Optimal Control Lecture 14

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Note: These slides only cover small part of the lecture. For details and other discussions consult your class notes.
Reading suggestion: Section 5.2 of Ref [1]
For infinite horizon LQR you can study: Section 6.2 of Ref[3] (see the syllabus/class website for the list of the references)".

Outline

- Optimal Control
- Properties of optimal contorl
- LQR problem for continuous-time systems
- Dynamic signal tracking in finite-time

Optimal control (Review)

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in U}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t, \text { s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

- Hamiltonian $H(x, u, p, t)=g(x(t), u(t), t)+p(t)^{\top} a(x(t), u(t), t)$,

first order conditions for extremal solution

$$
\begin{array}{lr}
\dot{p}=-H_{x}, & (n \text { dimensional }) \\
0=H_{u}, & (m \text { dimensional }) \\
\dot{x}=H_{p}: \quad \dot{x}=a(x, u, t), & (n \text { dimensional })
\end{array}
$$

---------- boundary conditions $-\bar{m}\left(\frac{-}{t_{f}}-\overline{t_{f}}\right)=\overline{0}----$

- $x\left(t_{0}\right)=x_{0}$
- if t_{f} free: $\left.\frac{\partial h}{\partial t}\right|_{t_{f}}+H\left(t_{f}\right)=0$
- if $x_{i}\left(t_{f}\right)$ is fixed: $x_{i}\left(t_{f}\right)=x_{i_{f}}$
- if $x_{i}\left(t_{f}\right)$ is free: $p_{i}\left(t_{f}\right)=\frac{\partial h}{\partial x_{i}}\left(t_{f}\right)$

$$
m\left(x\left(t_{f}\right), t_{f}\right)=0
$$

Let $w\left(x\left(t_{f}\right), v, t_{f}\right)=h\left(x\left(t_{f}\right), t_{f}\right)+v^{\top} m\left(x\left(t_{f}\right), t_{f}\right)$

- $x\left(t_{0}\right)=x_{0}$
- since $x\left(t_{f}\right)$ is not directly given we need $p\left(t_{f}\right)=\frac{\partial w}{\partial x}\left(t_{f}\right)$
- if t_{f} free: $\left.\frac{\partial w}{\partial t}\right|_{t_{f}}+H\left(t_{f}\right)=0$ (disappears if t_{f} known)

Properties of Hamiltonian

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t \text {, s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& x\left(t_{f}\right), t_{f} \text { various final state constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n}, C: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{q} .
\end{aligned}
$$

$$
\mathrm{H}=\mathrm{g}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t}))+\mathrm{p}(\mathrm{t})^{\top} \mathrm{a}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})
$$

- If $g(x, u)$ and $a(x, u)$ do not explicitly depend on time t, then the Hamiltonian H is at least piece-wise contract.

$$
\begin{gathered}
\frac{d H}{d t}=\frac{\partial H}{\partial t}+\left(\frac{\partial H}{\partial x}\right) \frac{d x}{d t}+\left(\frac{\partial H}{\partial p}\right) \frac{d p}{d t}+\left(\frac{\partial H}{\partial u}\right) \frac{d u}{d t} \\
\frac{d H}{d t}=H_{x} \dot{x}+H_{p} \dot{p}+H_{u} \dot{u}
\end{gathered}
$$

From F.O.N condition : $\dot{x}=H_{p}$ and $\dot{p}=-H_{x}$, then

$$
\frac{d \mathrm{H}}{\mathrm{dt}}=\mathrm{H}_{\mathrm{u}} \dot{\mathrm{u}}
$$

$$
\frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{H}_{\mathrm{u}} \dot{\mathrm{u}}
$$

- The third necessary condition is $\mathrm{H}_{\mathrm{u}}=0$ so

$$
\frac{\mathrm{dH}}{\mathrm{dt}}=(0) \dot{\mathrm{u}}=0
$$

which suggest H is constant

- It might be possible for the value of this constant to change at a discontinuity of u, since then \dot{u} would be infinite, and $0 . \infty$ is not defined.
- This H is at least piece-wise constant.
- For free final time problems, the transversality condition gives

$$
h_{t}+H\left(t_{f}\right)=0
$$

- If h is not function of time then $h_{t}=0$ and as a result $H\left(t_{f}\right)=0$.
- with no jumps in \mathfrak{u}, H is constant: $\mathrm{H}(\mathrm{t})=0$ for all $\mathrm{t} \in\left[\mathrm{t}_{0} . \mathrm{t}_{\mathrm{f}}\right]$.

