x ) ( x(1)ˆ4+x ( 2 ) ˆ 2 ) ;

nonlcon = @EqualFun ;

A = [ ] ;

b = [ ] ;

Aeq = [ ] ;

http://www.mathworks.com/help/optim/ug/fmincon.html
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beq = [ ] ;

lb = [ ] ;

ub = [ ] ;

x0 = [ 0 , 0 ] ;

[ x , f va l , e x i t f l a g , output ] = fmincon ( fun , x0 ,A, b , Aeq , beq , lb , ub , nonlcon )

If your cost function is quadratic and your constraints are linear you can us Matlab ‘quadprog’
command to solve your constrained optimization problem. For information about this solver see
http://www.mathworks.com/help/optim/ug/quadprog.html .

http://www.mathworks.com/help/optim/ug/quadprog.html


Note 3

The treatment corresponds to selected parts from Chapter 2 of [3] and Chapter 2 [5]. The presentation is

at times informal. For rigorous treatments, students should consult the aforementioned references and the

other listed texts in the class syllabus.

3.1 Optimal control of multi-stage systems over finite hori-
zon

We are now ready to extend the methods of Note 2 to the optimization of a performance index
associated with a system developing dynamically through time over finite horizon (see Fig. 5). We
state objective as to choose sequence of control inputs {u(0), u(1), · · · , u(N − 1)} that minimizes
(or maximizes) a performance index of the form

J(u) =φ(xN) +
∑N−1

k=0
Lk(xk, uk), s.t.,

xk+1 = fk(xk, uk), k = 0, 1, · · · , N − 1, (3.1.1)

x(0) = x0.

We start over study by using Lagrange multipliers λ1, · · · , λN to adjoin the system state equations
to the cost function, i.e.,

J̄(u) =φ(x(N)) +
∑N−1

k=0
(Lk(xk, uk) + λ>k+1(fk(xk, uk)− xk+1),

We define
Hk = Li(x(i), u(i)) + λ>k+1f

k(xk, uk), k = 0, · · · , N − 1,

to obtain

J̄(u) = (φ(xN)− λ>NxN) +
∑N−1

k=0
(Hk(xk, uk, λk+1)− λ>k xk) +H0(x0, u0, λ1),

27



Note 4

Dynamic Programming

The treatment corresponds to selected parts from Chapter 3 of [1]. The presentation is at times informal.

For rigorous treatments, students should consult the aforementioned references and the other listed texts

in the class syllabus.

4.1 Introduction

This chapter reviews the principle of optimality and use of this principle in design of dynamic
programing. Dynamic Programing (DP) is a numerical solution procedure for solving multi-stage
decision making problems. Usually creativity is required before we can recognize that a particular
problem can be cast effectively as a dynamic program; and often subtle insights are necessary to
restructure the formulation so that it can be solved effectively. In this chapter, after introducing
the dynamic programing, we will show how this optimal decision making tool can be used to
solve discrete-time optimal control problems. For most problems, dynamic programming leads to
sequential numerical decision making procedures, often quite challenging. However, there are a
few cases that dynamic programming offers a closed-form analytical solution; one of those cases is
design of optimal discrete LQR solution.

4.2 Principle of optimality

Definition: A problem is said to satisfy the Principle of Optimality if the sub-solutions of an
optimal solution of the problem are themselves optimal solutions for their subproblems.

Let a− b− f be the optimal path to go from point a to the terminal
manifold shown in the figure below. The first decision made at a
(point (x0, t0)) results in segment a−b with cost Jab and the remaining
decision yields segment b−f (from b, point ((x1, t1))) with cost of Jbf
to arrive at the terminal manifold. The minimum cost Jaf from a− f
is

J?af = Jab + Jab.

28
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Assertion If a− b− f is the optimal path from a to f then b− f is the optimal path from b
to f .
Proof : Proof by contradiction

Principle of optimality (due to Bellman)

• An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

• All points on an optimal path are possible initial points for that path

• Suppose the optimal solution for a problem passes through some intermediate point (x1, t1)
then the optimal solution to the same problem starting at (x1, t1) must be the continuation
of the same path.

4.3 Dynamic programming

We begin by providing a general insight into the dynamic programming approach by treating a set
of simple examples in some detail. These examples show the basis of dynamic programming and
use of principle of optimality.

• In general, if there are numerous options at location
a that next leads to locations x1, · · · , xn choose the
action that leads to

J?af = min
xi

{
[Jax1 + J?x1f ], [Jax2 + J?x2f ], · · · , [Jaxn + J?xnf ]

}

• Problem (Bryson): find the path from A to B traveling only to the right, such that the sum
of the numbers on the segments along this path is a minimum.

– minimum time path from A to B: if you think of numbers as time to travel

– control decision is: up-right or down-right (only two possible value at each node

– there are 20 possible paths from A to B (traveling only to the right)
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Solution approaches

1. There are 20 possible paths: evaluate each and compute the travel time (pretty tedious
approach)

2. Start at B and work backwards, invoking the principle of optimality along the way.

- For dynamic programing (DP) we need to find 15 numbers to solve this problem rather
than evaluate the travel time for 20 paths

- Modest difference here, but scales up for larger problems.

- Let n = number of segments on side (3 here) then:

∗ Number of routes scales as ∼ (2n)!/(n!)2

∗ Number DP computations scales as ∼ (n+ 1)2 − 1

• Problem: Minimize cost to travel from c to h moving only along the direction of arrows.
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– g to h: goes directly to h, i.e., J?gh = 2

– e to h: a possible path goes through f , we need to compute the cost of going from f to
h first.

– f to h: J?fh = Jfg + J?gh = 3 + 2 = 5

– e to h: J?eh = min{Jeh, Jefh} = min{Jeh, [Jef + J?fh]} = min{8, 2 + 5} = 7, e → f →
g → h

– d to h: J?dh = Jde + J?eh = 3 + 7 = 10

– c to h: J?ch = min{Jcdh, Jcfh} = min{[Jcd + J?dh], [Jcf + J?fh]} = min{[5 + 10], [3 + 5]} = 8

Optimal path: c→ f → g → h

Greedy vs. Dynamic Programming:

• Both techniques are optimization techniques, and both build solutions from a collection of
choices of individual elements.

• The greedy method computes its solution by making its choices in a serial forward fashion,
never looking back or revising previous choices.

• Dynamic programming computes its solution bottom up by synthesizing them from smaller
subsolutions, and by trying many possibilities and choices before it arrives at the optimal set
of choices.

• There is no a priori litmus test by which one can tell if the Greedy method will lead to an
optimal solution.

• By contrast, there is a litmus test for Dynamic Programming, called The Principle of Opti-
mality

4.4 Dynamic Programing: optimal control

Roadmap to use DP in optimal control

- Grid the time/state and find the necessary control

- Grid the time/state and quantize control inputs

- Discrete-time problem: discrete time LQR
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A discrete time/quantized space grid with the linkages showing the possible transition in state/time
grid through the control commands. It is hard to evaluate all options moving forward through the
grid, but we can work backwards and use the principle of optimality to reduce this load.

Consider

minimize J = h(x(tf )) +

∫ tf

t0

g(x(t), u(t), t)dt, s.t.

ẋ = a(x, u, t),

x(t0) = x0 = fixed,

tf = fixed

We will discuss including constraints on x(t) and u(t)

DP solution

1. develop a grid over space/time

2. evaluate the final cost at possible final states xi(tf ): J
?
i = h(xi(tf )) ∀i

3. back up 1 step in time and consider all possible ways of completing the problem

To obtain the cost of a control action, we approximate the integral in the cost.
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- let uij(tk) be the control action that takes the system from xi(tk) to xj(tk+1) at time
tk + ∆t. Then the approximate cost of going from xi(tk) to xj(tk+1):∫ tk+1

tk

g(x(t), u(t), t)dt ≈ g(xi(tk), u
ij(tk), tk)∆t.

- uij(tk) is computed from the system dynamics:

ẋ=a(x, u, t)⇒ x(tk+1)−x(tk)

∆t
=a(x(tk), u(tk), tk)⇒

xj(tk+1)=xi(tk) + a(xi(tk), uij(tk), tk)∆t⇒ uij(tk)

Note: If the system is control affine ẋ = f(x, t) + g(x, t)u, the control uij(tk) can be

computed from uij(tk) = g(xik, tk)
−1(x

j(tk+1)−xi(tk)

∆t
− f(xik, tk))

- So far for any combination of xik and xjk+1 on the state/time grid we can evaluate the

incremental cost ∆J(xik, x
j
k+1) of making the state transition.

- Assuming you know already the optimal path from each new terminal point xjk+1, the
optimal path from xik is established from

J?(xik, tk) = min
xjk+1

[
∆J(xik, x

j
k+1) + J?(xjk+1)

]
- So far for any combination of xik and xjk+1 on the state/time grid we can evaluate the

incremental cost ∆J(xik, x
j
k+1) of making the state transition.

- Assuming you know already the optimal path from each new terminal point xjk+1, the
optimal path from xik is established from

J?(xik, tk) = min
xjk+1

[
∆J(xik, x

j
k+1) + J?(xjk+1)

]
- Then for each xik the output is

– Best xik+1 to pick that gives the lowest cost

– Control input required to achieve this best cost

4. then work backwards on time until you reach x0, when only one value of x is allowed because
of the given initial condition

Couple of points about the process that is explained above

• with constraints on the state, certain values of x(t) might not be allowed at certain time t.
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• with bounds on the control, certain state transitions might not be allowed from one time step
to another

• the process extends to higher dimensions. Just have to define a grid of points in x and t. See
Kirk’s book for more details.

• Extension of the method discussed earlier to the case of free end time with some additional
constraint on the final state m(x(tf ), tf ) = 0, i.e.,

minimize J = h(x(tf )) +

∫ tf

t0

g(x(t), u(t), t)dt, s.t.

ẋ = a(x, u, t),

x(t0) = x0 = fixed,

m(x(tf ), tf ) = 0 tf = free

– find a group of points on the state/time grid that (approximately) satisfy the terminal
constrain

– evaluate cost for each point and work backward from there

• The previous formulation picked x’s and used the sate equation to determine the control
needed to transition between the quantized states across time.

- For more general case problems, it might be better to pick the u’s and use those to
determine the propagated x’s

J?(xik, tk) =min
uijk

[
∆J(xik, u

ij
k ) + J?(xjk+1, tk+1)

]
=

min
uijk

[
g(xik, u

ij
k , tk)∆t+ J?(xjk+1, tk+1)

]
- To this end, the control inputs should be quantized as well.

- Then, it is likely that terminal points from one time step to the next will not lie on the
state discrete points: must interpolate the cost to go between between them
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Example 1 (Kirk) Consider

Minimize J = x2(2) + 2

∫ 2

0

u2(t)dt subject to

ẋ = u,

0 ≤ x(t) ≤ 1.5,

− 1 ≤ u(t) ≤ 1

• Quantize the state within the allowable values and time within the range t ∈ [0, 2] using N = 2
and ∆t = 1, i.e., k = 0, 1, 2

Solution:

1. Use Euler integration approximation), a very common discretization process, which works well
for small , to discretize the system

ẋ ≈ x(t+ ∆t)− x(t)

∆t
= u(t)⇒ xk+1 = xk + ∆tuk

2. Use approximate calculation to discretize the cost

J = x2(N) + 2
N−1∑
k=0

u2
k(t)∆t

3. Given that 0 ≤ x ≤ 1.5, take x quantized into four possible values xk ∈ {0, 0.5, 1.0, 1.5}

4. Compute cost associate with all possible terminal states (k = 2):



Solmaz Kia MAE 274 MAE, UCI

5. Back track to k = 1. Given any xi1, determine the control to go to xj2

6. Compute cost associate with all possible terminal states (k = 1):

7. Back track to k = 0. Given any xi0, determine the control to go to xj1

8. Final DP result

9. Example: starting at x(0) = 1, the optimal control is u?(0) = −0.5 and u?(1) = 0

In the preceding control example all of the trial control values drive the state of the system either to
a computational ”grid” point or to a value outside of the allowable range. Had the numerical values
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not been carefully selected, this happy situation would not have been obtained and interpolation
would have been required.

Example 2 (Quantized Control) Consider

Minimize J = (x(2)− 0.5)2 + 2

∫ 2

0

u2(t)dt subject to

ẋ = 0.5x+ 0.5u,

− 0.5 ≤ x(t) ≤ 1,

− 1 ≤ u(t) ≤ 1

Quantize the state within the allowable values and time within the range t ∈ [0, 2] using N = 2 and
∆t = 1, i.e., k = 0, 1, 2
Quantize the control input within the allowable values u ∈ {−1, 0, 1}
Solution:

1. Use Euler integration approximation), a very common discretization process, which works well
for small ∆t = 1, to discretize the system

ẋ ≈ x(t+ ∆t)− x(t)

∆t
= 0.5x(t) + 0.5u(t)⇒ xk+1 = 1.5xk + 0.5uk

2. Use approximate calculation to discretize the cost

J = (x(N)− 0.5)2 + 2
N−1∑
k=0

u2
k(t)∆t

3. Given that −0.5 ≤ u ≤ 1, take x quantized into four possible values xk ∈ {−0.5, 0.5, 1.0}

4. Given that −1 ≤ u ≤ 1, take u quantized into three possible values uk ∈ {−1, 0, 1}

5. Compute cost associate with all possible terminal states (k = 2):

6. Back track to k = 1. Given any xi1, determine the control to go to xj2
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7. Compute cost associate with all possible terminal states (k = 1):

8. Back track to k = 0. Given any xi0, determine the control to go to xj1

9. Final DP result
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Note: Interpolation may also be required when one is using stored data to calculate an
optimal control sequence. For example, if the optimal control applied at some value of x(0)
drives the system to a state value x(1) that is halfway between two points where the optimal
controls are −1 and 0, then by linear interpolation the optimal control is −0.5.

