Optimal Control Lecture 12

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Outline

- Calculus of variation
- Optimal Control

Piecewise-smooth extremals

- So far we focused on admissible $x(t)$ that are continuous with continuous first derivatives
- We want to expand to class if piecewise-smooth admissible functions
- control input is no smooth (e.f., subject to saturation)

Illustration of a piecewise continuous control $u \in \hat{\mathcal{C}}\left[t_{0}, t_{\mathrm{f}}\right]$ (red line), and the corresponding piecewise continuously differentiable response $x \in \hat{\mathcal{C}}^{1}\left[t_{0}, t_{\mathrm{f}}\right]$ (blue line).

- intermediate state constraints are imposed

Objective: determine vector function $x^{\star}(t)$ in the class of functions with piecewise-continuous first derivative that is a local extremum of

$$
J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}, t) d(t)
$$

and respects $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, x\left(t_{f}\right)=x_{f}$ for given and fixed t_{0}, x_{0}, t_{f} and x_{f}

Piecewise-smooth extremal

Objective: determine vector function $x^{\star}(t)$ in the class of functions with piecewise-continuous first derivative that is a local extremum of

$$
J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}, t) d(t)
$$

and respects $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$ for given and fixed t_{0}, x_{0}, t_{f} and $x(t f)$

- Assume \dot{x} has a discontinuity at $t_{1} \in\left(t_{0}, t_{f}\right)$, where t_{1} is not fixed (or known)

$$
\begin{aligned}
& \mathrm{J}(x(\mathrm{t}))=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{~g}(x(\mathrm{t}), \dot{\mathrm{x}}, \mathrm{t}) \mathrm{d}(\mathrm{t})=\underbrace{\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \mathrm{~g}(x(\mathrm{t}), \dot{\mathrm{x}}, \mathrm{t}) \mathrm{dt}}_{\mathrm{J}_{1}}+\underbrace{\int_{\mathrm{t}_{1}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{~g}(x(\mathrm{t}), \dot{\mathrm{x}}, \mathrm{t}) \mathrm{dt}}_{\mathrm{J}_{2}} \text { asbefore } \\
& \delta \mathrm{J}=\delta \mathrm{J}_{1}+\delta \mathrm{J}_{2}= \\
& \int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}}\left(\frac{\partial \mathrm{~g}}{\partial \mathrm{x}} \delta x+\frac{\partial \mathrm{g}}{\partial \dot{x}} \delta \dot{x}\right) \mathrm{dt}+\mathrm{g}\left(\mathrm{t}_{1}^{-}\right) \delta \mathrm{t}_{1}+ \\
& \int_{\mathrm{t}_{1}}^{\mathrm{t}_{\mathrm{f}}}\left(\frac{\partial \mathrm{~g}}{\partial x} \delta x+\frac{\partial \mathrm{g}}{\partial \dot{x}} \delta \dot{x}\right) \mathrm{dt}-\mathrm{g}\left(\mathrm{t}_{1}^{+}\right) \delta \mathrm{t}_{1}
\end{aligned}
$$

Piecewise-smooth extremal

$$
\begin{aligned}
\delta J= & \int_{t_{0}}^{t_{1}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t+g\left(t_{1}^{-}\right) \delta t_{1}+g_{\dot{x}}\left(t_{1}^{-}\right) \delta x\left(t_{1}^{-}\right) \\
& \int_{t_{1}}^{t_{f}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t-g\left(t_{1}^{+}\right) \delta t_{1}-g_{\dot{x}}\left(t_{1}^{+}\right) \delta x\left(t_{1}^{+}\right)
\end{aligned}
$$

from lefthand side $\delta x_{1}=\delta x\left(t_{1}^{-}\right)+\dot{x}\left(t_{1}^{-}\right) \delta t_{1}$, from righthand side $\delta x_{1}=\delta x\left(t_{1}^{+}\right)+\dot{x}\left(t_{1}^{+}\right) \delta t_{1}$,

