
Optimal Control
Lecture 7

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.

University of California Irvine
solmaz@uci.edu

Study: Sections 2.2 and (2.4 until the subsection on “An Analytic Solution to the
Riccati Equation”) of Ref[2]; pay special attention to Theorem 2.4-2 and the

discussion following this theorem.
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Outline

Optimal control of multi-stage systems over finite horizon

Finite time optimal optimal LQR (free final state)
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Review: Optimal control of multi-stage systems over finite horizon

u? = argmin
1

2
x>NSNxN +

1

2

∑N−1

k=0
x>kQkxk +u>kRkuk s.t.

A0x0 +B0u0x(0)

u(0)

A1x1 +B1u1

u(1)

· · · · · · AN−1xN−1 +BN−1uN−1 x(N)

u(N−1)

x(1) x(2) x(N−1)

using ‘sweeping method’ we can obtain u?
k = −Kkxk.

where

Kk = (B>k Sk+1Bk +Rk)
−1B>k Sk+1Ak, k = 0, 1, · · · ,N− 1.

Sk can be calculated off-line from (backward iteration)
Sk =A>k (S

−1
k+1 +BkR

−1
k B

>
k )

−1Ak +Qk, k =N− 1,N− 2, · · · , 1,

SN = SN (given).

Optimal control gain Kk, even when A, B, R, etc. are time invariant, is time varying!
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Review: Optimal LQR over finite horizon

Observations

optimal control gain Kk, even when A, B, R, etc. are time invariant, is time varying

time-varying feedback is not always convenient to implement

need to compute and store sequences of Kk ∈ Rn×m control gains.

we may be satisfied by using sub-optimal gain, e.g., a constant gain

Limiting behavior of the Riccati equation

1 When does there exist a bounded S∞ to the Riccati equation for all choices of SN?

2 In general, S∞ depends on SN. When is S∞ the same for all choices of SN?

3 When is the closed-loop plant A−BK∞ asymptotically stable?
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Optimal LQR over finite horizon: steady state solution

Theorem

Let (A,B) be stabilizable. Then, for every choice of SN, there exists a bounded S∞ to the
Riccati eq. Furthermore, S∞ is a positive semi-definite solution to ARE

Theorem

Let C be such that Q = C>C > 0, and suppose R > 0. Supposed (A,C) is observable, then
(A,B) is stabilizable if and only if

a) The is a unique S∞ > 0 to the Riccati equation. Furthermore S∞ is the unique positive
definite solution to ARE.

b) The closed-loop plant
xk+1 = (A−BK∞)xk

is asymptotically stable, where

K∞ = (B>S∞B+R)−1B>S∞A.

If plant is observable through the fictitious output, all states are present in Jk. When Jk is
small, so are the states
If (A,C) is unobservable, if the unobservable state goes to infinity it does not effect the
cost. Boundedness of cost does not guarantee boundedness of trajectories
(A,C) detectable is enough
Choose Q and R wisely. E.g., Q ∈ Rn×n, Q = C>C > 0⇒ rank(C) = n⇒ (A,C)
observable. 5 / 1



Optimal LQR over finite horizon subject to control input bounds

u? = argmin
1

2
z>NSNzN +

1

2

∑N−1

k=0
z>kQkzk +u>kRkuk s.t.

x(k+ 1) =Ax(k) +Bu(k)

z(k) = Cx(k)

‖u(k)‖ 6 ulim, k = 0, · · · ,N− 1

In the following we convert this problem into a more standard optimization problem
z(0) = Cx(0)
z(1) = C (Ax(0) +Bu(0))︸ ︷︷ ︸

x(1)

= CAx(0) +CBu(0)

...
z(N) = C (Ax(N− 1) +Bu(N− 1))︸ ︷︷ ︸

x(N)

= CANx(0) +CAN−1B(0) + · · ·+CBu(N− 1)

Next, we write these equations in the following


z(0)
z(1)
...

z(N)


︸ ︷︷ ︸

Z

=


C
CA

CA2

...
CAN


︸ ︷︷ ︸

G

x0 +


0 0 0 · · · 0
CB 0 0 0
CAB CB 0 0

...
CAN−1B CAN−2B CAN−3B · · · CB


︸ ︷︷ ︸

H


u(0)
u(1)
...

u(N− 1)


︸ ︷︷ ︸

U
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Optimal LQR over finite horizon subject to control input bounds (con’d)

Z =Gx(0) +HU

1
2z
>
NSNzN + 1

2

∑N−1
j=0 z

>
kQkzk = Z>Diag (

1

2
Q0, . . . ,

1

2
QN−1,

1

2
SN)︸ ︷︷ ︸

W1

Z

1
2

∑N−1
j=0 u

>
kRkuk =U>Diag (

1

2
R0, . . . ,

1

2
RN−1)︸ ︷︷ ︸

W2

U

J =Z>W1Z+U>W2U = (Gx(0) +HU)>W1(Gx(0) +HU) +U>W2U

=x(0)> (G>W1G)︸ ︷︷ ︸
F3

x(0) + (2x(0)>G>W1H︸ ︷︷ ︸
F2

)>U+
1

2
U> (2(H>W1H+W2))︸ ︷︷ ︸

F1

U

Therefore, our optimal control problem cam be formulated now as

U? = argmin
1

2
U>F1U+ F>2 U, s.t.[

IN
−IN

]
U 6 ulim

The optimization problem above is in the form of a standard quadratic program. There are
many standard and efficient codes exists to solve this class of optimization problems (Matlab’s
QUADPROG is one of those solvers).1

