Optimal Control Lecture 6

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Study: Sections 2.2 and (2.4 until the subsection on "An Analytic Solution to the Riccati Equation") of Ref[2]

Outline

Optimal control of multi-stage systems over finite horizon

- Finite time optimal optimal LQR (free final state)
- A brief introduction on Model Predictive Control (MPC)

Review: Optimal control of multi-stage systems over finite horizon

$$
u^{\star}=\operatorname{argmin} \frac{1}{2} x_{N}^{\top} S_{N} x_{N}+\frac{1}{2} \sum_{k=0}^{N-1} x_{k}^{\top} Q_{k} x_{k}+u_{k}^{\top} R_{k} u_{k} \text { s.t. }
$$

$$
H^{k}=\frac{1}{2} x_{k}^{\top} Q_{k} x_{k}+\frac{1}{2} u_{k}^{\top} R_{k} u_{k}+\lambda_{k+1}^{\top}\left(A_{k} x_{k}+B_{k} u_{k}\right), \quad k=0,1, \cdots, N-1
$$

Free final state: Linear systems with given initial condition

$$
\begin{array}{ll}
\lambda(N)=\frac{\partial \phi(x(N))}{\partial x(N)} & \Longrightarrow \lambda_{N}=S_{N} x_{N}, \\
\lambda_{k}=\frac{\partial H^{k}}{\partial x_{k}}, \quad k=1, \cdots, N-1 \quad & \Longrightarrow \lambda_{k}=Q_{k} x_{k}+A_{k}^{\top} \lambda_{k+1}, \quad k=1, \cdots, N-1, \\
0=\frac{\partial H^{k}}{\partial u_{k}}, \quad k=0, \cdots, N-1 & \Longrightarrow 0=R_{k} u_{k}+B_{k}^{\top} \lambda_{k+1}, \quad k=0, \cdots, N-1, \\
x_{k+1}=\frac{\partial H^{k}}{\partial \lambda_{k+1}}, \quad k=1, \cdots, N-1 & \Longrightarrow \quad x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \quad k=1, \cdots, N-1, \\
x(0)=x_{0} & \Longrightarrow x(0)=x_{0} .
\end{array}
$$

ReviewOptimal LQR over finite horizon

$$
\text { using 'sweeping method' we can obtain } u_{k}^{\star}=-\mathrm{K}_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}
$$

where

$$
K_{k}=\left(B_{k}^{\top} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{\top} S_{k+1} A_{k}, \quad k=0,1, \cdots, N-1
$$

S_{k} can be calculated off-line from (backward iteration)

$$
\left\{\begin{array}{l}
S_{k}=A_{k}^{\top}\left(S_{k+1}^{-1}+B_{k} R_{k}^{-1} B_{k}^{\top}\right)^{-1} A_{k}+Q_{k}, k=N-1, N-2, \cdots, 1 \\
\left.S_{N}=S_{N} \quad \text { (given }\right)
\end{array}\right.
$$

Optimal control gain K_{k}, even when A, B, R, etc. are time invariant, is time varying!

Observations

- the optimal control gain K_{k} can be computed off-line and stored
- we can use the current state to generate the input $u=-K_{k} x_{k}$
- this is a closed-loop feedback controller

Optimal LQR over finite horizon

- Optimal cost-to-go for $k \in[i, N], i=0,1, \cdots, N-1$:

$$
J_{i}^{\star}=\frac{1}{2} x_{i}^{\top} S_{i}^{\star} x_{i}
$$

S_{k} : performance index kernel matrix

- How does cost change for a pre-specified control sequence $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{N}-1}$?

$$
\begin{gathered}
J_{i}=\frac{1}{2} x_{N}^{\top} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1} x_{k}^{\top} Q_{k} x_{k}+u_{k}^{\top} R_{k} u_{k}=\frac{1}{2} x_{i}^{\top} S_{i} x_{i} \\
J_{i} \geqslant J_{i}^{\star}
\end{gathered}
$$

Here, for the given set of gains $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{N}-1}$, the corresponding $\left\{\mathrm{S}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\mathrm{N}-1}$ is generated from

$$
\begin{aligned}
S_{k} & =\left(A_{k}-B_{k} K_{k}\right)^{\top} S_{k+1}\left(A_{k}-B_{k} K_{k}\right)+K_{k}^{\top} R_{k} K_{k}+Q_{k}, \quad k=1, \cdots, N-1, \\
S_{N} & =S_{N}
\end{aligned}
$$

- Observations
- optimal control gain K_{k}, even when A, B, R, etc. are time invariant, is time varying
- time-varying feedback is not always convenient to implement
- need to compute and store sequences of $\mathrm{K}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n} \times m}$ control gains.

Optimal LQR over finite horizon: steady state solution

Limiting behavior of the Riccati equation

(1) When does there exist a bounded S_{∞} to the Riccati equation for all choices of S_{N} ?
(2) In general, S_{∞} depends on S_{N} ? When is S_{∞} the same for all choices of S_{N} ?
(3) When is the closed-loop plant $A-B K_{\infty}$ asymptotically stable?