- Continuity requires that these two expression for δx_{1} be equal
- Already now that it is possible $\dot{x}\left(\mathrm{t}_{1}^{-}\right) \neq \dot{\mathrm{x}}\left(\mathrm{t}_{1}^{+}\right)$, so possible that $\delta x\left(\mathrm{t}_{1}^{-}\right) \neq \delta x\left(\mathrm{t}_{1}^{+}\right)$

$$
\begin{gathered}
\delta J=\int_{t_{0}}^{t_{1}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t+\left[g\left(t_{1}^{-}\right)-g_{\dot{x}}\left(t_{1}^{-}\right) \dot{x}\left(t_{1}^{-}\right)\right] \delta t_{1}+g_{\dot{x}}\left(t_{1}^{-}\right) \delta x_{1} \\
\int_{t_{1}}^{t_{f}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t-\left[g\left(t_{1}^{+}\right)-g_{\dot{x}}\left(t_{1}^{+}\right) \dot{x}\left(t_{1}^{+}\right)\right] \delta t_{1}-g_{\dot{x}}\left(t_{1}^{+}\right) \delta x_{1}
\end{gathered}
$$

$$
\frac{\partial g}{\partial x}\left(x^{\star}(t), \dot{x}^{\star}(t), t\right)-\frac{d}{d t}\left[\frac{\partial g}{\partial \dot{x}}\left(x^{\star}(t), \dot{x}^{\star}(t), t\right)\right]=0, \quad t \in\left(t_{0}, t_{f}\right)
$$

$$
x^{\star}\left(t_{0}\right)=x_{0}
$$

Weierstrasss-Erdmann Condition $\left\{\begin{array}{l}g_{\dot{\dot{x}}}\left(t_{1}^{-}\right)=g_{\dot{x}}\left(t_{1}^{+}\right), \\ g\left(t_{1}^{-}\right)-g_{\dot{x}}\left(t_{1}^{-}\right) \dot{x}\left(t_{1}^{-}\right)=g\left(t_{1}^{+}\right)-g_{\dot{x}}\left(t_{1}^{+}\right) \dot{x}\left(t_{1}^{+}\right)\end{array}\right.$

Piecewise-smooth extremal

Typical scenarios that introduce corners is when there exists intermediate constraints

$$
x\left(t_{1}\right)=\theta\left(t_{1}\right)
$$

- Constraint couples the allowable variations in δx_{1} and δt_{1}

$$
\delta x_{1}=\frac{d \theta}{d t} \delta t_{1}=\dot{\theta}\left(t_{1}\right) \delta t_{1}
$$

- $\delta J=\int_{t_{0}}^{t_{1}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t+\left[g\left(t_{1}^{-}\right)-g_{\dot{x}}\left(t_{1}^{-}\right) \dot{x}\left(t_{1}^{-}\right)\right] \delta t_{1}+g_{\dot{x}}\left(t_{1}^{-}\right) \delta x_{1}+\int_{t_{1}}^{t_{f}}\left(g_{x}-\right.$ $\left.\frac{d}{d t} g_{\dot{x}}\right) \delta x d t-\left[g\left(t_{1}^{+}\right)-g_{\dot{x}}\left(t_{1}^{+}\right) \dot{x}\left(t_{1}^{+}\right)\right] \delta t_{1}-g_{\dot{x}}\left(t_{1}^{+}\right) \delta x_{1}$
$\delta J=\int_{t_{0}}^{t_{1}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t+\left[g\left(t_{1}^{-}\right)-g_{\dot{x}}\left(t_{1}^{-}\right) \dot{x}\left(t_{1}^{-}\right)\right] \delta t_{1}+g_{\dot{x}}\left(t_{1}^{-}\right)\left(\dot{\theta}\left(t_{1}^{-}\right) \delta t_{1}\right)+$ $\int_{t_{1}}^{t_{f}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \delta x d t-\left[g\left(t_{1}^{+}\right)-g_{\dot{x}}\left(t_{1}^{+}\right) \dot{x}\left(t_{1}^{+}\right)\right] \delta t_{1}-g_{\dot{x}}\left(t_{1}^{+}\right)\left(\dot{\theta}\left(t_{1}^{+}\right) \delta t_{1}\right)$

