
Optimal Control

Lecture 8

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine

solmaz@uci.edu

Note: These slides only cover small part of the lecture. For details and other
discussions consult your class notes.

Reading suggestion: Sections 3.1-3.8 of Ref [1] (see the syllabus/class website for
the list of the references)”.

1 / 15

Outline

Principle of optimality
Dynamic Programing

2 / 15

Principle of optimality

The optimal path for a multi-stage decision process:

Suppose the first decision made at a (point

(x0, t0)) results in segment a- b with

cost Jab and the remaining decision yields

segment b- f (from b, point ((x1, t1)))
with cost of Jbf to arrive at the terminal

manifold. The minimum cost Jaf from

a- f is

J?af = Jab + Jab

Assertion If a- b- f is the optimal

path from a to f then b- f is the

optimal path from b to f.

proof- by contradiction (see page 54 of Kirk)

3 / 15

Principle of optimality

Principle of optimality (due to Bellman)

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.

All points on an optimal path are possible initial points for that path

Suppose the optimal solution for a problem passes through some intermediate point
(x1, t1) then the optimal solution to the same problem starting at (x1, t1) must be
the continuation of the same path.

Using principle of optimality we can construct a numerical procedure called Dynamic
Programming to obtain optimal control for multi-stage decision making problems.

4 / 15

Dynamic Programing: example

Problem(Bryson): find the path from A to B traveling only to the right, such that the sum of

the numbers on the segments along this path is a minimum.

minimum time path from A to B: if you think of numbers as time to travel

control decision is: up-right or down-right (only two possible value at each node

state is between 1 to 4

there are 20 possible paths from A to B (traveling only to the right)

Solution approaches

1 There are 20 possible paths: evaluate each and compute the travel time (pretty tedious

approach)

2 Start at B and work backwards, invoking the principle of optimality along the way.

5 / 15

Dynamic Programing: example

Problem(Bryson): find the path from A to B traveling only to the right, such that the sum of

the numbers on the segments along this path is a minimum.

- For dynamic programing (DP) we need to find 15 numbers to solve this problem rather

than evaluate the travel time for 20 paths

- Modest difference here, but scales up for larger problems.

- Let n = number of segments on side (3 here) then:

Number of routes scales as ⇠ (2n)!/(n!)2
Number DP computations scales as ⇠ (n+ 1)21

6 / 15

Dynamic Programing: an example

http://sipi.usc.edu/~ortega/RD_Examples/boxDP.html

7 / 15

http://sipi.usc.edu/~ortega/RD_Examples/boxDP.html

Dynamic Programing: example

Problem: Minimize cost to travel from c to h moving only along the direction of arrows.

g to h: goes directly to h, i.e., J?gh = 2

e to h: a possible path goes through f, we need to compute the cost of going from f to h
first.

f to h: J?fh = Jfg + J?gh = 3+ 2 = 5

e to h: J?eh = min{Jeh, Jefh} = min{Jeh, [Jef + J?fh]} = min{8, 2+ 5} = 7,
e ! f ! g ! h

d to h: J?dh = Jde + J?eh = 3+ 7 = 10

c to h:

J?ch = min{Jcdh, Jcfh} = min{[Jcd + J?dh], [Jcf + J?fh]} = min{[5+ 10], [3+ 5]} = 8

Optimal path: c ! f ! g ! h 8 / 15

Dynamic Programing: optimal control

Roadmap to use DP in optimal control

- Grid the time/state and find the necessary control
- Grid the time/state and quantize control inputs
- Discrete-time problem: discrete time LQR

A discrete time/quantized space grid with the linkages showing the possible
transition in state/time grid through the control commands. It is hard to evaluate
all options moving forward through the grid, but we can work backwards and use
the principle of optimality to reduce this load. 9 / 15

Dynamic Programing: optimal control

minimize J = h(x(tf)) +

Ztf

t0

g(x(t),u(t), t)dt, s.t.

