Optimal Control Lecture 3

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Note: These slides only cover some parts of the lecture. For details and other discussions consult your class notes.
Reading suggestion: Chapters 1 and 2 of Ref [2] (see syllabus for references)

Parameter static optimization

Parameter static optimization: when time is not a parameter in the problem

- Unconstrained optimization
- Constrained optimization

Some notation convention

- Let $\mathrm{F}(\mathrm{x}, \mathrm{u})$ be a real differentiable function taking values in $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$.
- Let $f(x, u)$ be a real differentiable function taking values in $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.

Then

$$
\begin{aligned}
& F_{x}=\frac{\partial F}{\partial x}=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}} \\
\frac{\partial F}{\partial x_{2}} \\
\cdots \\
\frac{\partial F}{\partial x_{n}}
\end{array}\right], \quad F_{u}=\frac{\partial F}{\partial u}=\left[\begin{array}{c}
\frac{\partial F}{\partial u_{1}} \\
\frac{\partial F}{\partial u_{2}} \\
\cdots \\
\frac{\partial F}{\partial u_{m}}
\end{array}\right] \text {, } \\
& f_{x}=\frac{\partial f}{\partial x}=\left[\begin{array}{llll}
\frac{\partial f^{1}}{\partial x} & \frac{\partial f^{2}}{\partial x} & \cdots & \frac{\partial f^{p}}{\partial x}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f^{1}}{\partial x_{1}} & \frac{\partial f^{2}}{\partial x_{1}} & \cdots & \frac{\partial f^{p}}{\partial x_{1}} \\
\frac{\partial f^{1}}{\partial x_{2}} & \frac{\partial f^{2}}{\partial x_{2}} & \cdots & \frac{\partial f^{p}}{\partial x_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f^{1}}{\partial x_{n}} & \frac{\partial f^{2}}{\partial x_{n}} & \cdots & \frac{\partial f^{p}}{\partial x_{n}}
\end{array}\right], \\
& f_{u}=\frac{\partial f}{\partial u}=\left[\begin{array}{llll}
\frac{\partial f^{1}}{\partial u} & \frac{\partial f^{2}}{\partial u} & \ldots & \frac{\partial f^{p}}{\partial u}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f^{1}}{\partial u_{1}} & \frac{\partial f^{2}}{\partial u_{1}} & \cdots & \frac{\partial f^{p}}{\partial u_{1}} \\
\frac{\partial f^{1}}{\partial u_{2}} & \frac{\partial f^{2}}{\partial u_{2}} & \cdots & \frac{\partial f^{p}}{\partial u_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f^{1}}{\partial u_{m}} & \frac{\partial f^{2}}{\partial u_{m}} & \cdots & \frac{\partial f^{p}}{\partial u_{m}}
\end{array}\right],
\end{aligned}
$$

Constrained optimization

$$
\begin{array}{ccc}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) & \text { s.t. } & x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \\
& \text { s.t. } \\
h_{i}(x)=0, \quad i \in\{1, \cdots, m\} & h(x)=0, \\
& g_{i}(x) \leqslant 0, \quad i \in\{1, \cdots, r\} & \\
& & \\
& & \text { or }(x) \leqslant 0,
\end{array}
$$

$\mathrm{f}, \mathrm{h}, \mathrm{g}$: continuously differentiable function of x
e.g., $f, h, g \in C^{1}$ continuously differentiable
e.g., $f, h, g \in C^{2}$ both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x^{\star} is a local minimizer then

$$
\nabla f\left(x^{\star}\right)^{\top} \Delta x \geqslant 0, \quad \text { for } \quad \Delta x \in V\left(x^{\star}\right)
$$

- Set of first order feasible variations at χ

$$
\mathrm{V}(\mathrm{x})=\left\{\mathrm{d} \in \mathbb{R}^{\mathrm{n}} \mid \nabla \mathrm{h}_{\mathrm{i}}(\mathrm{x})^{\top} \mathrm{d}=0, \quad \nabla \mathrm{~g}_{j}(\mathrm{x})^{\top} \mathrm{d} \leqslant 0, \quad j \in \mathrm{~A}\left(\mathrm{x}^{\star}\right)\right\}
$$

- Active inequality constraints at χ

$$
A(x)=\left\{j \in\{1, \cdots, r\} \mid g_{j}(x)=0\right\}
$$

A feasible vector x is said to be regular of the equality constraint gradients $\nabla h_{i}(x)$, $\mathfrak{i}=1, \cdots, m$, and the active inequality constraint gradients $\nabla g_{j}(x), j \in A(x)$, are linearly independent.

Necessary Conditions for Optimality: equality and inequality conditions

$$
\begin{array}{lc}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \text { s.t. } & x^{\star} \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \text { s.t. } \\
h_{i}(x)=0, \quad i \in\{1, \cdots, m\} & h(x)=0 \\
g_{j}(x) \leqslant 0, \quad j \in\{1, \cdots, r\} & g(x) \leqslant 0
\end{array}
$$

- A simple approach relies on the theory for equality constraints:
- Inactive constraints at χ^{\star} do not matter, they can be ignored in the statement of optimality conditions
- Active inequality constraints can be treated to a large extent as equality constraints
x^{\star} is also a local minimum of

$$
\begin{aligned}
& x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \quad \text { s.t. } \\
& h_{i}(x)=0, \quad i \in\{1, \cdots, m\} \\
& g_{j}(x)=0, \quad \forall j \in A\left(x^{\star}\right)
\end{aligned}
$$

If x^{\star} is regular for this equivalent optimization problem, then there exists Lagrange multipliers $\lambda_{1}^{\star}, \cdots, \lambda^{\star}$, and $\mu_{j}^{\star}, j \in A\left(x^{\star}\right)$:

$$
\nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)+\sum_{j \in A\left(x^{\star}\right)} \mu_{j}^{\star} \nabla g_{j}\left(x^{\star}\right)=0
$$

But we need to require that $\mu_{j}^{\star} \geqslant 0$ for $j \in A\left(x^{\star}\right)$.