$$
\begin{aligned}
& \frac{\partial g}{\partial x}\left(x^{\star}(t), \dot{x}^{\star}(t), t\right)-\frac{d}{d t}\left[\frac{\partial g}{\partial \dot{x}}\left(x^{\star}(t), \dot{x}^{\star}(t), t\right)\right]=0, \quad t \in\left(t_{0}, t_{f}\right) \\
& x^{\star}\left(t_{0}\right)=x_{0}, \\
& g\left(t_{1}^{-}\right)+g_{\dot{x}}\left(t_{1}^{-}\right)\left[\dot{\theta}\left(t_{1}^{-}\right)-\dot{x}\left(t_{1}^{-}\right)\right]=g\left(t_{1}^{+}\right)+g_{\dot{x}}\left(t_{1}^{+}\right)\left[\dot{\theta}\left(t_{1}^{+}\right)-\dot{x}\left(t_{1}^{+}\right)\right] \\
& x\left(t_{1}\right)=\theta\left(t_{1}\right)
\end{aligned}
$$

- Note here that $g_{\dot{\chi}}\left(t_{1}^{-}\right)=g_{\dot{x}}\left(t_{1}^{+}\right)$no longer is needed. Instead we have $\chi\left(t_{1}\right)=\theta\left(t_{1}\right)$.

Piecewise-smooth extremal: Example

Example: Find the shortest length path joining the points $x=0, t=-2$ and $x=0$ and $t=1$ that touches the curve $x=t^{2}+3$ at some point.

Solution is the dashed blue lines

Optimal control

We are going to focus on solving

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t, \text { s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

- Use Lagrange multiplier to write

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}\left(g(x(t), u(t), t)+p(t)^{\top}(a(x(t), u(t), t)-\dot{x}(t))\right) d t
$$

Optimal control

We are going to focus on solving

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t, \text { s.t. } \\
& \dot{x}(t)=a(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

- Use Lagrange multiplier to write

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}\left(g(x(t), u(t), t)+p(t)^{\top}(a(x(t), u(t), t)-\dot{x}(t))\right) d t
$$

- Define the Hamiltonian to help with sorting out the equations

$$
H(x, u, p, t)=g(x(t), u(t), t)+p(t)^{\top} a(x(t), u(t), t)
$$

Optimal control

$$
\begin{aligned}
\delta J_{a}= & \left(h_{x}-p\left(t_{f}\right)\right)^{\top} \delta x_{f}+\left[h_{t_{f}}+g+p^{\top}(a-\dot{x})+p^{\top} \dot{x}\right]_{t_{f}} \delta t_{f}+ \\
& +\int_{t_{0}}^{t_{f}}\left[\left(H_{x}+\dot{p}\right)^{\top} \delta x(t)+H_{u}^{\top} \delta u(t)+(a-\dot{x})^{\top} \delta p(t)\right] d t
\end{aligned}
$$

first order conditions for extremal solution

$$
\begin{array}{lr}
\dot{\mathrm{p}}=-\mathrm{H}_{\mathrm{x}}, & (\mathrm{n} \text { dimensional) } \\
0=\mathrm{H}_{\mathrm{u}}, & (\mathrm{~m} \text { dimensional }) \\
0=\mathrm{H}_{\mathrm{p}} \rightarrow \quad \dot{\mathrm{x}}=\mathrm{a}(\mathrm{x}, \mathrm{u}, \mathrm{t}), & (\mathrm{n} \text { dimensional) }
\end{array}
$$

Boundary conditions $x\left(t_{0}\right)=x_{0}$, and

- if t_{f} free

$$
h_{t_{f}}+g+p^{\top} a=h_{t_{f}}+H\left(t_{f}\right)=0
$$

- if $x_{i}\left(t_{f}\right)$ is fixed: $x_{i}\left(t_{f}\right)=x_{i_{f}}$
- if $x_{i}\left(t_{f}\right)$ is free, then $p_{i}\left(t_{f}\right)=\frac{\partial h}{\partial x_{i}}\left(t_{f}\right)$

Constrained functional optimization: example

- Minimum-time path through a region of position dependent vector velocity (Zernelo's problem)