Theorem

Let (A, B) be stabilizable. Then, for every choice of S_{N}, there exists a bounded S_{∞} to the Riccati eq. Furthermore, S_{∞} is a positive semi-definite solution to ARE

Theorem

Let C be such that $Q=C^{\top} C \geqslant 0$, and suppose $R>0$. Supposed (A, C) is observable, then (A, B) is stabilizable if and only if
a) The is a unique $S_{\infty}>0$ to the Riccati equation. Furthermore S_{∞} is the unique positive definite solution to ARE.
b) The closed-loop plant

$$
x_{k+1}=\left(A-B K_{\infty}\right) x_{k}
$$

is asymptotically stable, where

$$
K_{\infty}=\left(B^{\top} S_{\infty} B+R\right)^{-1} B^{\top} S_{\infty} A
$$

Review of stability of discrete-time LTI systems

Theorem

Let $\left\{\lambda_{1}, \cdots, \lambda_{m}\right\}$, m be the eignevalues of $A \in \mathbb{R}^{n \times n}$. The system $x(k+1)=A x(k)$ is

- asymptotically stable if and only of $\left|\lambda_{i}\right|<1, \forall i=1, \cdots, m$
- (marginally stable if $\left|\lambda_{i}\right| \leqslant 1, \forall i=1, \cdots, m$, and the eigenvalues with unit modulus have equal algebraic and geometric multiplicity ${ }^{a}$
- unstable if $\exists \mathrm{i}$ such that $\left|\lambda_{i}\right|>1$

[^0]
Review of stability of discrete-time LTI systems: examples

$$
\begin{aligned}
& x(k+1)=\underbrace{\left[\begin{array}{cc}
0.5 & -0.1 \\
1 & 0.3
\end{array}\right]}_{\lambda_{1,2}=0.4 \pm 0.3 i} x(k), \quad x(k+1)=\underbrace{\left[\begin{array}{cc}
-5.1 & 2.7 \\
-12.2 & 6.4
\end{array}\right]}_{\lambda_{1}=0.3, \lambda_{2}=1} x(k), \quad x(k+1)=\underbrace{\left[\begin{array}{cc}
-2.1 & 1.7 \\
-6.2 & 4.4
\end{array}\right]}_{\lambda_{1}=1.3, \lambda_{2}=1} x(k) \\
& x(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad x(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right] x(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

location of eigenvalues

location of eigenvalues

location of eigenvalues

Review of Lyapunov stability of discrete-time LTI systems

$$
x(k+1)=A x(k), \quad x(0) \in^{n} \quad(*)
$$

Theorem: The following statements are equivalent

- The system $\left(^{*}\right)$ is asymptotically stable.
- The system $\left(^{*}\right)$ is exponentially stable.
- All the eigenvalues of A have magnitude strictly smaller than 1 .
- For every symmetric positive-definite matrix Q , there exists a unique solution P to the following Stein equation (more commonly known as the discrete-time Lyapunov equation)

$$
A^{\top} P A-P=-Q .
$$

Moreover, P is symmetric and positive-definite.

- For every matrix C for which the pair (A, C) is observable, there exists a unique solution P to the Lyapunov equation

$$
A^{\top} P A-P=-C^{\top} C .
$$

Moreover, P is symmetric, positive-definite.

Optimal LQR over finite horizon: steady state solution

Theorem

Let (A, B) be stabilizable. Then, for every choice of S_{N}, there exists a bounded S_{∞} to the Riccati eq. Furthermore, S_{∞} is a positive semi-definite solution to ARE

Theorem

Let C be such that $Q=C^{\top} C \geqslant 0$, and suppose $R>0$. Supposed (A, C) is observable, then (A, B) is stabilizable if and only if
a) The is a unique $S_{\infty}>0$ to the Riccati equation. Furthermore S_{∞} is the unique positive definite solution to ARE.
b) The closed-loop plant

$$
x_{k+1}=\left(A-B K_{\infty}\right) x_{k}
$$

is asymptotically stable, where

$$
K_{\infty}=\left(B^{\top} S_{\infty} B+R\right)^{-1} B^{\top} S_{\infty} A .
$$

- If plant is observable through the fictitious output, all states are present in J_{k}. When J_{k} is small, so are the states
- If (A, C) is unobservable, if the unobservable state goes to infinity it does not effect the cost. Boundedness of cost does not guarantee boundedness of trajectories
- (A, C) detectable is enough
- Choose Q and R wisely. E.g., $Q \in \mathbb{R}^{n \times n}, Q=C^{\top} C>0 \Rightarrow \operatorname{rank}(C)=n \Rightarrow(A, C)$ observable.

[^0]: ${ }^{\text {a }}$ Algebraic multiplicity of $\lambda_{i}=$ number of coincident roots λ_{i} of $\operatorname{det}(\lambda I-A)=0$. Geometric multiplicity $\lambda_{i}=$ number of linearly independent eigenvectors ν_{i} of A corresponding to λ_{i}.

