Optimal Control Lecture 9

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Suggested ready: Section 3.10 and Section 4.1 of Ref[1] (see class website or the class syllabus for the list of references)

Discrete LQR（Derivation through Di＇appro
－For most cases，dynamic programming must be solved numencally－often －quite challenging．
－A few cases can be so＇rod aralgrically－disrete $L Q R$ is one of the
－Goal．select control inputs to minimize

$$
\begin{aligned}
& \text { consol inputs to minimize } \\
& J=\frac{1}{2} x_{N}^{\top} H x_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left(x_{k}^{\top} Q_{k} x_{k}+u_{k}^{\top} R_{k} u_{k}\right) \\
& x_{k+1}=A_{k} x_{k}+B_{k} u_{k} \quad \Rightarrow y_{d}\left(x_{k}, u_{k}\right)=\frac{1}{2} x_{k}^{\top} Q u_{k}+u_{k}^{\top}
\end{aligned}
$$

st．
－Assume $H=H^{\top} \geqslant 0, Q=Q^{\top} \geqslant 0, R=R^{\top}>0$
－Including any other constraints greatly complicates the problem．－clearly $y J_{N}^{*}\left[x_{N}\right]=\frac{1}{2} x_{N}^{\top} H_{N} \Rightarrow$ now need to find $J_{N-1}^{*}\left[x_{N-1}\right]$

$$
\begin{aligned}
& y_{N-1}^{*}\left[x_{N-1}\right]=\min \left\{g_{d}\left(x_{N-1}, u_{N-1}\right)+J_{N}^{N}\left[x_{N}\right]\right\} \\
&=\min _{u_{N-1}} \frac{1}{2}\left\{x_{N-1}^{\top} Q_{x_{N+1}}+u_{N-1}^{\top} R_{N} u_{N-1}+u_{N}^{\top} H x_{N}\right\} \\
& \text { <o that }
\end{aligned}
$$

－Note that $x_{N}=A_{N-1} x_{N-1}+B_{N-1} u_{N-1}$ 的 that

$$
\begin{aligned}
& \text { Dote that } x_{N}=A_{N-1} x_{N-1}+S_{N-1} \\
& J_{N-1}^{*}\left(x_{N-1}\right)=\min _{U_{N-1}} 1,2\left[x_{N-1}^{\top} Q_{N-1}^{x_{N-1}}+n_{N-1}^{\top} R_{N-1} u_{N-1}\right. \\
& \left.+\left(A_{N-1} x_{N-1}+B_{N-1} u_{N-1}\right)^{\top} H\left(A_{N-1} x_{N-1}+B_{N-1} u_{N-1}\right)\right]
\end{aligned}
$$

－Take Derivative w．r．to the control inputs

$$
\frac{\partial \int_{N-1}^{ \pm}\left(n_{N-1}\right)}{\partial u_{N-1}}=R_{N-1} u_{N-1}+B_{N-1}^{\top} H\left(A_{N-1} n_{N-1}+B_{N-1} u_{N-1}\right)
$$

Now set this derivative equal to zero

- Recall That both equations are solved bakwand from $k+l$ to k- Now consider time bal with

$$
\left.J_{k-1}^{+}\left(x_{k-1}\right)=\min _{u_{k-1}}\left\{\frac{1}{2} x_{k-1}^{\top} Q_{k-1} x_{k-1}+u_{k-1}^{\top} R_{k-1} u_{k-1}+J_{k}^{\alpha} n_{k}\right)\right\}
$$

- Taking derivative with respects u_{k-1} gives.

$$
\frac{\partial J_{k-1}^{+}\left(n_{k-1}\right)}{\partial u_{k-1}}=u_{k-1}^{\top} R_{k-1}+\left(A_{k-1} x_{k-1}+B_{k-1}{ }^{u} k-1\right)^{\top} P_{k} B_{k-1}
$$

no that the best control input is

$$
\begin{aligned}
& u_{k-1}^{*}=-\left(R_{k-1}+B_{k-1}^{T} P_{k} B_{k-1}\right)^{-1} B_{k-1}^{\top} P_{k} A_{k-1} u_{k-1} \\
& =-F_{k-1} x_{k-1}
\end{aligned}
$$

- Substitute this control into the expression for $J_{k-1}^{+}\left(k_{n-1}\right)$ lo show the t

$$
f_{k-1}^{k}\left(n_{n-1}\right)=\frac{1}{2} n_{k-1}^{T} P_{k-1} n_{k-1}
$$

and

$$
\begin{aligned}
P_{k-1}=Q_{k-1} & +F_{k-1}^{T} R_{k-1} F_{k-1} P\left(A_{k-1}-B_{k-1} F_{k-1}\right)^{\top} P_{k} \\
& \left(A_{k-1}-B_{k-1} F_{k-1}\right)
\end{aligned}
$$

- Thus the same properties hold at time $k-1$ and k and N and $N-1$ in partionlar, to they will always be true.

$$
\left(R_{N-1}+B_{N-1}^{\top} H B_{N-1}\right)^{U_{N-1}}+B_{N-1}^{\top} H A_{N-1} x_{N-1}=0
$$

- which suggots on couple of key things.
- The best compel action at time $N-1$ is a linear state beth. on the state at time N-I

$$
\begin{aligned}
u_{N-1}^{*} & =-\left(R_{N-1}+B_{N-1}^{\top} H B_{N-1}\right)^{-1} B_{N-1}^{\tau} H A_{N-1} x_{N-1} \\
& \equiv-F_{N-1} x_{N-1}
\end{aligned}
$$

- Furthermore, can show Rat
satisfied

$$
\frac{\partial^{2} \partial_{N-1}^{\alpha}\left(x_{N-1}\right)}{\partial u_{N-1}^{2}}=R_{N-1}+B_{N}^{\top} H \beta_{N}>0
$$

because

$$
\begin{aligned}
& R_{N-1}>0 \\
& H \geqslant 0
\end{aligned}
$$

So that the startioncig point is minimum.