Necessary Conditions for Optimality: equality and inequality conditions

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{r} \mu_{j} g_{j}(x)
$$

Proposition (Karush-Huhn-Tucker Necessary conditions)

Let x^{\star} be a local minimum of $x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)$ s.t.

$$
\begin{aligned}
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

where f, h_{i} and g_{j} are continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}. Assume the x^{\star} is regular. Then there exists unique Lagrange multiplier vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}\right)$, s.t.

$$
\begin{aligned}
& \nabla_{\mathrm{x}} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0 \\
& \mu_{\mathrm{j}}^{\star} \geqslant 0, \quad \mathfrak{j}=1, \cdots, r \\
& \mu_{\mathrm{j}}^{\star}=0, \quad \forall \mathrm{j} \notin \underbrace{A\left(x^{\star}\right)}_{\text {active constraint set }}
\end{aligned}
$$

If in addition $f g$ and h are twice continuously differentiable we have

$$
y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right) y \geqslant 0
$$

for all
$y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{n} \mid \nabla h_{i}\left(x^{\star}\right)^{\top} y=0, \quad \forall i=1, \cdots, m, \quad \nabla g_{j}\left(x^{\star}\right)^{\top} y=0, \quad j \in A\left(x^{\star}\right)\right\}$.

Sufficiency Conditions for Optimality

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{r} \mu_{j} g_{j}(x)
$$

Second Order Sufficiency Conditions

Assume that f, h_{i} and g_{j} are twice continuously differentiable f, and let $x^{\star} \in \mathbb{R}^{n}$, $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{m}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}\right)$ satisfy

$$
\begin{aligned}
& \nabla_{x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0, \quad h\left(x^{\star}\right)=0_{m}, \\
& \mu_{j}^{\star} \geqslant 0, \quad j=1, \cdots, r, \\
& \mu_{j}^{\star}=0, \quad \forall j \notin A\left(x^{\star}\right), \\
& y^{\top} \nabla_{x x} L\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right) y>0,
\end{aligned}
$$

for all $y \in \mathbb{R}^{n}$ such that $\nabla h_{i}\left(x^{\star}\right)^{\top} y=0, \forall i=1, \cdots, m, \quad \nabla g_{j}\left(x^{\star}\right)^{\top} y=0, j \in A\left(x^{\star}\right)$.
Assume also that

$$
\mu_{\mathrm{j}}^{\star}>0, \quad \forall j \in A\left(x^{\star}\right)
$$

Then x^{\star} is a strict local minimum of

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \text { s.t. } \\
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

Solution approach

One approach for using necessary conditions to solve inequality constrained problems is to consider separately all the possible combinations of constraints being active or inactive.

Constrained optimization: numerical example

$$
\begin{array}{r}
\operatorname{minimize} f(x)=x_{1}+x_{2} \text { subject to } \\
g(x)=\left(x_{1}-1\right)^{2}+x_{2}^{2}-1 \leqslant 0
\end{array}
$$

- H1: Constraint is active. To validate H 1 , we should have $\mu \geqslant 0$.

$$
\mathrm{L}(\mathrm{x}, \mu)=\mathrm{x}_{1}+\mathrm{x}_{2}+\mu\left(\mathrm{x}_{1}-1\right)^{2}+\mathrm{x}_{2}^{2} \leqslant 1
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(\mathrm{x}, \mu)=1+2 \mu\left(\mathrm{x}_{1}-1\right)=0 \\
\nabla_{x_{2}} \mathrm{~L}(\mathrm{x}, \mu)=1+2 \mu\left(\mathrm{x}_{2}\right)=0 \\
\nabla_{\mu} \mathrm{L}(\mathrm{x}, \mu)=\left(\mathrm{x}_{1}-1\right)^{2}+\mathrm{x}_{2}^{2}-1=0
\end{array}\right\} \Rightarrow \mathrm{f} \begin{aligned}
& \begin{cases}\mathrm{x}_{1}=1, \mathrm{x}_{2}=1, \mu=-\frac{1}{2} & \text { since } \mu<0 \text { this solution is not acceptable } \\
x_{1}^{\star}=1, x_{2}^{\star}=-1, \mu^{\star}=\frac{1}{2} & \text { since } \mu^{\star}>0 \text { this solution is a candidate for local minimizer }\end{cases}
\end{aligned}
$$

SONC:

$$
y \nabla_{x x} L\left(x^{\star}, \mu^{\star}\right) y \geqslant 0 \text { for } y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{2} \mid \nabla g\left(x^{\star}\right)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
0 & -2
\end{array}\right] y=0\right.\right\}
$$

Since $\nabla_{x x} \mathrm{~L}\left(x^{\star}, \mu^{\star}\right)=\left[\begin{array}{cc}2 \mu^{\star} & 0 \\ 0 & 2 \mu^{\star}\end{array}\right]>0\left(\mu^{\star}=\frac{1}{2}\right)$, then SONC condition is definitely satisfied.
Also since the condition holds for strict >0, then the second order sufficiency condition is satisfied and $x_{1}^{\star}=1, x_{2}^{\star}=-1$ is a local minimizer.

- H2: Constraint is not active. To validate H 2 , we should check that the identified stationary points x^{\star} satisfy $g\left(x^{\star}\right)<0$.

$$
\left.\begin{array}{c}
\nabla_{x_{1}} f(x)=1=0 \\
\nabla_{x_{2}} f(x)=1=0
\end{array}\right\} \Rightarrow \text { there is no solution in this case }
$$

Constrained optimization: numerical example

$$
\operatorname{minimize} f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2} \text { subject to }
$$

$$
\begin{aligned}
& g_{1}(x)=x_{1}^{2}+x_{2}^{2}-5 \leqslant 0 \\
& g_{2}(x)=3 x_{1}+x_{2}-6 \leqslant 0
\end{aligned}
$$

$$
\nabla_{x} f(x)=\left[\begin{array}{l}
4 x_{1}+2 x_{2}-10 \\
2 x_{1}+2 x_{2}-10
\end{array}\right], \quad \nabla_{x} g_{1}(x)=\left[\begin{array}{c}
2 x_{1} \\
3
\end{array}\right], \quad \nabla_{x} g_{2}(x)=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right]
$$

- H 1 : both constraints are inactive: $\mathrm{g}_{1}<0, \mathrm{~g}_{2}<0$ and $\mu_{1}=\mu_{2}=0$.