10. Example: Given initial condition x(0) = 0.5, optimal control is u?(0) = 0. Because x(1) = 0.75
is not on the state grid, to find the optimal control u?(1) we should use interpolation. Note
(x(1) = 0.5, u?(1) = 0) and (x(1) = 1, u?(1) = −1). Then, after interpolation we obtain
u?(1) = −0.5.

4.5 Closing Remark

Dynamic programing: curse of dimensionality

• Main concern with dynamic programming is how badly it scales

• Given m quantized states with dimension n and N points in time, the number of calculations
for dynamic programing is Nmn

“Curse of Dimensionality”

see Dynamic Programing by R. Bellman (1957),

Interpolation

• Linear interpolation: Consider f(x). Suppose you know y1f1 = f(x1) and y2f2 = f(x2). We
want to use linear interpolation to find the value of function f at point A where x1 ≤ xA ≤ x2:

f(x) = f(x1) +
f(x2)− f(x1)

x2 − x1

(x− x1) =
x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1

f(x2)

value of function f at point A where x1 ≤ xA ≤ x2.
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• Bilinear interpolation: Consider f(x, y). Suppose you know f11 = f(x1, y1), f12 = f(x1, y2),
f21 = f(x2, y1), and f22 = f(x2, y2). We want to use bilinear interpolation to find the value
of function f at point A where x1 ≤ xA ≤ x2, y1 ≤ yA ≤ y2.

We do first linear interpolation in x direction:

f(x, y1) ≈ x2 − x
x2 − x1

f11 +
x− x1

x2 − x1

f21

f(x, y2) ≈ x2 − x
x2 − x1

f12 +
x− x1

x2 − x1

f22

We proceed by interpolating in the y−direction to obtain the desired estimate:

f(x, y) ≈y2 − y1

y2 − y1

f(x, y1) +
y − y1

y2 − y1

f(x, y2) + ...

=
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

] [f11 f12

f21 f22

] [
y2 − y
y − y1

]



Note 5

Calculus of variation

The treatment corresponds to selected parts from Chapters 4 [1]. The presentation is at times informal.

For rigorous treatments, students should consult the aforementioned references and the other listed texts

in the class syllabus.

5.1 Calculus of Variation and its relevance to optimal con-
trol

Another class of optimization problems we will study is the following problem

u?(t)
∣∣∣
t∈[t0,tf ]

= argmin
u(t)∈U

(J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)), s.t.

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ],

x(t0), t0 is given,

m(x(tf ), tf ) = 0← various constraints on final state,

x(t) : R→ Rn, u(t) : R→ Rm, f : Rn × Rm × R→ Rn.

Notice her that the cost function is a function of x(t) and u(t) which are both themselves functions
of time. Therefore J(x(t), u(t)) is a functional.

Definition 13 (function). A function f is a rule of correspondence that assigns to each element q
in a certain set D (domain) a unique element in a set R (range or image). �

Definition 14 (functional). A functional J is a rule of correspondence that assigns to each function
x in a certain class Ω a unique real number. Ω is called the domain of functional, and the set of
real numbers associated with the functions Ω is called the range of the functional. �

41
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Example Suppose that x is a continuous-time function of t defined in
the interval t0, tf ] and

J(x) =

∫ tf

t0

x(t)dt;

the real number assigned by functional J is the area under the x(t)
curve.

In optimal control problem in continuous-time, the objective is to determine a function that mini-
mizes a specific functional, the performance measure. In discrete-time systems we were able to go
from a problem involving variables dynamically changing through time to static parameter opti-
mization problem through stacking the variables on top of one another to arrive at decision variables
represented as vectors with finite dimensions. This approach cannot be used with the continuous-
time systems, as we will end up with a decision vector of infinite dimension. The branch of mathe-
matics that is extremely useful in solving an optimization problem of the form for continuous-time
systems is the Calculus of Variation.

Calculus of Variation

• field of mathematical analysis that deals with maximization/minimization of functionals

• functionals are defined as integrals involving functions and their derivatives

• interest is in extremal functions that make the functional attain

– maximum

– minimum

– or stationary functions (those where the rate of change of the functional is zero)

5.2 Preliminaries for calculus of variation

In parameter optimization, in order to investigate if a point is a local minimum/maximum/sta-
tionary point, we looked at the variation of the function for points close to that point. Calculus of
variation employs the same concept to identify extremals of a functional. Before proceeding further,
we need first to define the concepts of closeness and increments of a functional.

For functions, recall that we used the concept of norms to measure closeness. Norm in n-dimensional
Euclidean space is defined as a rule of correspondence which assigns to each point q a real number.
Any function of q represented by ‖q‖ is a norm if it satisfies the properties below,

1. ‖q‖ ≥ 0 and ‖q‖ = 0 iff q = 0

2. ‖αq‖ = |α|‖q‖ for all α ∈ R

3. ‖q1 + q2‖ ≤ ‖q1‖+ ‖q2‖
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To points q1 and q2 are close together ⇔ ‖q1 − q2‖ is small.

For functions we also use concept of norm as a measure of size of the functions. Norm of a function
is a rule of correspondence which assigns to each function x ∈ Ω, defined for t ∈ [t0, tf ], a real
number. Any functional of x represented by ‖qx‖ is a norm if it satisfies the properties below,

1. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x(t) = 0 for all t ∈ [t0, tf ]

2. ‖αx‖ = |α| ‖x‖ for all α ∈ R

3. ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖

For two functions x1 ∈ Ω and x2 ∈ Ω, intuitively speaking norm of the difference of them ‖x1− x2‖
should be

• zero if the functions are identical.

• small, if the functions are “close”.

• large if the functions are “far apart”.

Following are two examples of norm of functions

• ‖x‖2 = (
∫ tf
t0
x>(t)x(t)dt)1/2.

• ‖x‖ = max
t0≤t≤tf

(|x(t)|), (scalar x)

In the following we introduce increment of a functional

(photo courtesy of [1])

Increment of a function f : for two point q,
q + ∆q in the domain D of the function, the
increment of f is

∆f = f(q + ∆q)− f(q).

Recall that the differential df of a function is
the first-order (in ∆q) approximation of ∆f :

∆f = df +O((∆q)2)

df =
∂f

∂q
∆q.

Increment of a functional J : If x and x+δx are func-
tions for which the functional J is defined, then in-
crement of J is

∆J = J(x+ δx)− J(x).

δx is the variation of the function x. The increment
of a functional can be written as

∆J(x(t), δx(t)) = δJ(x(t), δx(t))+g(x(t), δx(t)).‖δx(t)‖,

where δJ is linear in δx(t). If
lim‖δx(t)‖→0(g(x(t), δx(t))) = 0, then J is said
to be differentiable on x and δJ is the variation of
J evaluated for a function x. A variation of the
functional is a linear approximation of its increment,
i.e., δJ(x(t), δx(t)) is linear in δx(t).

∆J(x(t), δx(t)) = δJ(x(t), δx(t)) +H.O.T.
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The variation of J(x(t)) =
∫ tf
t0
f(x(t))dt (assuming f has first and second continuous derivative)

can be obtained from

δJ(x(t), δx(t)) =

∫ tf

t0

∂f(x(t))

∂x(t)
· δx dt+ f(x(tf ))δtf − f(x(t0))δt0.

The final concept we review is the definition of a minimum of a function and a functional.

Minimizer of a function f(q): is q? if

f(q?) ≤ f(q)

for all admissible q in ‖q − q?‖ ≤ ε

Minimizer of functional J(x(t)): is x?(t) if

J(x?(t)) ≤ J(x(t))

for all admissible x(t) in ‖x(t)− x?(t)‖ ≤ ε.

5.3 Calculus of variation

The following states the fundamental theorem of the calculus of variation:

• Let x be a vector function of t in the class Ω, and J(x)
be a differential functional of x.

• Assume that all x ∈ Ω are not constrained by any
boundaries. If x? is an extremal function, the variation
of J must vanish in x?

δJ(x?, δx) = 0

for all admissible x ∈ Ω.

In the following we are going to invoke the fundamental theorem of the calculus of variation to
obtain equations that characterize the extremal points of different class of functional optimization
problems.

5.3.1 The simplest problem in calculus of variation

Problem 1: determine scalar x?(t) in the class of functions with continuous first derivative that is
a local extremum of

J(x(t)) =

∫ tf

t0

g(x(t), ẋ, t)dt

and respects x(t0) = x0 and x(tf ) = xf for given and fixed t0, tf , x0 and xf . �

To solve this problem we use the fundamental theorem of calculus, i.e, we look for functions x?(t)
that satisfy δJ(x?(t), δx(t)) = 0.

We start with

∆J(x(t), δx) =

∫ tf

t0

g(x(t) + δx(t), ẋ(t) + δẋ(t), t)dt−
∫ tf

t0

g(x(t), ẋ, t)dt.
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We use taylor series expansion to obtain

∆J(x(t), δx) =

∫ tf

t0

(
g(x(t), ẋ(t), t) +

∂

∂x
g(x(t), ẋ(t), t)δx(t) +

∂

∂ẋ
g(x(t), ẋ(t), t)δẋ(t)

+H.O.T.
)

dt−
∫ tf

t0

g(x(t), ẋ, t)dt,

which gives δJ(x?(t), δx), the first order approximation of ∆J(x(t), δx), as follows

δJ(x(t), δx) =

∫ tf

t0

( ∂
∂x
g(x(t), ẋ(t), t)δx(t) +

∂

∂ẋ
g(x(t), ẋ(t), t)δẋ(t)

)
dt.

Notice that δx and δẋ are not independent variations from one anther

ẋ(t) =
d

dt
x(t), δẋ(t) =

d

dt
δx(t), δx(t) =

∫
δẋdt+ δx(t0); thatis, selecting

δx uniquely defines δẋ. Therefore, we cannot yet draw any conclusive information from setting
δJ(x(t), δx) = 0. We choose δx as a function that is varied independently. We use integration by
parts (IBP) to eliminate δẋ from the expression that we have for δJ(x(t), δx). Recall

IBP:

∫ 2

1

udv = uv
∣∣∣2
1
−
∫ 2

1

vdu.

Let u = gẋ and dv = δẋdt, then after implementing the IBP we obtain

δJ(x(t), δx)=

∫ tf

t0

{∂g
∂x

(x(t), ẋ(t), t)− d

dt
[
∂g

∂ẋ
(x(t), ẋ(t), t)]

}
δx dt+

(∂g
∂ẋ

(x(t), ẋ(t), t)δx
)tf
t0

=∫ tf

t0

{∂g
∂x

(x(t), ẋ(t), t)− d

dt
[
∂g

∂ẋ
(x(t), ẋ(t), t)]

}
δx dt.

Here, we used δx(t0) = 0 and δx(tf ) = 0, because x(t0) = x0 and x(tf ) = xf are fixed and given in
Problem 1. Invoking the fundamental theorem of calculus to characterize the extremal functions,
for first order optimality condition we should have δJ(x?(t), δx) = 0 for any variation δx. Then,
using the fundamental lemma of calculus of variation (see page 126 of [1]), we arrive at the following
conclusion.

Both final time and final state are specified

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

x?(tf ) = xf
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Problem 1: example (a)

∗ Find the curve that gives the shortest distance between two points with known locations on a
plane, P = (x0, y0) and Q = (xf , yf ).

Cost function:

• Define the distance to be s, so, s =
∫

ds

• Therefore, s =
∫ √

(dx)2 + (dx)2 =
∫ √

1 + (dy
dx

)2 dx

• Take y as dependent variable, and x as independent variable, and Let dy
dx
→ ẏ

Optimization problem:

minimize J =

∫ xf

x0

√
1 + ẏ2dy −→ minimize J =

∫ xf

x0

g(ẏ)dy

First order necessary condition is Euler equation

∂g

∂y
(y?(t), ẏ?(t), t)− d

dt
[
∂g

∂ẏ
(y?(t), ẏ?(t), t)] = 0

which gives the following first order necessary condition for this problem (here we have ∂g
∂y

= 0)

d

dt
[
∂g

∂ẏ
(y?(t), ẏ?(t), t)] = 0

we can solve this ode problem in number of ways

•
d

dx

(∂g
∂ẏ

)
=

d

dx

( ẏ√
1 + ẏ2

)
= 0

The first order necessary condition for optimality is then

ẏ√
1 + ẏ2

= constant,

y(x0) = y0,

y(xf ) = yf .
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From ẏ√
1+ẏ2

= constant we can deduce that ẏ(x) = c1 = constant for x ∈ [x0, xf ]. Therefore,

we obtain
ẏ = c1 ⇒ y(x) = c1 x+ x2

We conclude that the shortest path is a line y = c1 x + c2. For given initial conditions, the
constants are c1 =

yf−y0
xf−x0

and c2 = y0 − yf−y0
xf−x0

x0 =
y0xf−yfx0
xf−x0

.

•

d

dx

(∂g
∂ẏ

)
=

d

dẏ

(∂g
∂ẏ

)dẏ

dẋ

=
d

dẏ

( ẏ

(1 + ẏ2)1/2

)
ÿ =

ÿ

(1 + ẏ2)3/2
= 0

The first order necessary condition for optimality is then

ÿ = 0,

y(x0) = y0,

y(xf ) = yf .

The most general curve with ÿ = 0 is a line y = c1 x + c2. For given initial conditions, the
constants are c1 =

yf−y0
xf−x0

and c2 = y0 − yf−y0
xf−x0

x0 =
y0xf−yfx0
xf−x0

.