ẋ = a(x,u, t),

x(t0) = x0 = fixed,
tf = fixed

We will discuss including constraints on x(t) and u(t)

DP solution

1 develop a grid over space/time
2 evaluate the final cost at possible final states xi(tf): J?i = h(xi(tf)) 8i

10 / 15

Dynamic Programing: optimal control (cont’d)

3 back up 1 step in time and consider all possible ways of completing the problem
To obtain the cost of a control action, we approximate the integral in the cost.

- let uij(tk) be the control action that takes the system from xi(tk) to xj(tk+1)
at time tk + �t. Then the approximate cost of going from xi(tk) to xj(tk+1):

Z tk+1

tk

g(x(t),u(t), t)dt ⇡ g(xi(tk),u
ij(tk), tk)�t.

- uij(tk) is computed from the system dynamics:

ẋ=a(x,u, t)) x(tk+1)-x(tk)

�t
=a(x(tk),u(tk), tk))

xj(tk+1)=xi(tk) +a(xi(tk),u
ij(tk), tk)�t) uij(tk)

If the system is control affine ẋ = f(x, t) + g(x, t)u, the control uij(tk) can be
computed from uij(tk) = g(xik, tk)

-1(x
j(tk+1)-x

i(tk)
�t

- f(xik, tk))

- So far for any combination of xik and xjk+1 on the state/time grid we can
evaluate the incremental cost �J(xik, x

j
k+1) of making the state transition.

- Assuming you know already the optimal path from each new terminal point
xjk+1, the optimal path from xik is established from

J?(xik, tk) = min
xj
k+1

h
�J(xik, x

j
k+1) + J?(xjk+1

i

11 / 15

Dynamic Programing: optimal control (cont’d)

-Then for each xik the output is
* Best xik+1 to pick that gives the lowest cost
* Control input required to achieve this best cost

4 then work backwards on time until you reach x0, when only one value of x is
allowed because of the given initial condition

Couple of points about the process that is explained above

with constraints on the state, certain values of x(t) might not be allowed at certain
time t.

with bounds on the control, certain state transitions might not be allowed from one
time step to another
the process extends to higher dimensions. Just have to define a grid of points in x
and t. See Kirk’s book for more details. 12 / 15

Dynamic Programing: optimal control (cont’d)

Extension of the method discussed earlier to the case of free end time with some
additional constraint on the final state m(x(tf), tf) = 0, i.e.,

minimize J = h(x(tf)) +

Z tf

t0

g(x(t),u(t), t)dt, s.t.

ẋ = a(x,u, t),

x(t0) = x0 = fixed,
m(x(tf), tf) = 0 tf = free

find a group of points on the state/time grid that (approximately) satisfy the
terminal constrain

evaluate cost for each point and work backward from there
13 / 15

Dynamic Programing: optimal control (cont’d)

The previous formulation picked x’s and used the sate equation to determine the control
needed to transition between the quantized states across time.

- For more general case problems, it might be better to pick the u’s and use those to
determine the propagated x’s

J?(xik, tk) =min
uij
k

h
�J(xik,u

ij
k) + J?(xjk+1, tk+1)

i
=

min
uij
k

h
g(xik,u

ij
k , tk)�t+ J?(xjk+1, tk+1)

i

- To this end, the control inputs should be quantized as well.
- Then, it is likely that terminal points from one time step to the next will not lie on

the state discrete points: must interpolate the cost to go between between them

14 / 15

*

c
-9C

I

c

4

I;’

cJCc3

rcC

1
1’!

511

J1

1
0ft“I

I
-

—

1

‘S

1-

c

c

rD

C
..’

0

I’

$

0-4.’

Ic‘C-’

Ti
‘

‘4

T
)

5’S
.’
,

Dynamic programing: curse of dimensionality

Main concern with dynamic programming is how badly it scales

Given m quantized states with dimension n and N points in time, the
number of calculations for dynamic programing is Nmn

“Curse of Dimensionality"

see Dynamic Programing by R. Bellman (1957),

15 / 15