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} f(x)=4 x_{1}+2 x_{2}-10=0 \\
\nabla_{x_{2}} f(x)=2 x_{1}+2 x_{2}-10=0
\end{array}\right\} \Rightarrow x_{1}=0, x_{2}=5
$$

$g_{1}\left(x_{1}=0, x_{2}=5\right)=20>0$ and $g_{2}\left(x_{1}=0, x_{2}=-1<0\right.$. Since $H 1$ is not correct, this case is not possible.

- H 2 : both constraints are active: $\mathrm{g}_{1}=0, \mathrm{~g}_{2}=0$ and $\mu_{1}, \mu_{2} \geqslant 0$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{1}\left(x_{1}^{2}+x_{2}^{2}-5\right)+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+2 \mu_{1} x_{1}+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+2 \mu_{2} x_{2}+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=x_{1}^{2}+x_{2}^{2}-5=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow \text { since } \mu_{1}<0 \text { this solution is not acceptable. } \quad\left\{\begin{array}{l}
x=\left[\begin{array}{c}
2.1742 \\
-0.5225
\end{array}\right], \mu=\left[\begin{array}{c}
-2.37 \\
4.22
\end{array}\right] \quad \text { since } \mu_{2}<0 \text { this solution is not acceptable. } \\
x=\left[\begin{array}{c}
1.4258 \\
1.7228
\end{array}\right], \mu=\left[\begin{array}{c}
1.37 \\
-1.02
\end{array}\right] \quad
\end{array}\right.
$$

Constrained optimization: numerical example

- H3: g_{1} is inactive $\left(g_{1}<0, \mu_{1}=0\right)$, and g_{2} is active $\left(\mu_{2} \geqslant 0\right)$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow x=\left[\begin{array}{l}
0.4 \\
0.8
\end{array}\right\}, \mu_{2}=-0.4
$$

$$
\text { since } \mu_{2}<0 \text { this solution is not acceptable. }
$$

- H4: g_{2} is inactive $\left(g_{2}<0, \mu_{2}=0\right)$, and g_{1} is inactive $\left(\mu_{1} \geqslant 0\right)$.

$$
\mathrm{L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}^{2}-10 \mathrm{x}_{1}-10 \mathrm{x}_{2}+\mu_{1}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(\mathrm{x}, \mu)=4 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{1}=0 \\
\nabla_{x_{2}} \mathrm{~L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(\mathrm{x}, \mu)=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5=0
\end{array}\right\} \Rightarrow x^{\star}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mu_{1}^{\star}=1
$$

since $\mu_{1} \geqslant 0$ this solution is qualified as KKT solution.
Now we need to validate $\mathrm{H} 4: \mathrm{g}_{2}\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=2\right)=-1<0$, therefore H 4 is correct. SONC:

$$
y \nabla_{x x} L\left(x^{\star}, \mu^{\star}\right) y \geqslant 0 \text { for } y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{2} \mid \nabla g_{1}\left(x^{\star}\right)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
2 & 4
\end{array}\right] y=0\right.\right\}
$$

Since $\nabla_{x x} \mathrm{~L}\left(x^{\star}, \mu^{\star}\right)=\left[\begin{array}{cc}4+2 \mu_{1}^{\star} & 2 \\ 2 & 2+2 \mu_{1}^{\star}\end{array}\right]>0\left(\mu^{\star}=1\right)$, then SONC condition is definitely satisfied. Also since the condition holds for strict >0, then the second order sufficiency condition is satisfied and $x_{1}^{\star}=1, x_{2}^{\star}=2$ is a local minimizer.

Optimal control and its connection to constrained optimization

Optimal Control Example

Single stage system

Multi stage system
 $x(0)=x_{0} \in \mathbb{R}^{n}$.

$$
u^{\star}(0)=\operatorname{argmin} \underbrace{\phi(x(1))+L^{0}(x(0), u(0))}_{J(u(0))}
$$

$$
\text { s.t. } \quad x(1)=f^{0}(x(0), u(0))
$$

$$
x(0)=x_{0} \in \mathbb{R}^{n}
$$

Constrained optimization

Trivial solution: solve via direct substitution, i.e.,
(1) find x in terms of u from $f(x, u)=0$,
(2) substitute in $F(x, u)$ to eliminate x and obtain an unconstrained optimization problem in terms of u.

Works best for simple linear $f^{\prime} s$ (assumption is that not both of f and F are linear)

Constrained optimization

$$
\begin{aligned}
& u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(x, u) \text {, s.t., } \\
& \\
& f(x, u)=0
\end{aligned}
$$

where $F: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ are differentiable.
Feasible set: $\mathcal{S}_{\text {feas }}=\left\{(x, u) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \mid f(x, u)=0\right\}$.
To obtain a criterion for optimality (in minimization sense):

- start with $(\mathrm{x}, \mathrm{u}) \in \mathcal{S}_{\text {feas }}$ as candidate for local minimum,
- we investigate how dF changes for points in $\mathcal{S}_{\text {feas }}$ in close neighborhood of (x, u)

First-order analysis:

$$
\begin{aligned}
& f(x+d x, u+d u) \approx f(x, u)+f_{u}^{\top} d u+f_{x}^{\top} d x \\
& F(x+d x, u+d u) \approx F(x, u)+\underbrace{F_{u}^{\top} d u+F_{x}^{\top} d x}_{d F},
\end{aligned}
$$

Constrained optimization

First-order necessary condition for a point to be a minimizer:

$$
\left\{\begin{array} { l }
{ f _ { u } ^ { \top } d u + f _ { x } ^ { \top } d x = 0 , } \\
{ F _ { x } ^ { \top } d x + F _ { u } ^ { \top } d u \geqslant 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
\text { let du vary freely, but } d x=-\left(f_{x}\right)^{-\top}\left(f_{u}\right)^{\top} d u \\
1^{\text {st }} \text { order Neces. condition : } F_{u}-f_{u} f_{x}^{-1} F_{x}=0
\end{array}\right.\right.
$$

Critical point: $d F=0$ for neighboring points $(x+d x, u+d u) \in \mathcal{S}_{\text {feas }}$

$$
\left\{\begin{array} { l }
{ f _ { u } ^ { \top } d u + f _ { x } ^ { \top } d x = 0 , } \\
{ F _ { x } ^ { \top } d x + F _ { u } ^ { \top } d u = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
\text { Neces. and sufficient condition for a point to be critical point : } \\
F_{u}-f_{u} f_{x}^{-1} F_{x}=0 .
\end{array}\right.\right.
$$

Constrained optimization: method of Lagrange multipliers

$$
\begin{aligned}
& u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(x, u) \text {, s.t., } \\
& \\
& f(x, u)=0
\end{aligned}
$$

where $F: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ are differentiable.

