Optimal Control Lecture 6

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Study: Sections 2.2 and (2.4 until the subsection on "An Analytic Solution to the Riccati Equation") of Ref[2]

Optimal control of multi-stage systems over finite horizon

- Finite time optimal optimal LQR (free final state)
- A brief introduction on Model Predictive Control (MPC)

Review: Optimal control of multi-stage systems over finite horizon

$$u^{\star} = \operatorname{argmin} \frac{1}{2} x_{N}^{\top} S_{N} x_{N} + \frac{1}{2} \sum_{k=0}^{N-1} x_{k}^{\top} Q_{k} x_{k} + u_{k}^{\top} R_{k} u_{k} \quad s.t.$$

$$u^{(0)} \qquad \qquad u^{(1)} \qquad \qquad u^{(1)} \qquad \qquad u^{(N-1)} \qquad \qquad u^{(N$$

$$H^{k} = \frac{1}{2} x_{k}^{\top} Q_{k} x_{k} + \frac{1}{2} u_{k}^{\top} R_{k} u_{k} + \lambda_{k+1}^{\top} (A_{k} x_{k} + B_{k} u_{k}), \quad k = 0, 1, \cdots, N-1$$

Free final state: Linear systems with given initial condition

$$\begin{split} \lambda(N) &= \frac{\partial \varphi(x(N))}{\partial x(N)} & \Longrightarrow \lambda_N = S_N x_N, \\ \lambda_k &= \frac{\partial H^k}{\partial x_k}, \quad k = 1, \cdots, N-1 \implies \lambda_k = Q_k x_k + A_k^\top \lambda_{k+1}, \quad k = 1, \cdots, N-1, \\ 0 &= \frac{\partial H^k}{\partial u_k}, \quad k = 0, \cdots, N-1 \implies 0 = R_k u_k + B_k^\top \lambda_{k+1}, \quad k = 0, \cdots, N-1, \\ x_{k+1} &= \frac{\partial H^k}{\partial \lambda_{k+1}}, \quad k = 1, \cdots, N-1 \implies x_{k+1} = A_k x_k + B_k u_k, \quad k = 1, \cdots, N-1, \\ x(0) &= x_0 \implies x(0) = x_0. \end{split}$$

ReviewOptimal LQR over finite horizon

using 'sweeping method' we can obtain $u_k^{\star} = -K_k x_k$.

where

$$\mathbf{K}_{k} = (\mathbf{B}_{k}^{\top} \mathbf{S}_{k+1} \mathbf{B}_{k} + \mathbf{R}_{k})^{-1} \mathbf{B}_{k}^{\top} \mathbf{S}_{k+1} \mathbf{A}_{k}, \quad \mathbf{k} = \mathbf{0}, \mathbf{1}, \cdots, \mathbf{N} - \mathbf{1}.$$

 S_k can be calculated off-line from (backward iteration)

$$\begin{cases} S_k = A_k^\top (S_{k+1}^{-1} + B_k R_k^{-1} B_k^\top)^{-1} A_k + Q_k, \ k = N - 1, N - 2, \cdots, 1, \\ \\ S_N = S_N \quad (\text{given}). \end{cases}$$

Optimal control gain K_k , even when A, B, R, etc. are time invariant, is time varying!

Observations

- the optimal control gain Kk can be computed off-line and stored
- $\bullet\,$ we can use the current state to generate the input $u=-K_kx_k$
- this is a closed-loop feedback controller

Optimal LQR over finite horizon

• Optimal cost-to-go for $k \in [i, N]$, $i = 0, 1, \cdots, N - 1$:

$$J_i^\star = \frac{1}{2} x_i^\top S_i^\star x_i$$

- \boldsymbol{S}_k : performance index kernel matrix
- How does cost change for a pre-specified control sequence $\{K_k\}_{k=0}^{N-1}$?

$$\begin{aligned} J_i &= \frac{1}{2} \mathbf{x}_N^\top S_N \mathbf{x}_N + \frac{1}{2} \sum_{k=i}^{N-1} \mathbf{x}_k^\top Q_k \mathbf{x}_k + \mathbf{u}_k^\top R_k \mathbf{u}_k = \frac{1}{2} \mathbf{x}_i^\top S_i \mathbf{x}_i \\ J_i &\geqslant J_i^* \end{aligned}$$

Here, for the given set of gains $\{K_k\}_{k=0}^{N-1},$ the corresponding $\{S_k\}_{k=1}^{N-1}$ is generated from

$$\begin{split} S_k &= (A_k - B_k K_k)^\top S_{k+1} (A_k - B_k K_k) + K_k^\top R_k K_k + Q_k, \quad k = 1, \cdots, N-1, \\ S_N &= S_N \end{split}$$

- Observations
 - optimal control gain K_k, even when A, B, R, etc. are time invariant, is time varying
 - time-varying feedback is not always convenient to implement
 - need to compute and store sequences of $K_k \in \mathbb{R}^{n \times m}$ control gains.

we may be satisfied by using sub-optimal gain, e.g., a constant gain

Limiting behavior of the Riccati equation

- **(**) When does there exist a bounded S_{∞} to the Riccati equation for all choices of S_N ?
- 2 In general, S_{∞} depends on S_N ? When is S_{∞} the same for all choices of S_N ?
- **(3)** When is the closed-loop plant $A BK_{\infty}$ asymptotically stable?