Finite time LQR problem

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in \mathcal{U}}{\operatorname{argmin}}\left(J=\frac{1}{2} x\left(t_{f}\right)^{\top} H^{f} x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left(x^{\top} Q(t) x+u^{\top} R(t) u\right) d t,\right. \text { s.t. } \\
& \dot{x}(t)=A(t) x+B(t) u, \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& x\left(t_{f}\right) \text { is free } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad Q(t) \geqslant 0, H^{f} \geqslant 0, R(t)>0 .
\end{aligned}
$$

- Hamiltonian

$$
H(x, u, p, t)=\frac{1}{2}\left(x(t)^{\top} Q(t) x(t)+u^{\top}(t) R(t) u(t)\right)+p(t)^{\top}(A(t) x(t)+B(t) u(t))
$$

FONC:

- $\dot{x}=H_{p} \Rightarrow \dot{x}=A(t) x+B(t) u$
- $\dot{p}=-H_{x} \Rightarrow \dot{p}=-Q(t) x-A(t)^{\top} p$,
- $0=\mathrm{H}_{\mathrm{u}} \Rightarrow \mathrm{R}(\mathrm{t}) \mathrm{u}(\mathrm{t})+\mathrm{B}(\mathrm{t})^{\top} \mathrm{p}(\mathrm{t})=0 \Rightarrow \mathrm{u}^{\star}(\mathrm{t})=-\mathrm{R}(\mathrm{t})^{-1} \mathrm{~B}(\mathrm{t})^{\top} \mathrm{p}(\mathrm{t})^{\star}$
- Boundary condition

$$
p\left(t_{f}\right)=\left.\frac{\partial \frac{1}{2} x^{\top} H^{f} x}{\partial x}\right|_{t_{f}}=H^{f} x\left(t_{f}\right)
$$

Finite time LQR

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{p}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A}(\mathrm{t}) & -\mathrm{B}(\mathrm{t}) \mathrm{R}(\mathrm{t})^{-1} \mathrm{~B}(\mathrm{t})^{\top} \\
-\mathrm{Q}(\mathrm{t}) & -\mathrm{A}(\mathrm{t})^{\top}
\end{array}\right]\left[\begin{array}{l}
x \\
\mathrm{p}
\end{array}\right]
$$

with $B C$

$$
\begin{gathered}
\left\{\begin{array}{l}
x(0)=x_{0}, \\
p\left(t_{f}\right)=H^{f} x\left(t_{f}\right)
\end{array}\right. \\
--------------- \\
{\left[\begin{array}{l}
x\left(t_{f}\right) \\
p\left(t_{f}\right)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\phi_{11}\left(t_{f}, t\right) & \phi_{12}\left(t_{f}, t\right) \\
\phi_{21}\left(t_{f}, t\right) & \phi_{22}\left(t_{f}, t\right)
\end{array}\right]}_{\begin{array}{l}
\text { (t } \left.t_{f}, t\right)
\end{array}}\left[\begin{array}{l}
x(t) \\
p(t)
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
p^{\star}(t)=\underbrace{\left(\phi_{22}\left(t_{f}, t\right)-H^{f} \phi_{12}\left(t_{f}, t\right)\right)^{-1}\left(H^{f} \phi_{11}\left(t_{f}, t\right)-\phi_{21}\left(t_{f}, t\right)\right)}_{K(t)} \chi^{\star}(t) \\
p^{\star}(t)=K(t) \chi^{\star}(t)
\end{gathered}
$$

Finite time LQR

$$
\begin{gathered}
p^{\star}(t)=K(t) x^{\star}(t) \\
u^{\star}(t)=-R(t)^{-1} B(t)^{\top} p^{\star}(t) \\
u^{\star}=-R(t)^{-1} B(t)^{\top} K(t) x^{\star}(t)
\end{gathered}
$$

$$
K(t)=\left(\phi_{22}\left(t_{f}, t\right)-H^{f} \phi_{12}\left(t_{f}, t\right)\right)^{-1}\left(H^{f} \phi_{11}\left(t_{f}, t\right)-\phi_{21}\left(t_{f}, t\right)\right)
$$

or
Riccati type differential equation: $\dot{\mathrm{p}}(\mathrm{t})=\dot{\mathrm{K}}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{K}(\mathrm{t}) \dot{\mathrm{x}}(\mathrm{t}) \Rightarrow$

$$
\left\{\begin{array}{l}
\dot{K}(t)=-K(t) A(t)-A^{\top}(t) K(t)-Q(t)+K(t) B(t) R^{-1}(t) B^{\top}(t) K(t), \\
K\left(t_{f}\right)=H^{f} .
\end{array}\right.
$$

- Optimal tracking control is a state feedback control
- The state feedback gain is time-varying
- Optimal cost to go $\mathrm{J}_{\mathrm{i} \rightarrow \mathrm{N}}\left(x\left(\mathrm{t}_{\mathrm{i}}\right)\right)=\frac{1}{2} \chi\left(\mathrm{t}_{\mathrm{i}}\right)^{\top} \mathrm{K}\left(\mathrm{t}_{\mathrm{i}}\right) \chi\left(\mathrm{t}_{\mathrm{i}}\right)$.

