3.26 pt

Optimal Control Lecture 13

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Optimal control

We are going to focus on solving

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t, \text { s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

- Use Lagrange multiplier to write

$$
J_{a}=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}\left(g(x(t), u(t), t)+p(t)^{\top}(a(x(t), u(t), t)-\dot{x}(t))\right) d t
$$

- Define the Hamiltonian to help with sorting out the equations

$$
\mathrm{H}(\mathrm{x}, \mathrm{u}, \mathrm{p}, \mathrm{t})=\mathrm{g}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})+\mathrm{p}(\mathrm{t})^{\top} \mathrm{a}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})
$$

Optimal control

$$
\begin{aligned}
\delta J_{a}= & \left(h_{x}-p\left(t_{f}\right)\right)^{\top} \delta x_{f}+\left[h_{t_{f}}+g+p^{\top}(a-\dot{x})+p^{\top} \dot{x}\right]_{t_{f}} \delta t_{f}+ \\
& +\int_{t_{0}}^{t_{f}}\left[\left(H_{x}+\dot{p}\right)^{\top} \delta x(t)+H_{u}^{\top} \delta u(t)+(a-\dot{x})^{\top} \delta p(t)\right] d t
\end{aligned}
$$

first order conditions for extremal solution

$$
\begin{aligned}
& \dot{\mathrm{p}}=-\mathrm{H}_{\mathrm{x}}, \quad(\mathrm{n} \text { dimensional) } \\
& 0=\mathrm{H}_{\mathrm{u}}, \quad(\mathrm{~m} \text { dimensional }) \\
& 0=\mathrm{H}_{\mathrm{p}} \rightarrow \quad \dot{\mathrm{x}}=\mathrm{a}(\mathrm{x}, \mathrm{u}, \mathrm{t}), \quad(\mathrm{n} \text { dimensional })
\end{aligned}
$$

$$
\text { boundary condition }\left(h_{x}-p\left(t_{f}\right)\right)^{\top} \delta x_{f}+\left[h_{t_{f}}+g+p^{\top} a\right]_{t_{f}} \delta t_{f}=0
$$

Boundary conditions $x\left(t_{0}\right)=x_{0}$, and

- if t_{f} free

$$
h_{t_{f}}+g+p^{\top} a=h_{t_{f}}+H\left(t_{f}\right)=0
$$

- if $x_{i}\left(t_{f}\right)$ is fixed: $x_{i}\left(t_{f}\right)=x_{i_{f}}$
- if $x_{i}\left(t_{f}\right)$ is free, then $p_{i}\left(t_{f}\right)=\frac{\partial h}{\partial x_{i}}\left(t_{f}\right)$
- if t_{f} is free and $m\left(x\left(t_{f}\right), t_{f}\right)=0$, (see next page)

Optimal control: when final time and state are related through $m\left(x\left(t_{f}\right), t_{f}\right)=0$

- follow the same method as discussed for simplest problem in calculous of variation, write

$$
w\left(x\left(t_{f}\right), t_{f}\right)=h\left(x\left(t_{f}\right), t_{f}\right)+v^{\top} m\left(x\left(t_{f}\right), t_{f}\right)
$$

- work through the math to arrive at the following F.O.N conditions

first order conditions for extremal solution

$$
\begin{aligned}
& \dot{\mathrm{p}}=-\mathrm{H}_{\mathrm{x}} \\
& 0=\mathrm{H}_{\mathrm{u}} \\
& 0=\mathrm{H}_{\mathrm{p}} \rightarrow \quad \dot{\mathrm{x}}=\mathrm{a}(\mathrm{x}, \mathrm{u}, \mathrm{t})
\end{aligned}
$$

(n dimensional)
(m dimensional)
(n dimensional)

Boundary conditions $x\left(t_{0}\right)=x_{0}$, and $m\left(x\left(t_{f}\right), t_{f}\right)=0$. Also

- if t_{f} free

$$
\begin{gathered}
w_{f}\left(t_{f}\right)+H_{t_{f}}=0 \\
p\left(t_{f}\right)=\frac{\partial w\left(t_{f}\right)}{\partial x}
\end{gathered}
$$

Optimal control (Summary)

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in U}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t, \text { s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