- to determine neighboring points, $\mathrm{d} x$ and du are not independent
- Lagrange multiplier $\lambda=\left[\lambda_{1}, \cdots, \lambda_{n}\right]^{\top} \in \mathbb{R}^{n}$ captures this dependency

$$
\begin{aligned}
H(x, u, \lambda) & =F(x, u)+\lambda^{\top} f(x, u) \\
f(x, u) & =0
\end{aligned}
$$

First-order analysis
Necessary and sufficient cond. for critical point

$$
\left\{\begin{array}{l}
d x=-\left(f_{x}\right)^{-\top}\left(f_{u}\right)^{\top} d u \\
\lambda=-\left(f_{x}\right)^{-1} F_{x}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\frac{\partial H}{\partial x}=F_{x}+f_{x} \lambda=0 \\
\frac{\partial H}{\partial u}=F_{u}+f_{u} \lambda= \\
\frac{\partial H}{\partial \lambda}=0 \Rightarrow f(x, u)=0
\end{array}\right.
$$

Example

$$
\begin{gathered}
\min F(x, u)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 u_{1} u_{2}+u_{2}^{2}+u_{1}^{2} \\
\left\{\begin{array}{l}
f^{1}(x, u)=x_{1}-x_{2}+u_{1}=0 \\
f^{1}(x, u)=x_{2}+2 x_{3}-u_{2}+1=0 \\
f^{2}(x, u)=x_{2}+x_{3}+x_{1}=0
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& f_{x}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right], \quad f_{u}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right], \quad F_{x}=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2} \\
2 x_{3}
\end{array}\right], \quad F_{u}=\left[\begin{array}{l}
2 u_{1}+2 u_{2} \\
2 u_{2}+2 u_{1}
\end{array}\right] \\
& H=F(x, u)+\lambda^{\top} f(x, u)=F(x, u)+\lambda_{1} f^{1}(x, u)+\lambda_{2} f^{2}(x, u)+\lambda_{3} f^{3}(x, u) \\
& ------ \\
& H_{u}=\left[\begin{array}{c}
\frac{\partial F(x, u)}{\partial u_{1}}+\lambda_{1} \frac{\partial f^{1}(x, u)}{\partial u_{1}}+\lambda_{2} \frac{\partial f^{2}(x, u)}{\partial u_{1}}+\lambda_{3} \frac{\partial f^{3}(x, u)}{\partial u_{1}} \\
\frac{\partial f(x, u)}{\partial u_{2}}+\lambda_{1} \frac{\partial f^{1}(x, u)}{\partial u_{2}}+\lambda_{2} \frac{\partial f^{2}(x, u)}{\partial u_{2}}+\lambda_{3} \frac{\partial f^{3}(x, u)}{\partial u_{2}}
\end{array}\right] \\
& =F_{u}+f_{u} \lambda=\left[\begin{array}{ll}
2 u_{1}+2 u_{2} \\
2 u_{2}+2 u_{1}
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \lambda=\left[\begin{array}{c}
2 u_{1}+2 u_{2}+\lambda_{1} \\
2 u_{2}+2 u_{1}-\lambda_{2}
\end{array}\right] \\
& -------- \\
& H_{x}=F_{x}+f_{x} \lambda=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2} \\
2 x_{3}
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right] \lambda=\left[\begin{array}{c}
2 x_{1}+\lambda_{1}+\lambda_{3} \\
2 x_{2}-\lambda_{1}+\lambda_{2}+\lambda_{3} \\
2 x_{3}+2 \lambda_{2}+\lambda_{3}
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{H}_{u}=0 \Rightarrow\left\{\begin{array}{l}
2 u_{1}+2 u_{2}+\lambda_{1}=0 \\
2 u_{2}+2 u_{1}-\lambda_{2}=0
\end{array}\right. \\
& \mathrm{H}_{\mathrm{x}}=0 \Rightarrow\left\{\begin{array}{l}
2 x_{1}+\lambda_{1}+\lambda_{3}=0 \\
2 x_{2}-\lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
2 x_{3}+2 \lambda_{2}+\lambda_{3}=0
\end{array}\right. \\
& \mathbf{f}(\mathrm{x}, \mathrm{u})=0 \Rightarrow\left\{\begin{array}{l}
x_{1}-x_{2}+u_{1}=0 \\
x_{2}+2 x_{3}-u_{2}+1=0 \\
x_{2}+x_{3}+x_{1}=0
\end{array}\right.
\end{aligned}
$$

7 equations, 7 unknowns: can be solved to find critical point(s)

$$
\begin{aligned}
& \lambda_{1}^{\star}=2, \\
& \lambda_{2}^{\star}=-2, \\
& \lambda_{3}^{\star}=2, \\
& x_{1}^{\star}=-2, \\
& x_{2}^{\star}=1, \\
& x_{3}^{\star}=1, \\
& u_{1}^{\star}=3, \\
& u_{2}^{\star}=-4 .
\end{aligned}
$$

Constrained optimization: second order necessary and sufficient conditions for optimality

$$
\begin{array}{cc}
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(x, u), \text { s.t., } & u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} H(x, u)=F(x, u)+\lambda^{\top} f(x, u), \text { s.t., } \\
f(x, u)=0 & \\
& f(x, u)=0
\end{array}
$$