LQR: the steady state Riccati equation (SSRE)

For LTI systems, Kalman has shown that the Riccati equation has a steady state solution if (see Kirk)

- A, B, R, Q are constant
- $\mathrm{H}^{f}=0$,
- (A, B) is controllable,

SS Riccati equation is $A^{\top} K+K A+Q-K B R^{-1} B^{\top} K=0$

- You can find the $S S$ feedback using $F=\operatorname{lqr}(A, B, Q, R)$ in Matlab. For further information see https://www.mathworks.com/help/control/ref/lqr.html

Finite time linear tracking problem

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in \mathcal{U}}{\operatorname{argmin}}\left(J=\frac{1}{2}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)^{\top} H^{f}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)+\right. \\
& \qquad \frac{1}{2} \int_{0}^{t_{f}}\left((x(t)-r(t))^{\top} Q(t)(x(t)-r(t))+u^{\top} R(t) u\right) d t, \text { s.t. } \\
& \dot{x}(t)=A(t) x+B(t) u, \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& x\left(t_{f}\right) \text { is free } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad Q(t) \geqslant 0, H^{f} \geqslant 0, R(t)>0 .
\end{aligned}
$$

- Hamiltonian

$$
\begin{aligned}
H(x, u, p, t)= & \frac{1}{2}\left((x(t)-r(t))^{\top} Q(t)(x(t)-r(t))+u^{\top}(t) R(t) u(t)\right)+ \\
& p(t)^{\top}(A(t) x(t)+B(t) u(t)),
\end{aligned}
$$

FONC:

- $\dot{x}=H_{p} \Rightarrow \dot{x}=A(t) x+B(t) u$
- $\dot{p}=-H_{x} \Rightarrow \dot{p}=-Q(t) x-A(t)^{\top} p$,
- $0=\mathrm{H}_{\mathrm{u}} \Rightarrow \mathrm{R}(\mathrm{t}) \mathrm{u}(\mathrm{t})+\mathrm{B}(\mathrm{t})^{\top} \mathrm{p}(\mathrm{t})=0 \quad \Rightarrow \mathrm{u}^{\star}(\mathrm{t})=-\mathrm{R}(\mathrm{t})^{-1} \mathrm{~B}(\mathrm{t})^{\top} \mathrm{p}(\mathrm{t})^{\star}$
- Boundary condition: $p\left(t_{f}\right)=\left.\frac{\partial \frac{1}{2}\left(x-r\left(t_{f}\right)\right)^{\top} H^{f}\left(x-r\left(t_{f}\right)\right.}{\partial x}\right|_{t_{f}}=H^{f}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)$

Finite time linear tracking problem

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{p}
\end{array}\right]=\left[\begin{array}{cc}
A(t) & -\mathrm{B}(\mathrm{t}) \mathrm{R}(\mathrm{t})^{-1} \mathrm{~B}(\mathrm{t})^{\top} \\
-\mathrm{Q}(\mathrm{t}) & -\mathrm{A}(\mathrm{t})^{\top}
\end{array}\right]\left[\begin{array}{l}
x \\
\mathrm{p}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\mathrm{Q}(\mathrm{t}) \mathrm{r}(\mathrm{t})
\end{array}\right]
$$

with $B C$

$$
\begin{gathered}
\left\{\begin{array}{l}
x(0)=x_{0}, \\
p\left(t_{f}\right)=H^{f} x\left(t_{f}\right)-H^{f} r\left(t_{f}\right)
\end{array}\right. \\
--------------- \\
\left.+\begin{array}{l}
\left.+\begin{array}{l}
x\left(t_{f}\right) \\
p\left(t_{f}\right)
\end{array}\right]
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\phi_{11}\left(t_{f}, t\right) & \phi_{12}\left(t_{f}, t\right) \\
\phi_{21}\left(t_{f}, t\right) & \phi_{22}\left(t_{f}, t\right)
\end{array}\right]}_{\phi\left(t_{f}, t\right)}\left[\begin{array}{c}
x(t) \\
p(t)
\end{array}\right]+\underbrace{\int_{t_{f}}^{t_{f}} \phi\left(t_{f}, \tau\right)\left[\begin{array}{c}
0 \\
Q(\tau) r(\tau)
\end{array}\right] d \tau}_{\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right]} \\
p\left(t_{f}\right)=H^{f} x\left(t_{f}\right)-H^{f} r\left(t_{f}\right) \\
\Downarrow
\end{gathered}
$$

Finite time linear tracking problem

$$
\begin{gathered}
p^{\star}(t)=K(t) x^{\star}(t)+s(t) \\
u^{\star}(t)=-R(t)^{-1} B(t)^{\top} p(t)^{\star}
\end{gathered}
$$

$$
u^{\star}=-R(t)^{-1} B(t)^{\top} K(t) x^{\star}(t)-R(t)^{-1} B(t)^{\top} s(t)=F(t) x^{\star}(t)+v(t)
$$

where $K(t)$ and $s(t)$ are computed from (use $\dot{p}(t)=\dot{K}(t) x(t)+K(t) \dot{x}(t)+\dot{s}(t))$

$$
\begin{cases}\dot{K}=-K(t) A(t)-A^{\top}(t) K(t)-Q(t)+K(t) B(t) R^{-1}(t) B^{\top}(t) K(t), & K\left(t_{f}\right)=H^{f}, \\ \dot{s}=-\left(A(t)^{\top}-K(t) B(t) R(t)^{-1} B(t)^{\top}\right) s(t)+Q(t) r(t), & s\left(t_{f}\right)=-H^{f} r\left(t_{f}\right) .\end{cases}
$$