1Try to solve problem 4(b) in HW 2 using the formulation here (there is no control constraint
in your problem, therefore, you will have an unconstraint optimization problem)
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Outline

Brief introduction on MPC
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Optimal control of multi-stage systems over finite horizon- what we did so
far

u? = argminφ(x(N)) +
∑N−1

k=0
Lk(x(k),u(k))︸ ︷︷ ︸

J(u(0),··· ,u(N−1))

s.t.

f0x(0)

u(0)

f1

u(1)

· · · · · · fN−1 x(N)

u(N−1)

x(1) x(2) x(N−1)

Our approach so far:

designed our optimal control u?(k) using assumed model and set of constraints (system
model)
nonlinear model has to be cast as static optimization with decision vector of order O(N)

linear system with quadratic cost: for some specific problems we have solution in terms of
system matrices

Issues:

the design is not necessarily closed-loop (especially if you add inequality constraints):
modeling error and/or disturbances can deviate the system from the desired output under
optimal control.

Use Model Predictive Control (also known as Receding Horizon Control)
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MPC: basic strategy

At time k, sample the state of the system and use the knowledge of the system model to
design an optimal input sequence

u(k|k), u(k+ 1|k), · · · , u(k+Hu|k)

over some finite horizon Hp from the current state x(k). Hu is the control horizon

Implement a fraction of the input sequence, usually just one step

repeat for time k+ 1 at state x(k+ 1).

Hu

Hp

Usually Hu <<Hp
small Hu means fewer variables to
compute in the optimization problem at
each control interval: faster computations.

small Hu promotes (but does not
guarantee) an internally stable controller.

In our developments below we assume
Hu =Hp for simplicity
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MPC: some notes

MPC is a control algorithm that is based on numerically solving on-line an
optimization problem subject to equality/inequality constraints at each step

can handle systems with nonlinear and time-varying dynamics
explicitly accounts for constraints

the system model can be modified based on the current state of the system

computationally expensive
started in 1970-1980’s in process control
earlier applications were in slow systems
speed of computers increased, now we can use for systems with faster-time
scales
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Linear MPC (regulation problem)

Given
system model : x(k+ 1) =Ax(k) +Bu(k),

measured output : y(k) = Cyx(k),

controlled output : z(k) = Czx(k) +Dzu(k),

constrained states : zc(k) = Ccx(k) +Dcu(k)

subject to
∆umin 6 ∆u(k) 6 ∆umax,

umin 6 u(k) 6 umax,

zmin 6 zc(k) 6 zmax,

find an MPC controller that minimizes

J =
∑Hp

j=0
‖z(k+ j|k)‖Q +

∑Hu

j=0
‖u(k+ j|k)‖R +φ(x(k+Hp|k)

over Hp prediction horizons.

φ(x(k+Hp|k) is a terminal cost function (can be used as a tool to induce stability in design)

−−−−−−

How to pick Hp and Hu

longer horizon have more degree of freedom and take much longer to compute
if plant model is not very accurate or system is subject to disturbances, planning for longer
horizons does not make sense
smaller Hp can be more suitable for stability 12 / 1



Linear MPC: an example of a typical problem

min
u
J =

∑Hp

j=0
(‖z(k+ j|k)‖Q +

∑Hp−1

j=0
‖u(k+ j|k)‖R

x(k+ j+ 1|k) =Ax(k+ j|k) +Bu(k+ j|k),

x(k|k) = x(k)(use the current state of the system as initial condition),

z(k+ j|k) = Cx(k+ j|k)

subject to

umin 6 u(k) 6 umax,

Assume Hp =Hu

−−−−−−

MPC problem now is cast as quadratic program (QP). Use Matlab quadprog to solve the
problem

min
x

1

2
x>Hx+ f>x such that


A.x 6 b,

Aeq.x = beq,

xl 6 x 6 xu.

there are also several tool boxed for MPC
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MPC: some useful references

A brief summary on linear MPC and some application examples

Johan Akesson: “MPCtools 1.0 -Reference Manual”. Technical report ISRN
LUTFD2/TFRT-7613-SE, Dept. of Automatic Control, Lund Inist. of Tech., Sweden, Jan. 2006.
http:
//www.control.lth.se/media/Education/EngineeringProgram/FRTN15/2012/MPC%20Tools.pdf

MPCtools software is available to download from:

http://www.control.lth.se/user/johan.akesson/mpctools/index.html

Survey Papers

C. E. Garcia, D. M. Prett and M. Morari, “Model Predictive Control: Theory and Practice",
Automatica, 25(3):335–348, 1989
M. Morari, J. H. Lee, “Model predictive control: past, present and future", Computers and
Chemical Engineering, 23: 667–682, 1999
J.B. Rawlings, “Tutorial: model predictive control technology,” American Control Conference,
pp. 662-676, 1999

D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, “Constrained model predictive

control: Stability and optimality”, Automatica 36:789-814, 2000

Paper on stability mentioned in the class
A. Bemporad, L. Chisci, E. Mosca: “On the stabilizing property of SIORHC”, Automatica,

30(12):2013–2015, 1994.

Books

F. Allgower, A. Zheng, Nonlinear Model Predictive Control, Springer-Verlag, 2000.
J. Maciejowski, Predictive Control with Constraints, Pearson Education POD, 2002.

Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC Press, 2003
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