Second-order analysis around critical point

Necessary and sufficient cond. for (x^{\star}, u^{\star}) to be a critical point

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\frac{\partial H}{\partial x}=F_{x}+f_{x} \lambda=0, \quad \frac{\partial H}{\partial u}=F_{u}+f_{u} \lambda=0, @\left(x^{\star}, u^{\star}\right) \\
\frac{\partial H}{\partial \lambda}=0 \Rightarrow f\left(x^{\star}, u^{\star}\right)=0 .
\end{array}\right. \\
\left(x^{\star}+d x, u^{\star}+d u\right) \in \mathcal{S}_{\text {feas }}: d x=-\left(f_{x}\right)^{-\top} f_{u}^{\top} d u . \\
H\left(x^{\star}+d x, u^{\star}+d u\right)= \\
H\left(x^{\star}, u^{\star}\right)+H_{u}^{\top} d u+H_{x}^{\top} d x+\frac{1}{2} d x^{\top} H_{x x} d x+d x^{\top} H_{x u} d u+\frac{1}{2} d u^{\top} H_{u u} d u+O(3)= \\
H\left(x^{\star}, u^{\star}\right)+\frac{1}{2}\left[d x^{\top} \quad d u^{\top}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{l}
d x \\
d u
\end{array}\right]+O(3)= \\
H\left(x^{\star}, u^{\star}\right)+\frac{1}{2} d u^{\top}\left[-f_{u}\left(f_{x}\right)^{-1}\right. \\
I
\end{array}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
-\left(f_{x}\right)^{-\top} f_{u}^{\top} \\
I
\end{array}\right] d u+O(3) \text { I } \quad l
$$

Constrained optimization: second order necessary and sufficient conditions

 for optimality- $2^{\text {nd }}$ order necessary cond.

$$
\begin{gathered}
d u^{\top}\left[\begin{array}{ll}
-f_{u}\left(f_{x}\right)^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
\mathrm{H}_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
-\left(f_{x}\right)^{-\top} f_{u}^{\top} \\
I
\end{array}\right] d u \geqslant 0 \\
{\left[\begin{array}{ll}
-f_{u}\left(f_{x}\right)^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x} & H_{u \mathfrak{u}}
\end{array}\right]\left[\begin{array}{c}
-\left(f_{x}\right)^{-\top} f_{u}^{\top} \\
I
\end{array}\right] \geqslant 0, @\left(x^{\star}, u^{\star}\right) \text { positive semi-definite matrix }}
\end{gathered}
$$

- $2^{\text {nd }}$ order necessary cond.

$$
\begin{aligned}
& d u^{\top}\left[\begin{array}{ll}
-f_{u}\left(f_{x}\right)^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
-\left(f_{x}\right)^{-\top} f_{u}^{\top} \\
I
\end{array}\right] d u>0, \quad d u \neq 0 \\
& {\left[\begin{array}{ll}
-f_{u}\left(f_{x}\right)^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
-\left(f_{x}\right)^{-\top} f_{u}^{\top} \\
I
\end{array}\right]>0, @\left(x^{\star}, u^{\star}\right) \text { positive definite matrix }}
\end{aligned}
$$

Constrained optimization: an iterative solver

$$
\begin{array}{cc}
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(x, u), & \text { s.t., } \\
f(x, u)=0 & u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} H(x, u)=F(x, u)+\lambda^{\top} f(x, u), \quad \text { s.t., } \\
& f(x, u)=0
\end{array}
$$

$$
\begin{aligned}
& d x=-\left(f_{x}\right)^{-\top}\left(f_{u}\right)^{\top} d u \text {, } \\
& \lambda^{\top}=-\left(f_{x}\right)^{-1} F_{x} \text {, } \\
& d F=F_{x}^{\top} d x+F_{u}^{\top} d u \\
& =\left(-f_{u}\left(f_{x}\right)^{-1} F_{x}+F_{u}\right)^{\top} d u \\
& =\left(F_{u}+f_{u} \lambda\right)^{\top} d u \\
& =H_{u}^{\top} d u
\end{aligned}
$$

Necessary and sufficient cond. for critical point

$$
\left\{\begin{array}{l}
\frac{\partial H}{\partial x}=F_{x}+f_{x} \lambda=0, \\
\frac{\partial H}{\partial u}=F_{u}+f_{u} \lambda=0, \\
\frac{\partial H}{\partial \lambda}=0 \Rightarrow f(x, u)=0 .
\end{array}\right.
$$

(1) Select initial $u(k), k=0$
(2) Determine $x(k)$ from $f(x(k), u(k))=0$
(3) Determine $\lambda=-\left(f_{x}\right)^{-1} F_{x}$
(9) Determine $\frac{\partial H}{\partial u}=F_{u}+f_{u} \lambda$
(6) Determine $u(k+1)=u(k)-\alpha H_{u}$
(0) Determine predicted change in value of F

$$
\Delta \mathrm{F}=\Delta \mathrm{H}=\mathrm{H}_{\mathfrak{u}}^{\top} \Delta \mathrm{u}=-\alpha \mathrm{H}_{\mathfrak{u}}^{\top} \mathrm{H}_{\mathrm{u}} .
$$

If $\Delta \mathrm{F}=\Delta \mathrm{H}$ is sufficiently small, stop. Otherwise go to step 2.

Constrained optimization: fmincon

Problem:

$$
\begin{gathered}
\operatorname{minimize} F(x, u)=x^{2}+u^{2}, \text {.s.t., } \\
x+u+2=0
\end{gathered}
$$

Code for fmincon:

- a function to list equality constraints
function $[c, c e q]=$ EqualFun (x)
ceq $=\times(1)+\times(2)+2$;
$\mathrm{c}=[]$;
- the main code
nonlcon $=$ @EqualFun;
A = [];
$\mathrm{b}=[]$;
Aeq $=[] ;$
beq $=[]$;
$\mathrm{lb}=[] ;$
$\mathrm{ub}=[] ;$
$x 0=[0,0]$;
$[x, f v a l$, exitflag,output $]=$ fmincon(fun $, x 0, A, b$, Aeq,beq, lb, ub,nonlcon $)$

Optimal control and its connection to constrained optimization

$$
\begin{gathered}
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(x, u) \text {, s.t., } \\
f(x, u)=0
\end{gathered}
$$

where $F: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ and $\mathrm{f}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ are differentiable.