Theorem

Let (A,B) be stabilizable. Then, for every choice of S_N , there exists a bounded S_∞ to the Riccati eq. Furthermore, S_∞ is a positive semi-definite solution to ARE

Theorem

Let C be such that $Q = C^{\top}C \ge 0$, and suppose R > 0. Supposed (A, C) is observable, then (A, B) is stabilizable if and only if

- a) The is a unique $S_\infty>0$ to the Riccati equation. Furthermore S_∞ is the unique positive definite solution to ARE.
- b) The closed-loop plant

$$\mathbf{x}_{k+1} = (\mathbf{A} - \mathbf{B}\mathbf{K}_{\infty})\mathbf{x}_{k}$$

is asymptotically stable, where

$$\mathbf{K}_{\infty} = (\mathbf{B}^{\top} \mathbf{S}_{\infty} \mathbf{B} + \mathbf{R})^{-1} \mathbf{B}^{\top} \mathbf{S}_{\infty} \mathbf{A}.$$

Theorem

Let $\{\lambda_1,\cdots,\lambda_m\},$ m be the eignevalues of $A\in\mathbb{R}^{n\times n}.$ The system x(k+1)=Ax(k) is

- asymptotically stable if and only of $|\lambda_i| < 1, \ \forall i = 1, \cdots, m$
- (marginally stable if $|\lambda_i| \leqslant 1$, $\forall i = 1, \cdots, m$, and the eigenvalues with unit modulus have equal algebraic and geometric multiplicity^a
- \bullet unstable if $\exists i \text{ such that } |\lambda_i|>1$

^aAlgebraic multiplicity of $\lambda_i =$ number of coincident roots λ_i of det $(\lambda I - A) = 0$. Geometric multiplicity $\lambda_i =$ number of linearly independent eigenvectors ν_i of A corresponding to λ_i .

Review of stability of discrete-time LTI systems: examples

$$\begin{aligned} \mathbf{x}(\mathbf{k}+1) &= \underbrace{\begin{bmatrix} 0.5 & -0.1\\ 1 & 0.3 \end{bmatrix}}_{\lambda_{1,2}=0.4\pm0.3i} \mathbf{x}(\mathbf{k}), \qquad \mathbf{x}(\mathbf{k}+1) = \underbrace{\begin{bmatrix} -5.1 & 2.7\\ -12.2 & 6.4 \end{bmatrix}}_{\lambda_{1}=0.3, \ \lambda_{2}=1} \mathbf{x}(\mathbf{k}), \qquad \mathbf{x}(\mathbf{k}+1) = \underbrace{\begin{bmatrix} -2.1 & 1.7\\ -6.2 & 4.4 \end{bmatrix}}_{\lambda_{1}=1.3, \ \lambda_{2}=1} \mathbf{x}(\mathbf{k}), \\ \mathbf{x}(0) &= \begin{bmatrix} 3\\ 2 \end{bmatrix} \qquad \qquad \mathbf{x}(0) = \begin{bmatrix} 3\\ 2 \end{bmatrix} \qquad \qquad \mathbf{x}(0) = \begin{bmatrix} 3\\ 2 \end{bmatrix} \end{aligned}$$

10

20

k

30

-2 L 0

×

$$\mathbf{x}(\mathbf{k}+1) = \mathbf{A}\mathbf{x}(\mathbf{k}), \quad \mathbf{x}(\mathbf{0}) \in^{\mathbf{n}} \quad (*)$$

Theorem: The following statements are equivalent

- The system (*) is asymptotically stable.
- The system (*) is exponentially stable.
- All the eigenvalues of A have magnitude strictly smaller than 1.
- For every symmetric positive-definite matrix Q, there exists a unique solution P to the following Stein equation (more commonly known as the discrete-time Lyapunov equation)

$$\mathbf{A}^{\top}\mathbf{P}\mathbf{A}-\mathbf{P}=-\mathbf{Q}.$$

Moreover, P is symmetric and positive-definite.

• For every matrix C for which the pair (A, C) is observable, there exists a unique solution P to the Lyapunov equation

$$A^{\top} \mathbf{P} A - \mathbf{P} = -\mathbf{C}^{\top} \mathbf{C}.$$

Moreover, P is symmetric, positive-definite.

Optimal LQR over finite horizon: steady state solution

Theorem

Let (A,B) be stabilizable. Then, for every choice of S_N , there exists a bounded S_∞ to the Riccati eq. Furthermore, S_∞ is a positive semi-definite solution to ARE

Theorem

Let C be such that $Q = C^{\top}C \ge 0$, and suppose R > 0. Supposed (A, C) is observable, then (A, B) is stabilizable if and only if

- a) The is a unique $S_\infty>0$ to the Riccati equation. Furthermore S_∞ is the unique positive definite solution to ARE.
- b) The closed-loop plant

$$\mathbf{x}_{k+1} = (\mathbf{A} - \mathbf{B}\mathbf{K}_{\infty})\mathbf{x}_k$$

is asymptotically stable, where

$$\mathsf{K}_{\infty} = (\mathsf{B}^{\top}\mathsf{S}_{\infty}\mathsf{B} + \mathsf{R})^{-1}\mathsf{B}^{\top}\mathsf{S}_{\infty}\mathsf{A}.$$

- If plant is observable through the fictitious output, all states are present in J_k . When J_k is small, so are the states
- If (A, C) is unobservable, if the unobservable state goes to infinity it does not effect the cost. Boundedness of cost does not guarantee boundedness of trajectories
- (A, C) detectable is enough
- Choose Q and R wisely. E.g., $Q \in \mathbb{R}^{n \times n}$, $Q = C^{\top}C > 0 \Rightarrow \operatorname{rank}(C) = n \Rightarrow (A, C)$ observable.