The shortest curve connecting two points is the straight line connecting them together. �
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Problem 1: example (b)-The Brachistrochrone Problem
Find the shortest path on which a particle in the absence of friction will slide from one point to
another point in the shortest time under the action of gravity.

The most famous classical variational principle is the so-called brachistochrone problem. The com-
pound Greek word “brachistochrone” means “minimal time”. An experimenter lets a bead slide
down a wire that connects two fixed points. The goal is to shape the wire in such a way that,
starting from rest, the bead slides from one end to the other in minimal time. Naive guesses for
the wire’s optimal shape, including a straight line, a parabola, a circular arc, or even a catenary
are wrong. One can do better through a careful analysis of the associated variational problem.
The brachistochrone problem was originally posed by the Swiss mathematician Johann Bernoulli
in 1696, and served as an inspiration for much of the subsequent development of the subject.

Solution: Let the particle slide from O along the path OP. Let at time t, the particle be at (x, y).
By the principle of work and energy, we have
Kinetic energy point (x, y) ? kinetic energy at O = work done in moving the particle from O to
(x, y).

1

2
m(

ds

dt
)2 − 0 = mgy ⇒ ds

dt
=
√

2gy.

Our objective is

minimize t1 =

∫ t1

t0

dt, s.t.
ds

dt
=
√

2gy.

We can re-write this problems as

t1 =

∫ x1

0

ds√
2gy

=
1√
2g

∫ x1

0

√
1 + (y′)2

√
y

dx

Therefore, we solve the problem

minimize t1 =
1√
2g

∫ x1

0

√
1 + (y′)2

√
y

dx : g(y, y′) =

√
1 + (y′)2

√
y

.

F.O.N conditions:

Since g(y, y′) does not explicitly depend on x, the Euler equation gives

g − y′ ∂g
∂y′

= c = constant√
1 + (y′)2

√
y

− y − ∂

∂y′
(

√
1 + (y′)2

√
y

) = c√
1 + (y′)2

√
y

− y′ 1
√
y

y′√
1 + (y′)2

= c

1 + (y′)2 − (y′)2

√
y
√

1 + (y′)2
= c⇒ 1

√
y
√

1 + (y′)2
= c⇒ √y

√
1 + (y′)2 =

1

c
=
√
a (we defined

√
a =

1

c
)

y(1 + (y′)2) = a⇒ y′ =

√
a− y
y
⇒
√

y

a− y
dy = dx⇒

∫ x1

0

dx =

∫ y1

0

√
y

a− y
dy.
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Let y = a sin2 θ. Therefore, dy = 2 sin θ cos θdθ. Thus,

x =

∫ θ

0

√
a sin2 θ

a− a sin2 θ
2 sin θ cos θdθ =

∫ θ

0

sin θ

cos θ
2 sin θ cos θdθ = a

∫ θ

0

2 sin2 θdθ = a

∫ θ

0

(1−cos 2θ)dθ

x =
a

2
[2θ − sin 2θ].

Let a
2

= r, 2θ = φ,
x = r(φ− sinφ); y = r(1− cosφ),

which is a cycloid.{
0 = r(φ0 − sinφ0), 0 = r(1− cosφ0)⇒ φ0 = 0

x1 = r(φ1 − sinφ1), y1 = r(1− cosφ1) ⇒
x1=1.5,y1=1

φ1 = 3.0688, r = 0.50066.

syms x y
[ Sx , Sy ] = s o l v e ( x∗(y−s i n ( y ) ) = = 1 . 5 , x∗(1− cos ( y ) ) = = 1)
r=Sx ;
f o r phi =0 :0 . 01 : Sy

x=r ∗( phi−s i n ( phi ) ) ;
y=r∗(1− cos ( phi ) ) ;
p l o t (x,−y , ’ k . ’ )
hold on

end
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Problem 2: final time is specified but final state is free: determine scalar x?(t) in the class
of functions with continuous first derivative that is a local extremum of

J(x(t)) =

∫ tf

t0

g(x(t), ẋ, t)dt

and respects x(t0) = x0 and x(tf ) = xf for given and fixed t0, tf , x0 but free xf . �

To solve this problem we use the fundamental theorem of calculus, i.e, we look for functions x?(t)
that satisfy δJ(x?(t), δx(t)) = 0.

We start with

∆J(x(t), δx) =

∫ tf

t0

g(x(t) + δx(t), ẋ(t) + δẋ(t), t)dt−
∫ tf

t0

g(x(t), ẋ, t)dt.

with manipulations similar to those use in Problem 1, we can show that the variation for this
problem is

δJ(x(t), δx)=

∫ tf

t0

{∂g
∂x

(x(t), ẋ(t), t)− d

dt
[
∂g

∂ẋ
(x(t), ẋ(t), t)]

}
δx dt+

(∂g
∂ẋ

(x(t), ẋ(t), t)δx
)tf
t0

=

∂g

∂ẋ
(x(tf ), ẋ(tf ), tf )δx(tf ) +

∫ tf

t0

{∂g
∂x

(x(t), ẋ(t), t)− d

dt
[
∂g

∂ẋ
(x(t), ẋ(t), t)]

}
δx dt.

Here, we used δx(t0) = 0 because x(t0) = x0 is given and fixed. But because the final state is free,
we have δx(tf ) 6= 0. Invoking the fundamental theorem of calculus to characterize the extremal
functions, for first order optimality condition we should have δJ(x?(t), δx) = 0 for any variation δx
and δx(tf ). Then, using the fundamental lemma of calculus of variation (see page 126 of [1]), we
arrive at the following conclusion.

Final time is specified but final state is free

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

gẋ(x
?(tf ), ẋ

?(tf ), tf ) = 0
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Problem 2: example

∗ Find the shortest length smooth curve that connects a given point P = (x0, y0) on a plane to
another point Q = (xf , yf ) where xf is specified and given but yf is free to attain any value. Cost
function:

• Define the distance to be s, so, s =
∫

ds

• Therefore, s =
∫ √

(dx)2 + (dx)2 =
∫ √

1 + (dy
dx

)2 dx

• Take y as dependent variable, and x as independent variable, and Let dy
dx
→ ẏ

Optimization problem:

minimize J =

∫ xf

x0

√
1 + ẏ2dy −→ minimize J =

∫ xf

x0

g(ẏ)dy

First order necessary conditions are

∂g

∂y
(y?(t), ẏ?(t), t)− d

dt
[
∂g

∂ẏ
(y?(t), ẏ?(t), t)] = 0,

gẏ(y
?(xf ), ẏ

?(xf ), xf ) = 0

which gives the following first order necessary condition for this problem (here we have ∂g
∂y

= 0)

d

dt
[
∂g

∂ẏ
(y?(t), ẏ?(t), t)] = 0,

ẏ(xf )√
1 + ẏ(xf )2

= 0⇒ ẏ(xf ) = 0

we can solve the Euler equation similar to problem 1:

d

dx

(∂g
∂ẏ

)
=

d

dx

( ẏ√
1 + ẏ2

)
= 0
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The first order necessary condition for optimality is then

ẏ√
1 + ẏ2

= constant,

y(x0) = y0,

ẏ(xf ) = 0

From ẏ√
1+ẏ2

= constant we can deduce that ẏ(x) = c1 = constant for x ∈ [x0, xf ]. From the

boundary condition ẏ(xf ) = 0 we obtain that c1 = 0. Therefore, we obtain

ẏ = 0⇒ y(x) = c2

We conclude that the shortest path is the line y(x) = c2. For given initial condition y(x0) = y0, we
obtain c2 = y0.

The shortest path connecting two points P and Q where yf is free is the straight horizontal line
y(x) = y0, x ∈ [x0, xf ]. �
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Problem 3: both final time tf and x(tf ) are free

(photo courtesy of [1])

δx(tf ) = x(tf )− x?(tf ) 6= 0, δtf 6= 0,

δxf = x(tf + δtf )− x?(tf ) 6= 0,

δxf 6= δx(tf ),

δxf ≈ δx(tf ) + ẋ?(tf )δtf

The variation in this problem is

δJ(x(t), δx) =

∫ tf

t0

{
(
gx −

d

dt
gẋ
)
· δx(t)}dt+ gẋ(x(tf ), ẋ(tf ), tf ) · δx(tf ) + g(x(tf ), ẋ(tf ), tf )δtf

Next, substitute δx(tf ) = δxf − ẋ?(tf )δtf , in δJ(x(t), δx) to obtain

δJ(x(t), δx) =

∫ tf

t0

(
gx −

dgẋ
dt

)
·δx(t)dt+ gẋ(x(tf), ẋ(tf),tf ) · δxf

+
(
g(x(tf ), ẋ(tf),tf )− gẋ(x(tf), ẋ(tf ), tf ) · ẋ?(tf )

)
δtf = 0

Any extremum x?(t) should satisfy the following

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0,

x?(t0) = x0,

depending on the relationship between x(tf ) and tf , different set of terminal boundary con-
ditions are obtained

1. Unrelated

2. related by x(tf ) = Θ(t)

3. constrained relationship m(x(tf ), tf ) = 0
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Problem 3-1: both final time tf and x(tf ) are free and unrelated

In this case δxf 6= 0 and δtf 6= 0 are independent from each other. Therefore the variation is

δJ(x(t), δx) =

∫ tf

t0

(
gx −

dgẋ
dt

)
·δx(t)dt+ gẋ(x

?(tf ), ẋ
?(tf ), tf ) · δxf

+
(
g(x?(tf ), ẋ

?(tf ), tf )− gẋ(x?(tf ), ẋ?(tf ), tf ) · ẋ?(tf )
)
δtf = 0

Using the Fundamental Theorem of Calculus of Variation then the first order necessary conditions
for optimality are (based on free variation for δx(t), δxf and δtf )

Final time tf and x(tf ) are free and unrelated

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

gẋ(x
?(tf ), ẋ

?(tf ), tf ) = 0,

g(x?(tf ), ẋ
?(tf ), tf )− gẋ(x?(tf ), ẋ?(tf ), tf ) · ẋ?(tf ) = 0.
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Problem 3-2: final time tf and x(tf ) are free but related as x(tf ) = Θ(tf )

In this case δxf 6= 0 and δtf 6= 0 but we have

δxf =
dΘ

dt
δtf

Substituting this relation in the variation equation below for free final time and free final state

δJ(x(t), δx) =

∫ tf

t0

(
gx −

dgẋ
dt

)
· δx(t)dt+ gẋ(x

?(tf ), ẋ
?(tf ), tf ) · δxf

+
(
g(x?(tf ), ẋ

?(tf ), tf )− gẋ(x?(tf ), ẋ?(tf ), tf ) · ẋ?(tf )
)
δtf = 0

we obtain

δJ(x(t), δx) =

∫ tf

t0

(
gx −

dgẋ
dt

)
· δx(t)dt+(

gẋ(x
?(tf ), ẋ

?(tf ), tf ) ·
[dΘ

dt

∣∣∣
tf
− ẋ?(tf )

]
+ g(x?(tf ), ẋ

?(tf ), tf )
)
δtf = 0

Here, we used δx(t0) = 0 because x(t0) = x0 is given and fixed. But because the final time is
free, we have δtf 6= 0. Invoking the fundamental theorem of calculus to characterize the extremal
functions, for first order optimality condition we should have δJ(x?(t), δx) = 0 for any variation δx
and δtf . Then, using the fundamental lemma of calculus of variation (see page 126 of [1]), we arrive
at the following conclusion.

Final time tf and x(tf ) are free but related as x(tf ) = Θ(tf )

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

x?(tf ) = Θ(tf ),

gẋ(x
?(tf ), ẋ

?(tf ), tf ) ·
[dΘ

dt

∣∣∣
tf
− ẋ?(tf )

]
+ g(x?(tf ), ẋ

?(tf ), tf ) = 0, (Transversality condition).



Solmaz Kia MAE 274 MAE, UCI

Problem 3-2: example

∗ Find the shortest length smooth curve that connects a given point P = (x0 = 0, y0 = 0) to a
point Q = (xf , yf ) on the surface Θ(x) = −5x+ 15, i.e., yf = −5xf + 15.

The optimization problem in this case is Optimization problem:

minimize J =

∫ xf

x0

√
1 + ẏ2dy −→ minimize J =

∫ xf

x0

g(ẏ)dy, s.t.

yf = −5xf + 15

Θ(x) = −5x+ 15⇒ dΘ(x)

x
= −5

First order necessary conditions:

• Since g(y, ẏ, t) = g(ẏ) is only a function of ẏ, Euler equation reduces to

d

dx

(∂g
∂ẏ

)
=

d

dx

( ẏ√
1 + ẏ2

)
= 0

which after differentiating and simplifying, gives the answer as a straight line

y?(x) = c1x
? + c2

but since y(0) = 0, then c2 = 0.

• Transversality condition gives( ẏ?(x?f )√
1 + ẏ?(x?f )

2

)
(−5− ẏ?(x?f )) + (

√
1 + ẏ?(x?f )

2) = 0

which simplifies to

(ẏ?(x?f ))(−5− ẏ?(x?f )) + (1 + ẏ?(x?f )
2) = −5ẏ?(x?f ) + 1 = 0.

Therefore ẏ?(x?f ) = c1 = 1/5. The solution is then

y?(x) =
1

5
x?, x ∈ [x0, xf ]

Not a surprise, as this gives the slope of a line orthogonal to the constraint line.