Optimal Control Example

Single stage system

$u^{\star}(0)=\operatorname{argmin} \underbrace{\phi(x(1))+\mathrm{L}^{0}(x(0), u(0))}_{\mathrm{J}(\mathrm{u}(0))}$
s.t. $\quad x(1)=f^{0}(x(0), u(0))$, $x(0)=x_{0} \in \mathbb{R}^{n}$.

Multi stage system

$$
u^{\star}=\operatorname{argmin} \underbrace{\phi(x(N))+\sum_{k=0}^{N-1} L^{i}(x(i), u(i))}_{J(u(0), \cdots, u(N-1))} \text { s.t. }
$$

$$
x(N)=f^{N-1}(x(N-1), u(N-1))
$$

$$
x(1)=f^{0}(x(0), u(0))
$$

$$
x(0)=x_{0} \in \mathbb{R}^{n}
$$

First order optimality condition for single stage optimal control

$$
\begin{aligned}
u(0)^{\star}= & \underset{u(0) \in \mathbb{R}^{m}}{\operatorname{argmin}} J(x(1), u(0))=\phi(x(1))+L^{0}(x(0), u(0)), \quad \text { s.t., } \\
& x(1)=f^{0}(x(0), u(0)), \quad x(1) \in \mathbb{R}^{n}, u(0) \in \mathbb{R}^{m}, \\
& x(0)=x_{0} \in \mathbb{R}^{n}, \quad \text { (given initial condition). }
\end{aligned}
$$

- $\bar{J}=J+\lambda(1)^{\top}\left(f^{0}(x(0), u(0))-x(1)\right)=\phi(x(1))+L^{0}(x(0), u(0))+\lambda(1)^{\top}\left(f^{0}(x(0), u(0))-x(1)\right)$
- Let $\left.H^{0}(x(0), u(0)), \lambda(1)\right)=L^{0}(x(0), u(0))+\lambda(1)^{\top}\left(f^{0}(x(0), u(0))\right)$.
- Then, we can rewrite $\overline{\mathrm{J}}$ as $\overline{\mathrm{J}}=\left(\phi(x(1))-\lambda(1)^{\top} x(1)\right)+\mathrm{H}^{0}(x(0), u(0), \lambda(1))$.

First order analysis:

$$
\begin{aligned}
\bar{J}(x(1)+d x(1), u(0)+ & d u(0))=\bar{J}(x(1), u(0))+ \\
& \underbrace{\left(\frac{\partial \phi(x(1))}{\partial x(1)}-\lambda(1)\right)^{\top} d x(1)+\left(\frac{\partial H^{0}}{\partial x(0)}\right)^{\top} d x(0)+\left(\frac{\partial H^{0}}{\partial u(0)}\right)^{\top} d u(0)}_{d \bar{J}}
\end{aligned}
$$

Here $\mathrm{dx}(0)=0$ because the initial condition is given (no need for variation). Think of $\mathrm{du}(0)$ as free variable and $\mathrm{dx}(1)$ the dependent variable, which is defined from the constraint equation (constraint equation relates $\mathrm{dx}(1)$ to $\mathrm{du}(0))$. Next, pick $\lambda(1)$ such that

$$
\frac{\partial \phi(x(1))}{\partial x(1)}-\lambda(1)=0
$$

which gives us $\overline{\mathrm{J}}(x(1)+\mathrm{dx}(1), \mathrm{u}(0)+\mathrm{du}(0))=\overline{\mathrm{J}}(x(1), \mathbf{u}(0))+\underbrace{\left(\frac{\partial \mathrm{H}^{0}}{\partial u(0)}\right)^{\top} \mathrm{du}(0)}_{\mathrm{d} \overline{\mathrm{J}}}$.

First order optimality condition for single stage optimal control (cont'd)

- For $(x(1), u(0))$ to be a minimum point we need $d \bar{J}=\left(\frac{\partial H^{0}}{\partial u(0)}\right)^{\top} d u(0) \geqslant 0$. Because we are free to vary $\mathrm{du}(0)$ in all directions, then the necessary condition for $(x(1), u(0))$ to be a minimum point is $\frac{\partial H^{0}}{\partial u(0)}=0$.
- To summarize:

First order necessary condition for $(x(1), \mathfrak{u}(0))$ to be a minimum point:

$$
\begin{cases}\lambda(1)=\frac{\partial \phi(x(1))}{\partial x(1)}, & n \text { eq } \\ \frac{\partial H^{0}}{\partial u(0)}=0, & m \text { eq } \\ x(1)=f^{0}(x(0), u(0)), & n \text { eq }\end{cases}
$$

Here, we have $2 n+m$ equation for $2 n+m$ unknowns (the unknowns in the set of equations above are $\lambda(1) \in \mathbb{R}^{n}, x(1) \in \mathbb{R}^{n}$ and $\left.u(0) \in \mathbb{R}^{m}\right)$.
${ }^{1}$ which can also be written as $x(1)=\frac{\partial H^{0}}{\partial \lambda(1)}$

The following material will be discussed in the next lecture.

First order optimality condition for multi-stage optimal control

$$
\begin{aligned}
& \left(u^{\star}(0), \cdots, u^{\star}(N-1)\right)=\underset{\left(u(0) \in \mathbb{R}^{m}, \cdots, u(N-1) \in \mathbb{R}^{m}\right.}{\operatorname{argmin}} \underset{=}{\underset{\sim}{m}}(x(N))+\sum_{i=0}^{N-1} L^{i}(x(i), u(i)), \quad \text { s.t., } \\
& \quad x(1)=f^{0}(x(0), u(0)), \quad x(1) \in \mathbb{R}^{n}, u(0) \in \mathbb{R}^{m}, \\
& \quad \vdots \\
& \quad x(N)=f^{N-1}(x(N-1), u(N-1)), \quad x(N) \in \mathbb{R}^{n}, u(N-1) \in \mathbb{R}^{m}, \\
& \\
& \left.x(0)=x_{0} \in \mathbb{R}^{n}, \quad \text { (given initial condition }\right) .
\end{aligned}
$$