Example of an ocean current vector field

- The forward velocity of the ship V is constant but its steering angle θ can be controlled.
- in the depicted example, it is assume that the current's velocity vector is only in x direction

Next couple of slides are for self-study

Constrained functional optimization

Determine vector function $w^{\star}(t): \mathbb{R} \rightarrow \mathbb{R}^{n+m}$ in the class of functions with continuous first derivative that is a local extremum of

$$
\mathrm{J}(w(\mathrm{t}), \mathrm{t})=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{~g}(w(\mathrm{t}), \dot{w}, \mathrm{t}) \mathrm{d}(\mathrm{t})
$$

and respects

$$
\begin{aligned}
& f(w(t), \dot{w}(t), t)=0_{n}, \text { set of } n \text { differential equations, } \\
& w\left(t_{0}\right)=w_{0} \in \mathbb{R}^{n+m}, \\
& w\left(t_{f}\right)=w_{f} \quad \text { various terminal conditions possible. }
\end{aligned}
$$

$$

$$

- in control problems $w=\left[\begin{array}{l}u \in \mathbb{R}^{m} \\ x \in \mathbb{R}^{n}\end{array}\right]$

To derive the first order necessary conditions we proceed with the following

- Similar to function parameter optimization, augment the cost functional with the constraint using Lagrange multiplier

$$
\mathrm{J}_{\mathrm{a}}(w(\mathrm{t}), \mathrm{t})=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\left(\mathrm{~g}(w(\mathrm{t}), \dot{w}, \mathrm{t})+\mathrm{p}(\mathrm{t})^{\top} \mathrm{f}(w(\mathrm{t}), \dot{w}, \mathrm{t})\right) \mathrm{d}(\mathrm{t})
$$

- Notice that $p(t)$ is is time-varying (gives more degree of freedom)
- If constraint is satisfied the augmented cost functional is same as $J(w(t), t)$

Constrained functional optimization (cont'd)

- Let

$$
g_{a}(w(t), p(t), \dot{w}(t), t) \equiv g(w(t), \dot{w}(t), t)+p(t)^{\top} f(w(t), \dot{w}(t), t)
$$

- Then

$$
J_{a}(w(t), p(t), \delta x, \delta p, t)=\int_{t_{0}}^{t_{f}}\left(g_{a}(w(t), p(t), \dot{w}, t)\right) d(t)
$$

- Invoke Fundamental Theorem of Calculus of Variation: $\delta J_{a}\left(w^{\star}(t), p^{\star}(t), \delta x, \delta p, t\right)=0$
- The variations δx and δp are independent from one another.

The first order necessary conditions are
Euler equation : $\left\{\begin{array}{l}\frac{\partial g_{a}(w(t), p(t), \dot{w}, t)}{\partial w}-\frac{d}{d t}\left[\frac{\partial g_{a}(w(t), p(t), \dot{w}, t)}{\partial \dot{w}}\right]=0, \\ \frac{\partial g_{a}(w(t), p(t), \dot{w}, t)}{\partial p}-\frac{d}{d t}\left[\frac{\partial g_{a}(w(t), p(t), \dot{w}, t)}{\partial \dot{p}}\right]=0,\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial \mathrm{g}_{\mathrm{a}}(w(\mathrm{t}), \mathrm{p}(\mathrm{t}), \dot{w}, \mathrm{t})}{\partial w}-\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\partial \mathrm{~g}_{\mathrm{a}}(w(\mathrm{w}), \mathrm{p}(\mathrm{t}), \dot{w}, \mathrm{t})}{\partial \dot{w}}\right]=0, \quad(n+m \text { dimensional }) \\
w\left(\mathrm{t}_{0}\right)=w_{0}, \\
w\left(\mathrm{t}_{\mathrm{f}}\right)=w_{\mathrm{f}},
\end{array}\right. \\
& \mathrm{f}(w, \dot{w}, \mathrm{t})=0, \quad(\mathrm{n} \text { dimensional })
\end{aligned}
$$

- $w^{\star}(t): \mathbb{R} \rightarrow \mathbb{R}^{n+m}, p^{\star}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$