• To find the final x?f we use

y?(x?f ) =
1

5
x?f ,

y?f = Θ?(x?f ) = −5x?f + 15,

which gives x?f ≈ 2.88. Then, the point is Q = (2.88, 2.88
5

).
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The shortest path connecting point P = (0, 0) to surface Θ(x) = −5x + 15 is the straight line
y(x) = 1

5
x, x ∈ [0, 2.88, ]. This line is orthogonal to the surface (x). The contact point on the

surface is Q = (2.88, 2.88
5

). �

Next consider the case that the terminal surface is

Θ(x) =
1

2
((x− 5)2 − 1).

In this case we have
dΘ(x)

x
= x− 5.

First order optimality conditions:

• The Euler equation and the initial condition y(0) = 0 still gives

y?(x) = c1x
?, x ∈ [0, xf ]

• Transversality condition here gives( ẏ?(x?f )√
1 + ẏ?(x?f )

2

)
(x?f − 5− ẏ?(x?f )) + (

√
1 + ẏ?(x?f )

2) = 0

which simplifies to

(ẏ?(x?f ))(x
?
f − 5− ẏ?(x?f )) + (1 + ẏ?(x?f )

2) = c1(x?f − 5) + 1 = 0.

Which gives

c1 = − 1

x?f − 5

as a result

y?(x) = − 1

x?f − 5
x?, x ∈ [0, xf ]

• Now consider y?(x) and Θ(x) at x?f{
y?(x?f ) = − 1

x?f−5
x?f ,

y?(x?f ) = Θ(x?f ) = 1
2
((x?f − 5)2 − 1)

−
x?f

x?f − 5
=

1

2
((x?f − 5)2 − 1),

which gives x?f = 3. As a result c1 = 1
2

and

y?(x) =
1

2
x?, x ∈ [0, xf ]
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The shortest path connecting point P = (0, 0) to surface Θ(x) = 1
2
((x− 5)2− 1) is the straight line

y(x) = 1
2
x, x ∈ [0, 3]. This line is orthogonal to the surface (x) (how would you check this). The

contact point on the surface is Q = (3, 3
2
). �
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Problem 4: free final time but fixed and pre-specified final state

(photo courtesy of [1])

tf is unknown.

δx(tf ) is neither zero or free, it depends on δtf 6= 0 However,
in this case δxf = x(tf + δtf )− x?(tf ) = 0

δx(tf ) + ẋ(tf )δtf = 0 (see the fig)

δx(tf ) = −ẋ(tf )δtf , δtf 6= 0

The variation in this case is

δJ(x(t), δx) =

∫ tf

t0

{
(
gx −

d

dt
gẋ
)
· δx(t)} dt+

(
g(x(tf ), ẋ(tf ), tf )− gẋ(x(tf ), ẋ(tf ), tf ) · ẋ(tf )

)
δtf = 0

Here, we used δx(t0) = 0 because x(t0) = x0 is given and fixed. But because the final time is
free, we have δtf 6= 0. Invoking the fundamental theorem of calculus to characterize the extremal
functions, for first order optimality condition we should have δJ(x?(t), δx) = 0 for any variation δx
and δtf . Then, using the fundamental lemma of calculus of variation (see page 126 of [1]), we arrive
at the following conclusion.

Free final time tf but fixed and pre-specified final state x(tf )

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

x?(tf ) = xf ,

g(x?(tf ), ẋ
?(tf ), tf )− gẋ(x?(tf ), ẋ?(tf ), tf ) · ẋ?(tf ) = 0.
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5.3.2 Piecewise-smooth extremals

So far we focused on admissible x(t) that are continuous with continuous first first derivatives. We
want to expand to class if piecewise-smooth admissible functions. Some reasons for expanding to
this class of admissible curves are

• control input is no smooth (e.g., subject to nonlinearities)

• intermediate state constraints are imposed (e.g., we want to go from a point at t0 to another
point in tf while minimizing our cost but we want to touch a point on a constraint surface in
between [t0, tf ], i.e., x(t1) = θ(t1), t1 ∈ [t0, tf ]).

Problem: determine vector function x?(t) in the class of functions with piecewise-continuous first
derivative that is a local extremum of

J(x(t)) =

∫ tf

t0

g(x(t), ẋ, t)dt

and respects x(t0) = x0 ∈ Rn for given and fixed t0, x0, tf and x(tf ). �

In the following developments we assume that there is only one corner between [t0, tf ]. Expansion
to include more corners is explained later.

• Assume ẋ has a discontinuity at t1 ∈ (t0, tf ), where t1 is not fixed (or known)

J(x(t)) =

∫ tf

t0

g(x(t), ẋ, t)dt =

∫ t1

t0

g(x(t), ẋ, t)dt︸ ︷︷ ︸
J1

+

∫ tf

t1

g(x(t), ẋ, t)dt︸ ︷︷ ︸
J2

.

• Do as before
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δJ =δJ1 + δJ2 =∫ t1

t0

(
∂g

∂x
δx+

∂g

∂ẋ
δẋ)dt+ g(t−1 )δt1+∫ tf

t1

(
∂g

∂x
δx+

∂g

∂ẋ
δẋ)dt− g(t+1 )δt1

IBP:

δJ = δJ1 + δJ2 =∫ t1

t0

(∂g
∂x

+
d

dt

∂g

∂ẋ

)
δxdt+

(
g(t−1 )−gẋ(t−1 )ẋ(t−1 )

)
δt1+gẋ(t

−
1 )δx1+∫ t1

t0

(∂g
∂x

+
d

dt

∂g

∂ẋ

)
δxdt+

(
g(t+1 )−gẋ(t+1 )ẋ(t+1 )

)
δt1+gẋ(t

+
1 )δx1

(photo courtesy of [1])

ẋ(t−1 ) 6=ẋ(t+1 ),

from left side: δx1 ≈δx(t−1 ) + ẋ(t−1 )δt1,⇒
δx(t−1 ) =ẋ(t−1 )δt1 − δx1,

from right side: δx1 ≈δx(t+1 ) + ẋ(t+1 )δt1,⇒
δx(t+1 ) =ẋ(t+1 )δt1 − δx1

−−−−−−−−−−−−−−

For problem with non-smooth class of admissible curves defined above (only one corner), the fol-
lowing equations characterize its extremals:

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

x?(tf ) = xf ,

g(t−1 )−gẋ(t−1 )ẋ(t−1 ) = g(t+1 )−gẋ(t+1 )ẋ(t+1 ),
gẋ(t

−
1 ) = gẋ(t

+
1 ),

}
Weierstrass-Erdmann conditions.

• For several corners, there are a set of Weierstrass-Erdmann conditions for each corner.

−−−−−−−−−−−−−−

When the corner point is not free, instead it is required to satisfy an intermediate time constraint
of the form x(t1) = θ(t1), δx1 and δt1 are not independent. In this case we use

δx1 =
dθ

dt
δt1 = θ̇δt1,

to write the variation δJ in terms of independent variations δx and δt1 as follows

δJ = δJ1 + δJ2 =∫ t1

t0

(∂g
∂x

+
d

dt

∂g

∂ẋ

)
δxdt+

(
g(t−1 )−gẋ(t−1 )ẋ(t−1 ) + gẋ(t

−
1 )θ̇(t−1 )

)
δt1+∫ t1

t0

(∂g
∂x

+
d

dt

∂g

∂ẋ

)
δxdt+

(
g(t+1 )−gẋ(t+1 )ẋ(t+1 ) + gẋ(t

+
1 )θ̇(t+1 )

)
δt1
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Then the necessary conditions for the extremal is

−−−−−−−−−−−−−−

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0, (Euler equation)

x?(t0) = x0,

x?(tf ) = xf ,

g(t−1 ) + gẋ(t
−
1 )(θ̇)(t−1 )− ẋ(t−1 )) = g(t+1 ) + gẋ(t

+
1 )(θ̇(t+1 )− ẋ(t+1 )),

x(t1) = θ(t1)

• For several corners, there are a set of the last two conditions for each corner.

−−−−−−−−−−−−−−

Example: find the shortest path that connects x(−2) = 0 to x(1) = 0 and touches the curve

x(t) = t2 + 3.

The shortest path cost function is

J =

∫ 1

−2

√
1 + ẋ2dt.

Because of the constraint that requires our curve to touch a constraint surface in an intermediate
time, we allow our admissible curves x(t) to have one corner at time t1. The conditions for the
extremal are

∂g

∂x
(x?(t), ẋ?(t), t)− d

dt
[
∂g

∂ẋ
(x?(t), ẋ?(t), t)] = 0,→

{
left segment: x?(t) = c11 + c12 t, t ∈ [−2, t−1 ]

right segment: x?(t) = c21 + c22 t, t ∈ [t+1 , 1]

x?(−2) = 0,→ c11 + c12(−2) = 0,

x?(tf ) = xf ,→ c21 + c22(1) = 0,

g(t−1 )+gẋ(t−1 )(θ̇)(t−1 )− ẋ(t−1 ))=g(t+1 ) + gẋ(t+1 )(θ̇(t+1 )−ẋ(t+1 ))→ (1 + ẋ2(t−1 ))1/2 +
ẋ?(t−1 )

(1 + ẋ2(t−1 ))1/2
(2t−1 − ẋ(t−1 )) =

(1 + ẋ2(t+1 ))1/2 +
ẋ?(t+1 )

(1 + ẋ2(t+1 ))1/2
(2t+1 − ẋ(t+1 )),

x(t1) = θ(t1)→

{
c11 + c12t1 = t21 + 3, t ∈ [−2, t−1 ],

c21 + c22t1 = t21 + 3, t ∈ [t+1 , 1].

The equations to solve are
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c11 − 2 c12 = 0,

c21 + c22 = 0,

c11 + c12t1 = t21 + 3,

c11 + c12t1 = t21 + 3,

1 + 2c12t1
(1 + c2

12)1/2
=

1 + 2c22t1
(1 + c2

22)1/2
.

Using Matlab ‘fsolve’ command you can
solve these equations to obtain

c11 = 3.0947, c12 = 1.5474, c21 = 2.8362, c22 = −2.8362, t1 = −0.0590. �

t

-3 -2 -1 0 1 2 3

x

-2

0

2

4

6

8

10

12

Matlab code

func t i on F=myfunc ( x ) ; %
% x=[c11 c12 c21 c22 t1 ] ; %
F=[x(1)−2∗x ( 2 ) ;
x(3)+x ( 4 ) ;
x(1)+x (2)∗ x (5 ) −(x (5)ˆ2+3) ;
x(3)+x (4)∗ x (5 ) −(x (5)ˆ2+3) ;
(1+2∗x (2)∗ x (5))/(1+ x (2 )ˆ2 )ˆ (1/2 ) −(1+2∗x (4)∗ x (5))/(1+ x ( 4 ) ˆ 2 ) ˆ ( 1 / 2 ) ] ;
r e turn %
x = f s o l v e ( ‘ myfunc ’ , [ 2 1 2 −2 0 ] ’ )



Note 6

Optimal Control of Continuous-time
systems

The treatment corresponds to selected parts from Chapter 5 [1]. The presentation is at times informal.

For rigorous treatments, students should consult the aforementioned references and the other listed texts

in the class syllabus.

6.1 Optimal control for problems with no inequality con-
straint

Problem definition

u?(t)
∣∣∣
t∈[t0,tf ]

= argmin
u(t)∈U

(J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t))dt, s.t.

ẋ(t) = a(x(t), u(t), t),

x(t0), t0 is given,

m(x(tf ), tf ) = 0← when final state is constrained,

x(t) : R→ Rn, u(t) : R→ Rm, f : Rn × Rm × R→ Rn.

Hamiltonian H(x, u, p, t) = g(x(t), u(t), t) + p(t)>a(x(t), u(t), t),

• First order conditions for extremal solution

ṗ = −Hx, (n dimensional)

0 = Hu, (m dimensional)

ẋ = Hp : ẋ = a(x, u, t), (n dimensional)

• Boundary conditions

64
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• x(t0) = x0

• if tf free: ∂h
∂t

∣∣∣
tf

+H(tf ) = 0

• if xi(tf ) is fixed: xi(tf ) = xif

• if xi(tf ) is free: pi(tf)=
∂h
∂xi

(tf)

m(x(tf ), tf ) = 0

Let w(x(tf ), v, tf )=h(x(tf ),tf )+v>m(x(tf ),tf )

• x(t0) = x0

• since x(tf ) is not directly given we need p(tf ) = ∂w
∂x

(tf )

• if tf free: ∂w
∂t

∣∣∣
tf
+H(tf )=0 (disappears if tf known)

6.1.1 BVP4C Matlab package to solve optimal control problems

BVP4C package of Matlab solves problems of the form

ẏ = f(y, t,p), a ≤ t ≤ b, subject (6.1.1)

g(y(a),y(b)) = 0,

where y are the variables of interest, and p are extra variables in the problem that can also be
optimized. For technical details regarding the solution approach used by the BVP4C package
see https://www.mathworks.com/help/matlab/ref/bvp4c.html.

BVP4C package can be solved optimal control problems with the exception of free end time prob-
lems, because the time period t ∈ [a, b] should be specified in BVP4C. To use BVP4C, for problems
with unspecified time tf , we need to convert our optimal control problem of interest into the stan-
dard form (6.1.1) using some intermediate conversions described in
U. Ascher and R. D. Russell, “Reformulation of Boundary Value Problems into Standard Form”,
SIAM Review, Vol. 23, No. 2, 238-254, 1981.
The Key step is to rescale time so that

τ =
t

tf
,

so that τ ∈ [0, 1]; the assumption is that t0 = 0. The, since

dτ =
dt

tf
,

we obtain
d

dτ
= tf

d

dt
.