- $\bar{J}=J+\lambda_{1}^{\top}\left(f^{0}\left(x_{0}, u_{0}\right)-x_{1}\right)+\cdots+\lambda_{N}^{\top}\left(f^{N-1}\left(x_{N-1}, u_{N-1}\right)-x_{N}\right)=$

$$
\phi\left(x_{N}\right)+\sum_{i=0}^{N-1}\left(L^{i}\left(x_{i}, u_{i}\right)+\lambda_{i+1}^{\top}\left(f^{i}\left(x_{i}, u_{i}\right)-x_{i+1}\right)\right)
$$

- Let $\left.H^{i}\left(x_{i}, u_{i}\right), \lambda_{i+1}\right)=L^{i}\left(x_{i}, u_{i}\right)+\lambda_{i+1}^{\top}\left(f^{i}\left(x_{i}, u_{i}\right)\right)$.
- Then, we can rewrite \bar{J} as $\bar{J}=\left(\phi\left(x_{N}\right)-\lambda_{N}^{\top} x_{N}\right)+\sum_{i=1}^{N-1}\left(H^{i}\left(x_{i}, u_{i}\right)-\lambda_{i}^{\top} x_{i}\right)+H^{0}$.

First order analysis: Here $\mathrm{dx}(0)=0$ because the initial condition is given (no need for variation).

$$
\begin{aligned}
d \bar{J} & =\left(\frac{\partial \phi\left(x_{N}\right)}{\partial x_{N}}-\lambda_{N}\right)^{\top} d x_{N}+\sum_{i=1}^{N-1}\left(\left(\frac{\partial H^{i}}{\partial x_{i}}\right)^{\top} d x_{i}+\left(\frac{\partial H^{i}}{\partial u_{i}}\right)^{\top} d u_{i}-\lambda_{i}^{\top} d x_{i}\right)+\left(\frac{\partial H^{0}}{\partial x_{0}}\right)^{\top} d x_{0}+\left(\frac{\partial H^{0}}{\partial u_{0}}\right)^{\top} d u_{0} \\
& =\left(\frac{\partial \phi\left(x_{N}\right)}{\partial x_{N}}-\lambda_{N}\right)^{\top} d x_{N}+\sum_{i=1}^{N-1}\left(\left(\frac{\partial H^{i}}{\partial x_{i}}-\lambda_{i}\right)^{\top} d x_{i}+\left(\frac{\partial H^{i}}{\partial u_{i}}\right)^{\top} d u_{i}\right)+\left(\frac{\partial H^{0}}{\partial u_{0}}\right)^{\top} d u_{0}
\end{aligned}
$$

First order optimality condition for multi-stage optimal control (cont'd)

- Think of $\mathrm{du}(\mathrm{i}), i=0, \cdots, N-1$ as free variable and $\mathrm{dx}(i+1)$ the dependent variable, which is defined from the constraint equation (constraint equation relates $d x(i+1)$ to $d u(i))$.
- Next, pick λ_{N} such that

$$
\frac{\partial \phi\left(x_{N}\right)}{\partial x_{N}}-\lambda_{N}=0
$$

- also pick λ_{i}, such that

$$
\frac{\partial \mathrm{H}^{\mathrm{i}}}{\partial x_{\mathrm{i}}}-\lambda_{\mathrm{i}}=0, \quad \mathrm{i}=1, \cdots, \mathrm{~N}-1
$$

- Then, we have

$$
d \bar{J}=\sum_{i=1}^{N-1}\left(\left(\frac{\partial H^{i}}{\partial u_{i}}\right)^{\top} d u_{i}\right)+\left(\frac{\partial H^{0}}{\partial u_{0}}\right)^{\top} d u_{0}
$$

For $(u(0), \cdots, u(N-1), x(1), \cdots, x(N))$ to be a minimum point we need
$d \bar{J}=\sum_{i=1}^{N-1}\left(\left(\frac{\partial H^{i}}{\partial u_{i}}\right)^{\top} d u_{i}\right)+\left(\frac{\partial H^{0}}{\partial u_{0}}\right)^{\top} d u_{0} \geqslant 0$. Because we are free to vary $d u_{i}$,
$i=0, \cdots, N-1$ in all directions, then the necessary condition for
$(u(0), \cdots, u(N-1), x(1), \cdots, x(N))$ to be a minimum point is $\frac{\partial H^{i}}{\partial u_{i}}=0, i=0, \cdots, N-1$.

- Putting all the conditions we stated and derived, we obtain: First order necessary condition for $(x(1), u(0))$ to be a minimum point:

$$
\begin{cases}\lambda_{N}=\frac{\partial \phi\left(x_{N}\right)}{\partial x_{N}}, & n \text { eq } \\ \frac{\partial H^{i}}{\partial u_{i}}=0, \quad i=0, \cdots, N-1 & N m \text { eq } \\ x_{i+1}=f^{i}\left(x_{i}, u_{i}\right), \quad i=0, \cdots, N-1 & N n e^{2}\end{cases}
$$

Here, we have $2 \mathrm{Nn}+\mathrm{Nm}$ equation for $2 \mathrm{Nn}+\mathrm{m}$ unknowns (the unknowns in the set of equations above are $\lambda_{i} \in \mathbb{R}^{n}, x_{i} \in \mathbb{R}^{n}$ and $\left.u_{i-1} \in \mathbb{R}^{m}, i=1, \cdots, N\right)$.
${ }^{2}$ which can also be written as $x_{i+1}=\frac{\partial H^{i}}{\partial \lambda_{i+1}}$

Optimal control of multi-stage systems over finite horizon

$$
u^{\star}=\operatorname{argmin} \underbrace{\phi(x(N))+\sum_{k=0}^{N-1} L^{k}(x(k), u(k))}_{J(u(0), \cdots, u(N-1))} \text { s.t. }
$$

$H^{k}=L^{k}(x(k), u(k))+\lambda(k+1)^{\top} f^{k}(x(k), u(k)), \quad k=0,1, \cdots, N-1$