- Hamiltonian $H(x, u, p, t)=g(x(t), u(t), t)+p(t)^{\top} a(x(t), u(t), t)$,

first order conditions for extremal solution

$$
\begin{array}{lr}
\dot{p}=-H_{x}, & (n \text { dimensional }) \\
0=H_{u}, & (m \text { dimensional }) \\
\dot{x}=H_{p}: \quad \dot{x}=a(x, u, t), & (n \text { dimensional })
\end{array}
$$

---------- boundary conditions $-\overline{-}-\overline{-}-\overline{-}-\overline{-}----$

- $x\left(t_{0}\right)=x_{0}$
- if t_{f} free: $\left.\frac{\partial h}{\partial t}\right|_{t_{f}}+H\left(t_{f}\right)=0$
- if $x_{i}\left(t_{f}\right)$ is fixed: $x_{i}\left(t_{f}\right)=x_{i_{f}}$
- if $x_{i}\left(t_{f}\right)$ is free: $p_{i}\left(t_{f}\right)=\frac{\partial h}{\partial x_{i}}\left(t_{f}\right)$

$$
m\left(x\left(t_{f}\right), t_{f}\right)=0
$$

Let $w\left(x\left(t_{f}\right), v, t_{f}\right)=h\left(x\left(t_{f}\right), t_{f}\right)+v^{\top} m\left(x\left(t_{f}\right), t_{f}\right)$

- $x\left(t_{0}\right)=x_{0}$
- since $\mathbf{x}\left(t_{f}\right)$ is not directly given we need $p\left(t_{f}\right)=\frac{\partial w}{\partial x}\left(t_{f}\right)$
- if t_{f} free: $\left.\frac{\partial w}{\partial t}\right|_{t_{f}}+H\left(t_{f}\right)=0$ (disappears if t_{f} known)

Constrained functional optimization: example

- Minimum-time path through a region of position dependent vector velocity (Zernelo's problem)

Example of an ocean current vector field

- The forward velocity of the ship V is constant but its steering angle θ can be controlled.
- in the depicted example, it is assume that the current's velocity vector is only in x direction

How to solve optimal control problems using Matlab

- You can use Matlab command 'bvp4c' to solve boundary value problems of the form

$$
\begin{aligned}
& \dot{y}=f(y, t, p), \quad t \in[a, b] \\
& g(y(a), y(b))=0, \quad \leftarrow \text { boundary conditions at } a, \text { and } b .
\end{aligned}
$$

This is good for fixed and given final time problems.

- For further information visit:
http://www.mathworks.com/help/matlab/ref/bvp4c.html
- For problems with free final time (t_{f} is a search variable too) we can use a trick to convert the problems to the standard from for 'bvp4c'

How to solve optimal control problems using Matlab (free final time)

- if $t_{0} \neq 0$ transfer the initial time to zero, i.e., in our developments below we assume $t_{0}=0$
- use the scaling $\tau=\frac{t}{t_{f}}$ to normalize the time horizon from $\left[0, t_{f}\right]$ to $\tau \in[0,1]$.
- you need to change all derivatives and express them in term of $d \tau$ instead of $d t$
- use $d \tau=\frac{1}{t_{f}} \mathrm{dt}$ to write

$$
\frac{d}{d \tau}=t_{f} \frac{d}{d t}
$$

- then introduce a new intermediate variable $\dot{s}=0$ (to represent the constant t_{f} that we are searching)
- in all boundary conditions you replace t_{f} with s
- this way bvp4c returns the right value of t_{f} in s variable $\left(s=t_{f}\right)$
- The set of necessary conditions, for $t \in\left[0, t_{f}\right]$, are

$$
\begin{aligned}
& \dot{x}=\mathrm{a}(\mathrm{x}, \mathrm{u}, \mathrm{t}), \\
& \dot{\mathrm{p}}=-\mathrm{H}_{\mathrm{x}}, \\
& \mathrm{H}_{\mathrm{u}}=0
\end{aligned}
$$

You need to scale the time in these equations as follows

$$
\begin{array}{ll}
x^{\prime}=t_{f} a(x, u, \tau), & \left(x^{\prime}=\frac{d x}{d \tau}\right) \\
p^{\prime}=-t_{f} H_{x}, & \left(p^{\prime}=\frac{d p}{d \tau}\right)
\end{array}
$$

see http://www4.ncsu.edu/~xwang10/document/Solving\ optimal\ control\%
20problems\%20with\% 20MATLAB.pdf for further discussions.