Next, we need to introduce a dummy state r that corresponds to tf with the trivial dynamics ṡ = 0,
and to replace all instances of tf in the boundary conditions with state s. Then the solver will peak
an appropriate constant for s = tf . The followings demonstrates the process.

t ∈ [0, tf ]→ τ ∈ [0, 1],

ẋ = a(x,u, t),→ x′ = tfa(x,u, tfτ)→ x′ = s a(x,u, s, τ)

ṗ = −Hx,→ p′ = −tfHx,→ p′ = −sHx,

Hu = 0.

For boundary conditions, any explicit instance of tf that appears at the boundary conditions should
be replaced by s(1). The terminal conditions should be evaluated at b = 1.

https://www.mathworks.com/help/matlab/ref/bvp4c.html
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6.1.2 Sample problems

Sample Problem 1: Consider the optimal control problem

J =minimize
1

2

∫ 1

0

(1

2
u2(t)− 2x(t)

)
dt, s.t.

ẋ = 2− u(t),

x(0) = 2.

• To find the optimal control we start by forming the Hamiltonian

H =
1

2
u2(t)− 2x(t) + p(t)(2− u(t)).

• Candidate optimal controls should satisfy the F.O.N.Cs below

ẋ = Hp = 2− u(t), x(0) = 2,

ṗ = −Hx = 2, p(1) = 0, (free terminal state; there is no terminal cost),

0 = Hu = u(t)− p(t).

• The co-state equation trivially yields,

p?(t) = 2 t− 2, t ∈ [0, 1]

• Then, the optimal control from Hu = u(t)− p(t) = 0 is obtained as

u?(t) = 2 t− 2, t ∈ [0, 1].

• Note that u? is indeed the candidate minimizer because Huu = 1 ≥ 0.

• Using the optimal control yields

ẋ = 2− (2 t− 2) = −2 t+ 4,

which given the initial condition x(0) = 2 yields

x?(t) = −t2 + 4 t+ 2, t ∈ [0, 1].

• This is a problem that the Hamiltonian has no explicit dependency on time t, therefore, we
expect that the Hamiltonian is a fixed value over t ∈ [0, 1] (see Section 6.2),

H =
1

2
u2(t)− 2x(t) + p(t)(2− u(t))

=
1

2
(2t− 2)2 + 2 t2 − 8t− 4− (2 t− 2)2 + 2(2 t− 2)

= − 6, t ∈ [0, 1].
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Sample Problem 2: Consider the second integrator system ÿ = u starting from rest at y(0) = 10.
Find the optimal control that drives this system to origin to stop while minimizing the cost

J =
1

2
αt2f +

1

2

∫ tf

0

bu2(t)dt.

-Solution

• State space representation and boundary conditions: x1 = y and x2 = ẏ so that

ẋ(t) = Ax(t) +Bu(t), A =

[
0 1
0 0

]
, B =

[
0
1

]
.

x1(0) = 10, x2(0) = 0 (start from rest)

x1(tf ) = 0, x2(tf ) = 0 (stops at the end)

free final time

• Write p(t) = [p1(t) p2(t)]>, to define the Hamiltonian:

H = g + p>a =
1

2
bu2 + p(t)>(Ax(t) +Bu(t))

• The necessary conditions for optimality

ṗ = −H>x →

{
ṗ1 = − ∂H

∂x1
= 0→ p1(t) = c1 t ∈ [0, tf ],

ṗ2 = − ∂H
∂x2

= 0→ p2(t) = c1t+ c2 t ∈ [0, tf ],

Hu = bu+ p2 = 0→ u = −p2

b
= −c2

b
+
c1

b
t

• Free final time boundary condition:

∂h

∂t
|tf +H(tf ) = αtf +

1

2
bu(tf )

2 + p1(tf )x2(tf ) + p2(tf )u(tf )

= αtf +
1

2
bu(tf )

2 + (−bu(tf ))u(tf )

= −1

2
bu(tf )

2 + αtf = 0→ tf =
1

2bα
(−c2 + c1tf )

2.

Here, we used Hu = bu+ p2 = 0 to write p2(tf ) = −bu(tf ), and also x2(tf ) = 0.

• Substituting the optimal control u = − c2
b

+ c1
b
t in the state equations we get

ẋ2(t) = −c2

b
+
c1

b
t→ x2(t) = c3 −

c2

b
t+

c1

2b
t2 →

x2(0)=0
c3 = 0

ẋ1(t) = −c2

b
t+

c1

2b
t2 → x1(t) = c4 −

c2

2b
t2 +

c1

6b
t3 →

x1(0)=10
c4 = 10
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• Using the final boundary conditions we obtain{
x2(tf ) = − c2

b
tf + c1

2b
t2f = 0

x1(t) = 10− c2
2b
t2f + c1

6b
t3f = 0

⇒ c2 =
60b

t2f
, c1 =

120b

t3f

• Substituting for c1 and c2 in the free final time boundary condition we obtain

tf =
1

2bα
(−c2 + c1tf )

2 =
1

2bα
(−60b

t2f
+

120b

t3f
tf )

2 =
(60b)2

2bαt4f
⇒ tf = (1800

b

α
)
1
5 ≈ 4.48(

b

α
)
1
5 .

• tf = 4.48( b
α

)
1
5 makes sense: α going up tf goes down.

• c2 = 2.99b3/5α2/5 and c1 = 1.33b2/5α3/5: u = −2.99b3/5α2/5

b
+ 1.33b2/5α3/5

b
t

Next we solve this problem numerically via Matlab’s

• The necessary conditions can be written as
ẋ = Ax +Bu,

ṗ = −A′p,
0 = bu+ [0 1]p

⇒

{
ẋ = Ax− 1

b
B[0 1]p,

ṗ = −A′p,

• Boundary conditions

x1(0) = 10

x2(0) = 0

x1(tf ) = 0

x2(tf ) = 0

− 0.5 b u(tf )
2 + α tf = 0

• Define the state of interest for the BVP4C as z = [x> p> r]> and note that

dz

dτ
=


d z1
dτ
d z2
dτ
d z3
dτ
d z4
dτ
d z5
dτ

 = z5

A −1
b
B[0 1] 0

0 −A> 0
0 0 0

 z

⇒ z′ = f(z) (nonlinear function)

with boundary conditions

z1(0) = 10,

z2(0) = 0,

z1(1) = 0,

z2(1) = 0,

−0.5

b
z4(1)2 + α z5(1) = 0.

Notice at that in the boundary condition −0.5 b u(tf )
2 + α tf = 0, the explicit incidence of tf

is replaced by z5(1).
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• The code to solve this problem is given next

– the code gives the numerical solution and compares it to the closed-form analytic solu-
tions

• Main code (courtesy of [6])

c l c
c l e a r a l l
b=0.1 ;
%alp =[ .05 . 1 1 10 2 0 ] ;
a lp=logspace (−2 ,2 ,10) ;
t = [ ] ;
f o r alpha=alp
m=TPBVP(b , alpha ) ;
t =[ t ;m(1 , end ) ] ;
end

f i g u r e ( 1 ) ; c l f
semi logx ( alp , (1800∗b . / a lp ) . ˆ0 . 2 , ’ − ’ , ’ Linewidth ’ , 2 )
hold on ; semi logx ( alp , t , ’ rs ’ ) ; hold o f f
x l a b e l ( ’\ alpha ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’ t f ’ , ’ FontSize ’ , 1 2 )
legend ( ’ Analyt ic ’ , ’ Numerical ’ )
t i t l e ( ’ Comparison with b=0.1 ’)

% code from opt1 .m on the a n a l y t i c s o l u t i o n
b=0.1; alpha =0.1 ;
m=TPBVP(b , alpha ) ;
t f =(1800∗b/ alpha ) ˆ 0 . 2 ;
c1=120∗b/ t f ˆ3 ;
c2=60∗b/ t f ˆ2 ;
u=(−c2+c1∗m( 1 , : ) ) / b ;
A=[0 1 ;0 0 ] ;B=[0 1 ] ’ ;C=eye ( 2 ) ;D=ze ro s ( 2 , 1 ) ;G=ss (A,B,C,D) ; X0=[10 0 ] ’ ;
[ y3 , t3 ]= l s im (G, u ,m( 1 , : ) , X0 ) ;
f i g u r e ( 2 ) ; c l f
subplot (211)
p l o t (m( 1 , : ) , u , ’ g− ’ , ’ LineWidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’ u ( t ) ’ , ’ FontSize ’ , 1 2 )
hold on ; p l o t (m( 1 , : ) ,m(6 , : ) , ’ − − ’ ) ; hold o f f
subplot (212)
p l o t (m( 1 , : ) , abs (u−m( 6 , : ) ) , ’ − ’ )
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 )
y l a b e l ( ’ u {Analyt ic }( t)−U {Numerical } ’ , ’ FontSize ’ , 1 2 )
legend ( ’ Analyt ic ’ , ’ Numerical ’ )
f i g u r e ( 3 ) ; c l f
subplot (221)
p l o t (m( 1 , : ) , y3 ( : , 1 ) , ’ c− ’ , ’ LineWidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’X( t ) ’ , ’ FontSize ’ , 1 2 )
hold on ; p l o t (m( 1 , : ) ,m( [ 2 ] , : ) , ’ k−− ’); hold o f f
l egend ( ’ Analyt ic ’ , ’ Numerical ’ )
subplot (222)
p l o t (m( 1 , : ) , y3 ( : , 2 ) , ’ c− ’ , ’ LineWidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’dX( t )/ dt ’ , ’ FontSize ’ , 1 2 )
hold on ; p l o t (m( 1 , : ) ,m( [ 3 ] , : ) , ’ k−− ’); hold o f f
l egend ( ’ Analyt ic ’ , ’ Numerical ’ )
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subplot (223)
p l o t (m( 1 , : ) , abs ( y3 ( : ,1)−m( 2 , : ) ’ ) , ’ k− ’)
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’ Error ’ , ’ FontSize ’ , 1 2 )
subplot (224)
p l o t (m( 1 , : ) , abs ( y3 ( : ,2)−m( 3 , : ) ’ ) , ’ k− ’)
x l a b e l ( ’ Time ’ , ’ FontSize ’ , 1 2 ) ; y l a b e l ( ’ Error ’ , ’ FontSize ’ , 1 2 )

• Functions

– TPBVPbc

func t i on r e s=TPBVPbc( ya , yb )

g l o b a l A B x0 b alp
r e s =[ya(1)−x0 ( 1 ) ; ya(2)−x0 ( 2 ) ; yb ( 1 ) ; yb (2) ; −0 .5∗yb (4)ˆ2/ b+alp ∗yb ( 5 ) ] ;

– TPBVPode

func t i on dydt=TPBVPode( t , y )

g l o b a l A B x0 b alp

dydt=y ( 5 ) ∗ [ A −B∗ [ 0 1 ] / b z e ro s ( 2 , 1 ) ; z e r o s (2 , 2 ) −A’ ze ro s ( 2 , 1 ) ; z e r o s ( 1 , 5 ) ] ∗ y ;

– TPBVPinit

func t i on v=TPBVPinit ( t )
g l o b a l A B x0 b alp
v=[x0 ; 1 ; 0 ; 1 ] ;
r e turn

– TPBVP

func t i on m = TPBVP( p1 , p2 )

g l o b a l A B x0 b alp ;

A=[0 1 ;0 0 ] ;
B=[0 1 ] ’ ;
x0=[10 0 ] ’ ;
b=p1 ;
a lp=p2 ;
s o l i n i t = bvp in i t ( l i n s p a c e ( 0 , 1 ) , @TPBVPinit ) ;

s o l = bvp4c (@TPBVPode,@TPBVPbc, s o l i n i t ) ;

time = s o l . y (5)∗ s o l . x ;

s t a t e = s o l . y ( [ 1 2 ] , : ) ;
a d j o i n t = s o l . y ( [ 3 4 ] , : ) ;
c o n t r o l = −(1/b)∗ s o l . y ( 4 , : ) ;
m( 1 , : ) = time ;
m( [ 2 3 ] , : ) = s t a t e ;
m( [ 4 5 ] , : ) = a d j o i n t ;
m( 6 , : ) = c o n t r o l ;
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6.2 Properties of the Hamiltonian

The following properties hold for optimal control problems with and without inequality constraints.

Recall that the Hamiltonian is defined as

H = g(x(t), u(t), t)) + p(t)>a(x(t), u(t), t)

• If g(x, u) and a(x, u) do not explicitly depend on time t, then the Hamiltonian H is at least
piece-wise contract.

dH

dt
=
∂H

∂t
+ (

∂H

∂x
)
dx

dt
+ (

∂H

∂p
)
dp

dt
+ (

∂H

∂u
)
du

dt

dH

dt
= Hxẋ+Hpṗ+Huu̇

From F.O.N condition : ẋ = Hp and ṗ = −Hx, then

dH

dt
= Huu̇

• The third necessary condition is Hu = 0 so

dH

dt
= (0)u̇ = 0

which suggest H is constant

– It might be possible for the value of this constant to change at a discontinuity of u, since
then u̇ would be infinite, and 0.∞ is not defined.

– This H is at least piece-wise constant.

• For free final time problems, the transversality condition gives

ht +H(tf ) = 0

• If h is not function of time then ht = 0 and as a result H(tf ) = 0:

– with no jumps in u, H is constant: H(t) = 0 for all t ∈ [t0.tf ].
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6.3 Optimal control with inequality constraints

First consider an optimal control where the control inputs are constrained

u?(t) = arg min J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt, s.t.

ẋ = a(x(t), u(t), t), x(t0) = x0,

C(u, t) ≤ 0.

Suppose initial condition and final time are specified but final state is free.