- with this control decision, take mother look at

$$
\begin{aligned}
J_{N-1}^{*}\left(n_{N-1}\right)= & \frac{1}{2} n_{N-1}^{\top}\left(Q_{N-1}+F_{N-1}^{\top} R_{N-1} F_{N-1}+\left(A_{N-1}-B_{N-1} F_{N-1}\right)^{\top} H\right. \\
& \left(A_{N-1}-B_{N-1}\left(\beta_{N-1}\right)\right) n_{N-1} \equiv \frac{1}{2} x_{N-1}^{\top} P_{N-1} x_{N-1}
\end{aligned}
$$

-Note that $P_{w}=1 H$ while suggots a convenient form for $g \operatorname{ain} F$

$$
F_{N-1}=\left[R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1}\right]^{-1} B_{N-1}^{T} P_{N} A_{N-1}
$$

- Now can continue using induction - assume that at time k the control will be of the form $U_{k}^{A}=-F_{k} n_{k}$ were

$$
F_{k}=\left[R_{k}+B_{k}^{\top} P_{k+1} B_{k}\right]^{-1} B_{k}^{\top} P_{k+1} A_{k}
$$

and $\partial_{k}^{2}\left[x_{k}\right]=\frac{1}{2} n_{k}^{\top} P_{k} n_{k}$ where

$$
P_{k}=Q_{k}+F_{k}^{\top} R_{k} F_{k}+\left\{A_{k}-B_{k} F_{k}\right\}^{\top} P_{k+1}\left(A-B_{k} F_{k}\right)
$$

Algorithm.
Can Summarize the above in the algorithms.
(i) $P_{N}=H$
(ii) $F_{k k}=\left(R_{k}+B_{k}^{\tau} P_{k+1} B_{k}\right)^{-1} B_{k}^{\top}{ }^{\top} P_{k+1} A_{k}$
(iii) $P_{k}=Q_{k}+F_{k}^{\top} R_{k} F_{k}+\left(A_{k}-B_{k} F_{k}\right)^{\top} P_{k+1}\left(A_{k}-B_{k} F_{k}\right)$
cycle through steps if and iii from $N-1 \rightarrow 0$

Note

- the result is a statefedback controlttine Vu'ging', even if A, B, Q, R are constant.
- clear that P_{k} and F_{k} are indegerder of the state and can be computed ahead of time, offline. (see your earlier notes on $L Q R$) - Possible to eliminate th F_{k} part of the cycle and jut cycle through Pk

$$
P_{k}=Q_{k}+A_{k}^{\top}\left(P_{k+1}-P_{k+1} B_{k}\left(R_{k}+B_{k}^{\top} P_{k+1} B_{k}\right)^{-1} B_{k}^{\top} l_{k+1}\right) A_{k}
$$

Initial assumption $R_{k}>0$ th can be relaxed, but we must ensured tat

$$
\left(R_{k+1}+B_{k}^{T} Q_{k+1} B_{k}\right)>0
$$

- In the expression

$$
\begin{aligned}
& \text { expression } \\
& J^{*}\left(x_{k}^{i}, t_{k}\right)=\min _{u_{k}}\left[g\left(n_{k}^{i}, u_{k}^{i j} \lambda_{k} \Delta^{\Delta}+J^{*}\left(n_{k+1}^{j}, t_{k+1}\right)\right]\right.
\end{aligned}
$$

The term $\lambda^{*}\left(n_{L}{ }^{j}, t_{k}\right.$ ell $u_{k}^{i j}$ phat the rote of a "cost so sot which is

Calculus of variation and its connection to optimal control

We are going to focus on solving

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right), \text { s.t. } \\
& \dot{x}(t)=f(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

Observations:

- J is a function of $x(t), u(t)$ both functions over $t \in\left[t_{0}, t_{f}\right]$
- J is a functional (function of a function)

Static parameter optimization:

- objective: determine a point that minimizes a specific function (the performance measure)

Optimization in continuous-time:

- objective: determine a function that minimizes a specific functional (the performance measure)

Function vs. functional

Def (function): A function f is a rule of correspondence that assigns to each element q in a certain set \mathcal{D} (domain of the function) a unique element in a set \mathcal{R} (range or image of the function)

Def (functional): A functional J is a rule of correspondence that assigns to each function x in a certain class Ω (domain of the functional) a unique real number. The set of real numbers associated with the functions Ω is called the range of the functional.

- functional: function of function
- domain is a class of functions

Example: x : continuous function of t defined in the interval $\left[t_{0}, t_{f}\right]$ and

$$
J(x)=\int_{t_{0}}^{t_{f}} x(t) d t
$$

is a functional. Its range is the area under $x(t)$ curves.