Free final state
$\lambda(N)=\frac{\partial \phi(x(N))}{\partial x(N)}$,
$\lambda(k)=\frac{\partial H^{k}}{\partial x(k)}, k=1, \cdots, N-1$,
$0=\frac{\partial H^{k}}{\partial u(k)}, k=0, \cdots, N-1$,
$x(k+1)=\frac{\partial H^{k}}{\partial \lambda(k+1)}, k=1, \cdots, N-1$,
$\begin{cases}x(0)=x_{0}, & \text { given initial condition, } \\ 0=\frac{\partial H^{0}}{\partial x(0)}, & \text { free initial condition. }\end{cases}$

$$
\begin{aligned}
& \text { Constrained final state, i.e., } \\
& \psi(x(n))=0, \quad \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, p \leqslant N
\end{aligned}
$$

$$
\begin{aligned}
& \psi(x(n))=0 \\
& \lambda(N)=\frac{\partial\left(\phi(x(N))+v^{\top} \psi(x(n))\right)}{\partial x(N)} \\
& \lambda(k)=\frac{\partial H^{k}}{\partial x(k)}, k=1, \cdots, N-1
\end{aligned}
$$

$$
0=\frac{\partial H^{k}}{\partial u(k)}, \quad k=0, \cdots, N-1
$$

$$
x(k+1)=\frac{\partial H^{k}}{\partial \lambda(k+1)}, k=1, \cdots, N-1
$$

$$
\begin{cases}x(0)=x_{0}, & \text { given initial condition, } \\ 0=\frac{\partial H^{0}}{\partial x(0)}, & \text { free initial condition. }\end{cases}
$$

Optimal control of multi-stage systems over finite horizon: regulator problem

$$
H^{k}=\frac{1}{2} x_{k}^{\top} Q_{k} x_{k}+\frac{1}{2} u_{k}^{\top} R_{k} u_{k}+\lambda_{k+1}^{\top}\left(A_{k} x_{k}+B_{k} u_{k}\right), \quad k=0,1, \cdots, N-1
$$

Free final state: Linear systems with given initial condition

$$
\begin{array}{ll}
\lambda(N)=\frac{\partial \phi(x(N))}{\partial x(N)} & \Longrightarrow \lambda_{N}=S_{N} x_{N} \\
\lambda(k)=\frac{\partial H^{k}}{\partial x(k)}, \quad k=1, \cdots, N-1 & \Longrightarrow \lambda_{k}=Q_{k} x_{k}+A_{k}^{\top} \lambda_{k+1}, \quad k=1, \cdots, N \\
0=\frac{\partial H^{k}}{\partial u(k)}, \quad k=0, \cdots, N-1 \\
x(k+1)=\frac{\partial H^{k}}{\partial \lambda(k+1)} & \Longrightarrow 0=R_{k} u_{k}+B_{k}^{\top} \lambda_{k+1}, \quad k=0, \cdots, N-1 \\
\quad=f^{k}(x(k), u(k)), k=0, \cdots, N-1 & \Longrightarrow x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \quad k=1, \cdots, N-1 \\
x(0)=x_{0} & \Longrightarrow x(0)=x_{0}
\end{array}
$$

$$
\begin{aligned}
& u^{\star}=\operatorname{argmin} \frac{1}{2} x_{N}^{\top} S_{N} x_{N}+\frac{1}{2} \sum_{k=0}^{N-1} x_{k}^{\top} Q_{k} x_{k}+u_{k}^{\top} R_{k} u_{k} \quad \text { s.t. }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{x(\mathrm{~N}-1)} \xrightarrow{\stackrel{u(N-1)}{d}} \xrightarrow[\mathrm{~A}_{\mathrm{N}-1} x_{N-1}+\mathrm{B}_{\mathrm{N}-1} \mathrm{u}_{\mathrm{N}-1}]{\longrightarrow} \Longrightarrow x(\mathrm{~N})
\end{aligned}
$$

Optimal control of multi-stage systems over finite horizon: regulator problem

$$
u^{\star}=\operatorname{argmin} \frac{1}{2} x_{N}^{\top} S_{N} x_{N}+\frac{1}{2} \sum_{k=0}^{N-1} x_{k}^{\top} Q_{k} x_{k}+u_{k}^{\top} R_{k} u_{k} \text { s.t. }
$$

$$
\begin{aligned}
& \lambda_{N}=S_{N} x_{N}, \\
& \lambda_{k}=Q_{k} x_{k}+A_{k}^{\top} \lambda_{k+1}, \quad k=1, \cdots, N-1, \\
& 0=R_{k} u_{k}+B_{k}^{\top} \lambda_{k+1}, \Rightarrow u^{\star}=-R_{k}^{-1} B_{k}^{\top} \lambda_{k+1}, \quad k=0, \cdots, N-1 \\
& x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \Rightarrow x_{k+1}=A_{k} x_{k}-B_{k} R_{k}^{-1} B_{k}^{\top} \lambda_{k+1} \quad k=1, \cdots, N-1, \\
& x(0)=x_{0} . \\
& --------------- \\
& \quad\left[\begin{array}{cc}
x(k+1) \\
\lambda(k)
\end{array}\right]=\left[\begin{array}{cc}
A_{k} & -B_{k} R_{k}^{-1} B_{k}^{\top} \\
Q_{k} & A_{k}^{\top}
\end{array}\right]\left[\begin{array}{c}
x(k) \\
\lambda(k+1)
\end{array}\right], \quad x(0)=x_{0}, \lambda_{N}=S_{N} x_{N} .
\end{aligned}
$$

If A_{k} is invertible: $x_{k}=A_{k}^{-1} x_{k+1}+A_{k}^{-1} B_{k} R_{k}^{-1} B_{k}^{\top} \lambda_{k+1}$. Then, we can write

$$
\left[\begin{array}{l}
x(k) \\
\lambda(k)
\end{array}\right]=\left[\begin{array}{cc}
A_{k}^{-1} & A_{k}^{-1} B_{k} R_{k}^{-1} B_{k}^{\top} \\
Q_{k} A_{k}^{-1} & A_{k}^{\top}+Q_{k} A_{k}^{-1} B_{k} R_{k}^{-1} B_{k}^{\top}
\end{array}\right]\left[\begin{array}{c}
x(k+1) \\
\lambda(k+1)
\end{array}\right], \quad x(0)=x_{0}, \quad \lambda_{N}=S_{N} x_{N} .
$$

If we had x_{N} and λ_{N}, we could solve the equation above backward in time, but unfortunately we have x_{0} and λ_{N}.