• If we define H = g + p.a, then according to what we have learned so far, we have

δJ =

∫ tf

t0

(Huδu)dt, ṗ = −Hx, p(tf ) =
∂h

∂x
|t=tf .

• For u(t) to be minimizing, we must have δJ ≥ 0 for all t and all admissible δu(t).

• Hence, at all points on C(u, t) = 0, the optimal u has the property that

Huδu ≥ 0, δC = Cuδu ≤ 0.

• Another way of stating the condition above is that δH = Hu δu must be non-improving over
the set of possible δu(t).

• A much stronger statement, “ must be minimizing over the set of all possible ”, is true; this
compact statement is due to McShane (1939) and Pontryagin (1962) and is known as the
“Minimum Principle.”

Another approach to solve optimal control problems subject to inequality constraints (this time
assume the more general case of C(x, u, t) ≤ 0) is

• by studying minimizer of the augmented cost

Ja = h(x(tf ), tf ) +

∫ tf

t0

(
g(x(t), u(t), t) + p(t).(a(x(t), u(t), t)− ẋ) + v(t).C(x(t), u(t), t)

)
dt,

where

vi(t) =

{
0 if C(x, u, t) < 0,

≥ 0 if C(x, u, t) = 0,

so that viCi = 0 for all i ∈ {1, · · · ,m}, where m is the number of inequality constraints. We
note that if v is allowed to be negative, the Ja will decrease if the inequality constraint is
violated. Non-negative vi penalizes violation of inequality Ci ≤ 0. When at any time t any of
the inequality constraint Ci is strictly satisfied, i.e., Ci < 0, the inequality is inactive and we
do not need to worry about whether δu(t) is admissible or not. Therefore, for such cases we
consider vi = 0.
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• Next, we find the variation of the augmented cost

Ja = hxδx(tf ) + htf δtf +

∫ tf

t0

(
(Hx + ṗ+ v.Cx).δx+ (Hu + v.Cu).δu+ (Hp − ẋ).δ + C.δv

)
dt,

• Define

Ha(x, u, p, v, t) = g + p(t).a︸ ︷︷ ︸
H(x,u,p,t)

+v(t).C, where vi(t) =

{
0 if C(x, u, t) < 0,

≥ 0 if C(x, u, t) = 0,

• Therefore, the necessary conditions for δJa = 0 for t ∈ [t0, tf ] are

ẋ =a(x, u, t),

ṗ =− (Ha)x,

0 =(Ha)u,

subject to appropriate boundary conditions and vi(t) =

{
0 if C(x, u, t) < 0,

≥ 0 if C(x, u, t) = 0,
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6.3.1 Sample examples

Example 1: Use first order necessary conditions to characterize a candidate optimal solution for
the problem below

minimize J = −
∫ 2

0

(2x− 3u)dt, s.t.,

ẋ = x+ u,

x(0) = 4, x(2) = free,

0 ≤ u ≤ 2.

Solution:

• Hamiltonian for this problem is

H = −(2x− 3u) + p(x+ u)

Then, we obtain{
ṗ = −Hx = 2− p,
p(tf ) = p(2) = ∂hterminal cost

∂x
|tf = 0

⇒ p(t) = −2 e2−t + 2, t ∈ [0, 2].

• To obtain optimal control, we use PMP{
u? = argmin H(x?, u, p?, t) = argmin (p? + 3)u,

0 ≤ u ≤ 2.

which gives us

u? =


2 p? + 3 < 0,

? p? + 3 = 0,

0 p? + 3 > 0

• Is singular arc possible, i.e., p? + 3 = 0 for some interval of time in [0, 2]?

To answer, we start by checking the trajectory of p(t), t ∈ [0, 2]
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Notice that p(0) = −12.778 and p(2) = 0, therefore, the trajectory will go through p(t1) = −3
at some time t1 ∈ (0, 2). Therefore, singular arc is not possible in this problem, and we can
write

u? =


2 p? < −3,

? p? = −3,

0 p? > −3

⇒ u? =

{
2 t ∈ [0, t1],

0 t ∈ (t1, 2].

In finalizing the optimal control we use p(0) = −12.7778 < −3 to decide that u?(t) = 2 for
t ∈ [0, t1]. The terminal condition p(2) = 0 > −3 also confirms that u?(t) = 0 for t ∈ (t1, 2].

• Therefore, the state trajectory is obtained from{
ẋ = x+ 2, t ∈ [0, t1],

ẋ = x+ 0, t ∈ (t1, 2].

x(0) = 4

• Results: switching time t1 = 2 − ln(5/2) = 1.0837, the control history and state trajectory
are shown in the plots below
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Example 2: bang-bang optimal control: Consider the second order integrator dynamics

ÿ = u, |u(t)| < 1.

Our objective is to drive this system from a given initial condition y(0), ẏ(0) ∈ R to y(tf ) = ẏ(tf ) =

0, in minimum time, i.e, find a control that minimizes J =
∫ tf

0
1dt.

Solution: System dynamics: x1 = y and x2 = ẏ: ẋ1 = x2, ẋ2 = u.
Drive this system from a given initial condition x1(0), x2(0) ∈ R to x1(tf ) = x2(tf ) = 0, in minimum
time

observation:

• if u = 1 for all t ∈ R≥0, the system response is

x2(t) = t+ c1 → x2(t) = (t+ x2(0)),

x1(t) =
1

2
(t+ x2(0))2 + c2 → x1(t) =

1

2
(t+ x2(0))2 + x1(0)− 1

2
x2(0)2,

therefore: x1(t) = 1
2
x2(t)2 + (x1(0)− 1

2
x2(0)2)

• if u = −1 for all t ∈ R≥0, the system response is

x2(t) = −t+ c1 → x2(t) = −(t− x2(0)),

x1(t) = −1

2
(t− x2(0))2 + c2 → x1(t) = −1

2
(t− x2(0))2 + x1(0) +

1

2
x2(0)2,

therefore: x1(t) = −1
2
x2(t)2 + (x1(0) + 1

2
x2(0)2)

Figure 9 shows the possible trajectories of the system based on given initial conditions and the
control that is used.

Figure 9: Possible response curves. Arrows show direction of the motion on
the curves.
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• Hamiltonian: H = 1 + p1x2 + p2u

• Co-state equations: {
ṗ1 = −Hx1 = 0 → p?1(t) = c1,

ṗ2 = −Hx2 = −p1 → p?2(t) = −c1t+ c2.
(6.3.1)

• Optimal control (PMP): u? = argmin
−1≤u≤1

(1 + p?1x
?
2 + p?2u) = argmin

−1≤u≤1
(p?2u), which gives

u?(t) =


−1 p?2 > 0

? p?2 = 0,

1 p?2 < 0

So the control depends on p?2, but because p2(t) = −c1t + c2 is a linear function of time,
p2(t) can only be zero at t = t1 and switching can happen only at one point in time t = t1:
bang-bang control. We show below that p2(t) cannot be zero over any finite interval of time

[t̄1, t̄2] ⊂ [0, tf ] (singular arc is not possible in this problem. Therefore, u?(t) =


−1 p?2 > 0

0 p?2 = 0,

1 p?2 < 0.

– Since ẋ2 = u, and since we must stop at tf , then we must have u = ±1 at tf .

• To complete the solution, next we impose the boundary conditions: transversality condition
along with x2(tf ) = 0 gives

H(tf ) + ht(tf ) = 0→ 1 + p1(tf )x2(tf ) + p2(tf )u(tf ) = 0→ 1 + p?2(tf )u
?(tf ) = 0→

p?2(tf ) = − 1

u?(tf )
.

– If u?(tf ) = 1 then we obtain p?2(tf ) = −1 < 0, which is consistent with the selection rule
for optimal control.

– If u?(tf ) = −1 then we obtain p?2(tf ) = 1 > 0, which is consistent with the selection rule
for optimal control.

So, the terminal conditions do not help us determine if u = 1 or u = −1 at tf because both
are possible.

• To solve the problem, we are going to consider a scenario and see if the solution validates our
scenario

– First, let us look at the case where u(tf ) = 1, which implies that p2(tf ) = −1. Let us
also assume that c1 > 0, which gives us a possible switching case similar to that shown
in Fig. 10.



Solmaz Kia MAE 274 MAE, UCI

Figure 10: Possible switching case, but tf and c1 are unknown at this point.

– Then setting p?2(t1) = c2 − c1t1 = 0 and p?2(tf ) = c2 − c1tf = −1 gives t1 = tf − 1
c1
.

– Now look at the state response

∗ During (t1, tf ] we have u(t) = 1, therefore using the boundary condition x1(tf ) =
x2(tf ) = 0, we obtain

ẋ2 = 1→ x2(t) = t+ c3 → x2(t) = t− tf

ẋ1 = x2 = t− tf → x1(t) =
1

2
(t− tf )2 + c4 → x1(t) =

1

2
(t− tf )2.

Therefore, during (t1, tf ], the states are on x1(t) = x2(t)2

2
in the phase plane. For

the scenario that we have considered (u(tf ) = 1), the response is in lower quadrant

of x1 − x2 plane (note here that from x1(t) = x2(t)2

2
you know x1 ≥ 0 and from

x2(t) = t− tf you know that x2(t) ≤ 0 during (t1, tf ]).

∗ During [0, t1] we have u(t) = −1, therefore using the given boundary conditions
x1(0), x2(t0), we obtain

ẋ2 = −1→ x2(t) = −t+ c5 → x2(t) = −t+ x2(0)

ẋ1 =x2 =−(t+x2(0))→ x1(t)=−1

2
(t−x2(0))2+c6 → x1(t)=−1

2
(t−x2(0))2+x1(0)+

1

2
x2(0)2.

Therefore, during [0, t1], the states are on x1(t) = −x2(t)2

2
+ x1(0) + 1

2
x2(0)2 in the

phase plane (Do you see how this curve correlates with the trajectories on Fig. 9?)

– We can validate our scenario by calculating t1, tf and c1 and checking if our expectations
of 0 < t1 < tf and c1 > 0 are correct. If the scenario is valid, we can show that

t1 = x2(0) +
√
x1(0) + 0.5x2(0)2 and tf = x2(0) + 2

√
x1(0) + 0.5x2(0)2.

Lets consider two examples:
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∗ First case is x1(0) = 4 and x2(0) = 0. The state trajectory at t1 is continuous
therefore,{
x2(t1)= t1 − tf ,
x2(t1)=−t1 + x2(0) = −t1,

→ t1 =
1

2
tf{

x1(t1)= 1
2
(t1 − tf )2,

x1(t1)=−1
2
(t1 − x2(0))2 + x1(0) + 1

2
x2(0)2 = −1

2
t21 + 4,

→ 1

2
(t1 − tf )2 = −1

2
t21 + 4.

Therefore, t1 = 2 and tf = 4. Next, we compute c1 from t1 = tf − 1
c1

, which gives
c1 = 0.5. Therefore, this scenario is valid scenario. That is

u? =

{
−1 t ∈ [0, 2],

1 t ∈ (2, 4].

On the phase plane, the system starts on the curve x1(t) = −x2(t)2

2
+ 4 and moves

on it until it hits x1(t) = x2(t)2

2
at t1. Then switches to move on curve x1(t) = x2(t)2

2

until it arrives at the origin. You can think of x1(t) = x2(t)2

2
as the switching curve,

see Fig. 11.

Figure 11: Optimal trajectory of the case of x1(0) = 4 and x2(0) = 0.

∗ Next case is defined by x1(0) = −4 and x2(0) = 0. The state trajectory at t1 is
continuous therefore,{
x2(t1)= t1 − tf ,
x2(t1)=−t1 + x2(0) = −t1,

→ t1 =
1

2
tf{

x1(t1)= 1
2
(t1 − tf )2,

x1(t1)=−1
2
(t1 − x2(0))2 + x1(0) + 1

2
x2(0)2 = −1

2
t21 − 4,

→ 1

2
(t1 − tf )2 = −1

2
t21 − 4.

Here, we get
tf
2

2
= −4, which shows that this scenario is not valid. Therefore, for

this case, we need to consider u(tf ) = −1 and repeat all the processes above to
find the valid optimal solution.
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• Next, let us look at the case where u(tf ) = −1, which implies that p2(tf ) = 1, and also c1 < 0,
which gives us a possible switching case similar to that shown in Fig. 12.

Figure 12: Possible switching case, but tf and c1 are unknown at this point.

• Then setting p2(t1) = c2 − c1t1 = 0 and p2(tf ) = c2 − c1tf = 1 gives t1 = tf + 1
c1
.

• Now look at the state response

– During (t1, tf ] we have u(t) = −1, therefore using the boundary condition x1(tf ) =
x2(tf ) = 0, we obtain

ẋ2 = −1→ x2(t) = −t+ c3 → x2(t) = −(t− tf )

ẋ1 = x2 = −(t− tf )→ x1(t) = −1

2
(t− tf )2 + c4 → x1(t) = −1

2
(t− tf )2.

Therefore, during (t1, tf ], the states are on x1(t) = −x2(t)2

2
in the phase plane. For the

scenario that we have considered (u(tf ) = −1), the response is in upper left quadrant

of x1 − x2 plane (note here that from x1(t) = −x2(t)2

2
you know x1 ≤ 0 and from

x2(t) = −(t− tf ) you know that x2(t) ≥ 0 during (t1, tf ]).

– During [0, t1] we have u(t) = 1, therefore using the given boundary conditions x1(0), x2(t0),
we obtain

ẋ2 = 1→ x2(t) = t+ c5 → x2(t) = t+ x2(0)

ẋ1 =x2 =(t+x2(0))→ x1(t)=
1

2
(t+x2(0))2 +c6 → x1(t)=−1

2
(t+x2(0))2 +x1(0)− 1

2
x2(0)2.

Therefore, during [t0, t1], the states are on x1(t) = −x2(t)2

2
+ x1(0)− 1

2
x2(0)2 in the

phase plane (Do you see how this curve correlates with the trajectories on Fig. 9?)
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• We can validate our scenario by calculating t1, t2, tf and c1 and checking if our expectations
of 0 ≤ t1 ≤ t2 ≤ tf and c1 > 0 are correct. If the scenario is valid, we can show that

t1 = x2(0) +
√
x1(0) + 0.5x2(0)2 and tf = x2(0) + 2

√
x1(0) + 0.5x2(0)2.

Lets consider two examples:

– First case is x1(0) = 4 and x2(0) = 1. The state trajectory at t1 is continuous therefore,{
x2(t1)= −(t1 − tf ),
x2(t1)= t1 + x2(0) = t1,

→ t1 =
1

2
tf{

x1(t1)=−1
2
(t1 − tf )2,

x1(t1)= 1
2
(t1 + x2(0))2 + x1(0)− 1

2
x2(0)2 = 1

2
t21 + 4,

→−1

2
(t1 − tf )2 =

1

2
t21 + 4.

Then, we obtain −1
2
(
tf
2

)2 = 1
2
(
tf
2

)2 +4, which shows that this case is not a valid scenario.
Therefore, for this case, we need to consider u(tf ) = 1 and repeat all the processes above
to find the valid optimal solution (as we saw earlier).

– Next case is defined by x1(0) = −4 and x2(0) = 0. The state trajectory at t1 is
continuous therefore,{

x2(t1)=−(t1 − tf ),
x2(t1)= t1 + x2(0) = t1,

→ t1 =
1

2
tf{

x1(t1)=−1
2
(t1 − tf )2,

x1(t1)= 1
2
(t1 + x2(0))2 + x1(0)− 1

2
x2(0)2 = 1

2
t21 − 4,

→−1

2
(t1 − tf )2 =

1

2
t21 − 4.

Therefore, t1 = 2 and tf = 4. Next, we compute c1 from t1 = tf + 1
c1

, which gives
c1 = −0.5. Therefore, this scenario is a valid scenario. That is

u? =

{
1 t ∈ [0, 2],

−1 t ∈ (2, 4].

On the phase plane, the system starts on the curve x1(t) = x2(t)2

2
− 4 and moves on it

until it hits x1(t) = −x2(t)2

2
at t1. Then it switches to move on curve x1(t) = −x2(t)2

2

until it arrives at the origin. You can think of x1(t) = −x2(t)2

2
as the switching curve,

see Fig. 13.

• State-based switching law: based on all the discussions above, we can conclude that here,
the optimal control law may be written as

u?(t) =

{
+1 if x2

2 sgn(x2) < −2x1 or
(
x2

2 sgn(x2) = −2x1, x1 > 0
)
,

−1 if x2
2 sgn(x2) > −2x1 or

(
x2

2 sgn(x2) = −2x1, x1 < 0
)
,
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Figure 13: Optimal trajectory of the case of x1(0) = −4 and x2(0) = 0.

• Ruling out singular intervals: recall that from the PMP we concluded that u? = argmin
−1≤u≤1

(1+

p1x2 + p2u) = argmin
−1≤u≤1

(p2u), which gives

u?(t) =


−1 p2 > 0

? p2 = 0.

1 p2 < 0

We show next that P2(t) cannot be zero over any finite interval of time [t̄1, t̄2] ⊂ [0, tf ]. Recall
the co-state equations in (6.3.1). We note that for p?2(t) to be zero over [t̄1, t̄2], it is necessary
that

c1 = 0, c2 = 0,

which means that p?1(t) = 0 and also p?2(t) = 0 for t ∈ [0, tf ]. Substituting in the Hamiltonian,
we obtain

H(x?(t), p?(t), u?(t)) = 1, ∀t ∈ [0, tf ]. (6.3.2)

But since the final time is free and H is explicitly independent of time, (6.3.2) violates the
necessary condition that (review the properties of the Hamiltonian in Section 6.2)

H(x?(t), p?(t), u?(t)) = 0, ∀t ∈ [0, tf ]. (6.3.3)

We conclude that p?2(t) cannot be zero over any finite interval of time and, thus, the singular
interval cannot exists.
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Example 3: bang-off-bang optimal control: Consider the second order integrator dynamics

ÿ = u, |u(t)| < 1.

Our objective is to drive this system from a given initial condition y(0), ẏ(0) ∈ R to y(tf ) = ẏ(tf ) =
0, in minimum time, i.e, find a control that minimizes

J =

∫ tf

0

(1 + b|u|)dt, b > 0.

Solution: System dynamics: x1 = y and x2 = ẏ: ẋ1 = x2, ẋ2 = u.
Drive this system from a given initial condition x1(0), x2(0) ∈ R to x1(tf ) = x2(tf ) = 0, in minimum
time.

• Hamiltonian: H = 1 + b |u|+ p1 x2 + p2 u

• Co-state equations: {
ṗ1 = −Hx1 = 0 → p?1(t) = c1,

ṗ2 = −Hx2 = −p1 → p?2(t) = −c1t+ c2.
(6.3.4)

• Optimal control (PMP): u? = argmin
−1≤u≤1

(1 + b |u|+ p?1 x
?
2 + p?2 u) = argmin

−1≤u≤1

{
bu+ p?2 u u ≥ 0,

−bu+ p?2 u u ≤ 0,
,

which gives

u?(t) =



−1 p?2 > b

0 −b < p?2 < b,

1 p?2 < −b,
undetermined, but ≥ 0 p?2 = −b,
undetermined, but ≤ 0 p?2 = b.

• Ruling out singular intervals: we show that p2(t) cannot be ±b over any finite interval of
time [t̄1, t̄2] ⊂ [0, tf ]. Recall the co-state equations in (6.3.4). We note that for p?2(t) to be ±b
over [t̄1, t̄2], it is necessary that

c1 = 0,

and
c2 = ±b,

which means that p?1(t) = 0 and also p?2(t) = ±b for t ∈ [0, tf ]. Substituting in the Hamiltonian,
we obtain

H(x?(t), p?(t), u?(t)) = 1, ∀t ∈ [0, tf ]. (6.3.5)

But since the final time is free and H is explicitly independent of time, (6.3.5) violates the
necessary condition that (review the properties of the Hamiltonian in Section 6.2)

H(x?(t), p?(t), u?(t)) = 0, ∀t ∈ [0, tf ]. (6.3.6)

We conclude that p?2(t) cannot be ±b over any finite interval of time and, thus, the singular
interval cannot exists.
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• Next, observe that the optimal control cannot include u?(t) = 0 for [t̄, tf ], for t̄ ≥ 0. That
is optimal control cannot end with an interval of time of u = 0 because the system does not
move to the origin with no control applied.

• Give the observations above, and since the control depends on p?2 = −c1t+c2, which is a linear
function of time, The possibilities for optimal control depending on the initial condition of
the problem are

– Case 1: u?(t) =


−1 t ∈ [0, t1),

0 t ∈ [t1, t2),

1 t ∈ [t2, tf ],

for 0 < t1 < t2 < tf . Here, u?(tf ) = 1, which implies

that p?2(tf ) = −(1 + b) and c1 > 0, with a possible switching case similar to that shown
in Fig. 14.

Figure 14: Possible switching case, but tf and c1 are unknown at this point
(Case 1).

– Case 2: u?(t) =

{
0 t ∈ [0, t1),

1 t ∈ [t1, tf ],
for 0 < t1 < tf . Here, u?(tf ) = 1, which implies that

p?2(tf ) = −(1 + b) and c1 > 0.

– Case 3: u?(t) =


1 t ∈ [0, t1),

0 t ∈ [t1, t2),

−1 t ∈ [t2, tf ],

for 0 < t1 < t2 < tf . Here, u?(tf ) = −1, which

implies that p?2(tf ) = (1 + b) and c1 < 0 with a possible switching case similar to that
shown in Fig. 15.

– Case 4:u?(t) =

{
0 t ∈ [0, t1),

−1 t ∈ [t1, tf ],
for 0 < t1 < tf . Here, u?(tf ) = −1, which implies

that p?2(tf ) = b + 1 and c1 < 0, with a possible switching case similar to that shown in
Fig. 16.
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Figure 15: Possible switching case, but tf and c1 are unknown at this point
(Case 3).

Figure 16: Possible switching case, but tf and c1 are unknown at this point
(Case 4).

• To complete the solution, next we impose the boundary conditions: transversality condition
along with x2(tf ) = 0 gives

H(tf ) + ht(tf ) = 0→ 1 + b|u?(tf )|+ p?1(tf )x
?
2(tf ) + p?2(tf )u

?(tf ) = 0→

1 + b|u?(tf )|+ p?2(tf )u
?(tf ) = 0→ p?2(tf ) = −(b sgn(u?(tf ) +

1

u?(tf )
).

– If u?(tf ) = 1 then we obtain p?2(tf ) = −(1 + b) < −b, which is consistent with the
selection rule for optimal control.

– If u?(tf ) = −1 then we obtain p?2(tf ) = −(−1 − b) > b, which is consistent with the
selection rule for optimal control.

So, the terminal conditions do not help us determine if u? = 1 or u? = −1 at tf because both
are possible.
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• To solve the problem, we are going to consider the 4 cases listed above.

−−−−−

– Case 1: The optimal co-state in this case follows the form shown in Fig. 14 and

t0 < t1 < t2 < tf .

– Setting p?2(t2) = c2− c1 t2 = −b and p?2(tf ) = c2− c1 tf = −b− 1 gives t2 = tf − 1
c1
. And,

setting p?2(t1) = c2 − c1t1 = b gives t1 = tf − (2b+1)
c1

.

– Now look at the state response

∗ During (t2, tf ] we have u(t) = 1, therefore using the boundary condition x1(tf ) =
x2(tf ) = 0, we obtain

ẋ2 = 1→ x2(t) = t+ c3 → x2(t) = t− tf

ẋ1 = x2 = t− tf → x1(t) =
1

2
(t− tf )2 + c4 → x1(t) =

1

2
(t− tf )2.

Therefore, during (t2, tf ], the states are on x1(t) = x2(t)2

2
in the phase plane. For

the scenario that we have considered (u(tf ) = 1), the response is in lower quadrant

of x1 − x2 plane (note here that from x1(t) = x2(t)2

2
you know x1 ≥ 0 and from

x2(t) = t− tf you know that x2(t) ≤ 0 during (t2, tf ]).

∗ Between times t1 − t2, control input is zero: coasting phase.

· Because of the continuity of the state, terminal condition for coast phase can
be obtained from

x1(t2) =
1

2
(t2 − tf )2 =

1

2
((tf −

1

c1

)− tf )2 =
1

2c2
1

,

x2(t2) = t2 − tf = (tf −
1

c1

)− tf = − 1

c1

.

· On a coasting arc x2 = ẏ is a constant (so x2(t) = − 1
c1

for t ∈ [t1, t2]), and
thus

for t ∈ (t1, t2] : ẋ1 = x2 = − 1

c1

→ x1(t) = − 1

c1

t+ c5,

then using x1(t2) =
1

2c2
1

, we obtain c5 =
1

c1

t2 +
1

2c2
1

, which gives,

x1(t) = − 1

c1

t+
1

c1

t2 +
1

2c2
1

=
1

c1

(t2 − t) +
1

2c2
1

, and as a result

x1(t1) =
1

c1

(t2 − t1) +
1

2c2
1

.

Then,

x1(t1) =
1

c1

(t2 − t1) +
1

2c2
1

=
1

c1

(tf −
1

c1

− tf +
(2b+ 1)

c1

) +
1

2c2
1

= (2b+
1

2
)(

1

c2
1

)

=(2b+
1

2
)x2(t1)2.
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∗ So the first transition from coasting phase to u = −1 at t1 occurs on the curve

x1(t) = (2b+ 1
2
)x2

2.

∗ During [0, t1] we have u(t) = −1, therefore using the given boundary conditions
x1(0), x2(t0), we obtain

ẋ2 = −1→ x2(t) = −t+ c6 → x2(t) = −t+ x2(0)

ẋ1 =x2 =−(t+x2(0))→ x1(t)=−1

2
(t−x2(0))2+c7 → x1(t)=−1

2
(t−x2(0))2+x1(0)+

1

2
x2(0)2.

Therefore, during [t0, t1], the states are on x1(t) = −x2(t)2

2
+ x1(0) + 1

2
x2(0)2 in the

phase plane (Do you see how this curve correlates with the trajectories on Fig. 9?)

– We can validate our scenario by calculating t1, t2, tf and c1 and checking if our expec-
tations of 0 < t1 < t2 < tf and c1 > 0 are correct.

Lets consider two examples with b = 1:

∗ First case is x1(0) = 4 and x2(0) = 2. The state trajectory at t1 is continuous
therefore,{

x2(t1) = − 1
c1
,

x2(t1)=−t1 + x2(0) = −t1 + 2,
→ t1 = 2 +

1

c1{
x1(t1) = (2b+ 1

2
)( 1
c21

) = (2 + 1
2
)( 1
c21

),

x1(t1)=−1
2
(t1 − x2(0))2 + x1(0) + 1

2
x2(0)2 = −1

2
(t1 − 2)2 + 6,

→(2 +
1

2
)(

1

c2
1

) = −1

2
(t1 − 2)2 + 6.

The state trajectory at t2 is also continuous therefore,{
x2(t2) = − 1

c1
,

x2(t2)= t2 − tf ,
→ t2 = tf −

1

c1{
x1(t2) = 1

2c21

x1(t2) = 1
2
(t2 − tf )2,

→ 1

c2
1

= (t2 − tf )2.

Also recall that from the co-state equations we obtained

t2 = tf −
1

c1

, t1 = tf −
(2b+ 1)

c1

.

Therefore, c1 =
√

1
2
, t1 = 2 +

√
2, t2 = 2 + 3

√
2 and tf = 2 + 4

√
2. Therefore, this

scenario is a valid scenario. That is

u? =


−1 t ∈

[
0, 2 +

√
2
)
,

0 t ∈
[
2 +
√

2, 2 + 3
√

2
)
,

1 t ∈
[
2 + 3

√
2, 2 + 4

√
5
3

]
.
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See Fig. 14 for p?2 vs. time. On the phase plane, the system starts on the curve

x1(t) = −x2(t)2

2
+ 6 and moves on it until it hits x1(t) = (2b + 1

2
)x2

2 at t2. Then, it

coast on constant x2 until it hits x1(t) = x2(t)2

2
and switches to it and moves along

it until it arrives at the origin, see Fig. 17.

Figure 17: Optimal trajectory when x1(0) = 4 and x2(0) = 2 (b = 1).
optimal control is follows the form given in Case 1.

∗ Next case is defined by x1(0) = −4 and x2(0) = 2. The state trajectory at t1 is
continuous therefore,{

x2(t1) = − 1
c1
,

x2(t1)=−t1 + x2(0) = −t1 + 2,
→ t1 = 2 +

1

c1{
x1(t1) = (2b+ 1

2
)( 1
c21

) = (2 + 1
2
)( 1
c21

),

x1(t1)=−1
2
(t1 − x2(0))2 + x1(0) + 1

2
x2(0)2 = −1

2
(t1 − 2)2 − 2,

→(2 +
1

2
)(

1

c2
1

) = −1

2
(t1 − 2)2 − 2.

Here, we get c2
1 = −3

2
, which shows that this scenario is not valid. Therefore, for

this case, we need to consider the other remaining 3 cases for the optimal control.

−−−−−

– Case 3: The optimal co-state in this case follows the form shown in Fig. 15 and

t0 < t1 < t2 < tf .

– Setting p?2(t2) = c2 − c1 t2 = b and p?2(tf ) = c2 − c1 tf = b + 1 gives t2 = tf + 1
c1
. And,

setting p?2(t1) = c2 − c1t1 = −b gives t1 = tf + (2b+1)
c1

.
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– Now look at the state response

∗ During (t2, tf ] we have u(t) = −1, therefore using the boundary condition x1(tf ) =
x2(tf ) = 0, we obtain

ẋ2 = 1→ x2(t) = −t+ c3 → x2(t) = −(t− tf )

ẋ1 = x2 = −(t− tf→x1(t) = −1

2
(t− tf )2 + c4 → x1(t) = −1

2
(t− tf )2.

Therefore, during (t2, tf ], the states are on x1(t) = −x2(t)2

2
in the phase plane. For

the scenario that we have considered (u(tf ) = −1), the response is in the upper-left

quadrant of x1 − x2 plane (note here that from x1(t) = −x2(t)2

2
you know x1 ≤ 0

and from x2(t) = −(t− tf ) you know that x2(t) ≥ 0 during (t2, tf ]).

∗ Between times t1 − t2, control input is zero: coasting phase.

· Because of the continuity of the state, terminal condition for coast phase can
be obtained from

x1(t2) = −1

2
(t2 − tf )2 = −1

2
((tf +

1

c1

)− tf )2 = − 1

2c2
1

,

x2(t2) = −(t2 − tf ) = −(tf +
1

c1

)− tf = − 1

c1

.

· On a coasting arc x2 = ẏ is a constant (so x2(t) = − 1
c1

for t ∈ [t1, t2]), and
thus

for t ∈ (t1, t2] : ẋ1 = x2 = − 1

c1

→ x1(t) = − 1

c1

t+ c5,

then using x1(t2) = − 1

2c2
1

, we obtain c5 =
1

c1

t2 −
1

2c2
1

, which gives,

x1(t) = − 1

c1

t+
1

c1

t2 −
1

2c2
1

=
1

c1

(t2 − t)−
1

2c2
1

, and as a result

x1(t1) =
1

c1

(t2 − t1)− 1

2c2
1

.

Then,

x1(t1) =
1

c1

(t2 − t1)− 1

2c2
1

=
1

c1

(tf +
1

c1

− tf −
(2b+ 1)

c1

)− 1

2c2
1

= −(2b+
1

2
)(

1

c2
1

)

=− (2b+
1

2
)x2(t1)2.

∗ So the first transition from coasting phase to u = 1 at t1 occurs on the curve

x1(t) = −(2b+ 1
2
)x2

2.

∗ During [0, t1] we have u(t) = 1, therefore using the given boundary conditions
x1(0), x2(0), we obtain

ẋ2 = 1→ x2(t) = t+ c6 → x2(t) = t+ x2(0)
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ẋ1 =x2 =(t+x2(0))→ x1(t)=
1

2
(t+x2(0))2+c7 → x1(t)=

1

2
(t+x2(0))2+x1(0)−1

2
x2(0)2.

Therefore, during [t0, t1], the states are on x1(t) = x2(t)2

2
+ x1(0)− 1

2
x2(0)2 in the

phase plane (Do you see how this curve correlates with the trajectories on Fig. 9?)

– We can validate our scenario by calculating t1, t2, tf and c1 and checking if our expec-
tations of 0 < t1 < t2 < tf and c1 < 0 are correct.

Lets consider two examples with b = 1:

∗ First case is x1(0) = −4 and x2(0) = −2. The state trajectory at t1 is continuous
therefore,{

x2(t1) = − 1
c1
,

x2(t1)= t1 + x2(0) = t1 − 2,
→ t1 = 2− 1

c1{
x1(t1) = −(2b+ 1

2
)( 1
c21

) = −(2 + 1
2
)( 1
c21

),

x1(t1)= 1
2
(t1 + x2(0))2 + x1(0)− 1

2
x2(0)2 = 1

2
(t1 − 2)2 − 6,

→−(2 +
1

2
)(

1

c2
1

) =
1

2
(t1 − 2)2 − 6.

The state trajectory at t2 is also continuous therefore,{
x2(t2) = − 1

c1
,

x2(t2)= −(t2 − tf ),
→ t2 = tf +

1

c1{
x1(t2) = − 1

2c21

x1(t2) = −1
2
(t2 − tf )2,

→ 1

c2
1

= −(t2 − tf )2.

Also recall that from the co-state equations we obtained

t2 = tf +
1

c1

, t1 = tf +
(2b+ 1)

c1

.

Therefore, c1 = −
√

1
2
, t1 = 2 +

√
2, t2 = 2 + 3

√
2 and tf = 2 + 4

√
2. Therefore,

this scenario is a valid scenario. That is

u? =


1 t ∈

[
0, 2 +

√
2
)
,

0 t ∈
[
2 +
√

2, 2 + 3
√

2
)
,

−1 t ∈
[
2 + 3

√
2, 2 + 4

√
5
3

]
.

See Fig. 15 for p?2 vs. time. On the phase plane, the system starts on the curve

x1(t) = x2(t)2

2
− 6 and moves on it until it hits x1(t) = −(2b + 1

2
)x2

2 at t2. Then,

it coast on constant x2 until it hits x1(t) = −x2(t)2

2
and switches to it and moves

along it until it arrives at the origin, see Fig. 18.
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Figure 18: Optimal trajectory of the case of x1(0) = 4 and x2(0) = 2
(b = 1). Optimal control has the form given in Case 3.

∗ Next case is defined by x1(0) = −4 and x2(0) = 2. The state trajectory at t1 is
continuous therefore,{

x2(t1) = − 1
c1
,

x2(t1) = t1 + x2(0) = t1 + 2,
→ t1 = −2− 1

c1{
x1(t1) = −(2b+ 1

2
)( 1
c21

) = −(2 + 1
2
)( 1
c21

),

x1(t1)= 1
2
(t1 + x2(0))2 + x1(0)− 1

2
x2(0)2 = 1

2
(t1 + 2)2 − 6,

→−(2 +
1

2
)(

1

c2
1

) =
1

2
(t1 + 2)2 − 6.

Therefore, c2
1 = 1

2
, which results in t1 < 0. Therefore, the optimal control is not in

the form given in Case 3. We have already seen that the optimal control is not in
the form of Case 1 either. Therefore, we have to investigate Case 2 and Case 4.

−−−−−

– Case 4: The optimal co-state in this case follows the form shown in Fig. 16 and

t0 < t1 < tf .

– Setting p?2(t1) = c2 − c1 t1 = b and p?2(tf ) = c2 − c1 tf = b+ 1 gives t1 = tf + 1
c1
.

– Now look at the state response

∗ During [t1, tf ] we have u(t) = −1, therefore using the boundary condition x1(tf ) =
x2(tf ) = 0, we obtain

ẋ2 = 1→ x2(t) = −t+ c3 → x2(t) = −(t− tf )
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ẋ1 = x2 = −(t− tf→x1(t) = −1

2
(t− tf )2 + c4 → x1(t) = −1

2
(t− tf )2.

Therefore, during (t1, tf ], the states are on x1(t) = −x2(t)2

2
in the phase plane. For

the scenario that we have considered (u(tf ) = −1), the response is in the upper-left

quadrant of x1 − x2 plane (note here that from x1(t) = −x2(t)2

2
you know x1 ≤ 0

and from x2(t) = −(t− tf ) you know that x2(t) ≥ 0 during (t1, tf ]).

∗ Between times 0− t1, control input is zero: coasting phase.

· Because of the continuity of the state, terminal condition for coast phase can
be obtained from

x1(t1) = −1

2
(t1 − tf )2 = −1

2
((tf +

1

c1

)− tf )2 = − 1

2c2
1

,

x2(t1) = −(t1 − tf ) = −(tf +
1

c1

)− tf = − 1

c1

.

· On a coasting arc x2 = ẏ is a constant (so x2(t) = − 1
c1

for t ∈ [0, t1]), and thus

for t ∈ [0, t1) : ẋ1 = x2 = − 1

c1

→ x1(t) = − 1

c1

t+ c5,

then using x1(t1) = − 1

2c2
1

, we obtain c5 =
1

c1

t1 −
1

2c2
1

, which gives,

x1(t) = − 1

c1

t+
1

c1

t1 −
1

2c2
1

=
1

c1

(t1 − t)−
1

2c2
1

.

Then, using the boundary conditions x1(0) and x2(0), during [0, t1) we have

x2(0) = − 1

c1

→ c1 = − 1

x2(0)
.

x1(0) =
1

c1

(t1)− 1

2c2
1

= −x2(0) t1 − 0.5x2(0)2 → t1 = − 1

x2(0)
(x1(0) + 0.5x2(0)2).

Then, from t1 = tf + 1
c1

, we obtain

tf = − 1

x2(0)
(x1(0) + 0.5x2(0)2) + x2(0)

. Finally using p?2(tf ) = c2 − c1 tf = b + 1, we obtain c2 = b + 1
x2(0)2

(x1(0) +

0.5x2(0)2).

∗ We can validate our scenario by calculating t1, tf and c1 and checking if our ex-
pectations of 0 < t1 < tf and c1 < 0 are correct. Obviously, here we expect

c1 = − 1

x2(0)
→ x2(0) > 0,

t1 > 0→ x1(0) < −0.5x2(0)2.

Lets consider an example with b = 1:
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· Let x1(0) = −4 and x2(0) = 2. Recall that Case 1 and Case 3 were not valid
for the given initial condition. Let us assume that the optimal control follows
Case 4. then:

c1 = − 1

x2(0)
= −0.5 < 0,

c2 = b+
1

x2(0)2
(x1(0) + 0.5x2(0)2) = 1 + 0.25(−4 + 2) = 0.5,

t1 = − 1

x2(0)
(x1(0) + 0.5x2(0)2) = −0.5(−2) = 1

tf = − 1

x2(0)
(x1(0) + 0.5x2(0)2) + x2(0) = −0.5(−2) + 2 = 3.

All the parameters are consistent, therefore, Case 4 is the valid scenario for this
example. See Fig. 16 for p?2 vs. time. On the phase plane, the system starts

in the coasting phase and moves until it hits x1(t) = −x2(t)2

2
and switches to it

and moves along it until it arrives at the origin, see Fig. 19.

Figure 19: Optimal trajectory of the case of x1(0) = −4 and x2(0) = 2
(b = 1). Optimal control has the form given in Case 4.

∗ Can you investigate Case 2 yourself?

– State-based switching law: x1(t) =

{
(2b+ 1

2
)x2

2 x2 ≤ 0

−(2b+ 1
2
)x2

2 x20
is the first switching

curve, and x1(t) =

{
x2(t)2

2
x2 ≤ 0

−x2(t)2

2
x2 ≥ 0

is the second switching curve. Can you write the

state dependent switching law?



Note 7

Appendix

7.1 Math Lab

– ẋ = a x+ b, ⇒

{
x(t) = x(t1) ea(t−t1) − b

a
(1− ea(t−t1)), t ∈ [t1, t]

x(t) = x(t2) ea(t2−t) + b
a
(ea(t2−t1) − 1), t ∈ [t, t2]

For this, note: e−atẋ−a e−atx = b e−at ⇒ d
dt

(e−at x) = b e−at ⇒ (e−at x)t2t1 = − b
a

(e−at)t2t1 ⇒
e−a t2 x(t2)− e−a t1 x(t1) = − b

a
(e−a t2 − e−a t1)

94
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