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Calculus of variation and its connection to optimal control

We are going to focus on solving

*

te
u*(t) :argmin(I:h(X(tf),tf)+J g(x(t), u(t),t)), s.t.

’te[tO:tf] u(t)eu to
x(t) = f(x(t), u(t),t),
x(to), to is given,

m(x(t¢), tr) =0« when final state is constrained,

x(t):R—=R"™, u(t):R—R™, f:R"xR™xR—R".

Observations:

@ J is a function of x(t), u(t) both functions over t € [tg, tf]

@ ] is a functional (function of a function)

Static parameter optimization: Optimization in continuous-time:
@ objective: determine a point that @ objective: determine a function that
minimizes a specific function (the minimizes a specific functional (the

performance measure) performance measure)



Function vs. functional

Def (function): A function f is a rule of correspondence that assigns to each element q in a
certain set D (domain of the function) a unique element in a set R (range or image of the
function)

Def (functional): A functional J is a rule of correspondence that assigns to each function x in a
certain class QO (domain of the functional) a unique real number. The set of real numbers
associated with the functions Q is called the range of the functional.

@ functional: function of function
@ domain is a class of functions

Example: x: continuous function of t defined in the interval [tg, tf] and
te

J(x) = J x(t)dt.

to
is a functional. Its range is the area under x(t) curves.




Calculus of variation

@ discrete-time optimal control: can be cast as parameter optimization with a finite
dimensional decision variable and constraints

@ continuous-time optimal control: infinite dimensional decision variable

o Continuous-time optimal control: use Calculus of Variation

Calculus of Variation
@ field of mathematical analysis that deals with maximization/minimization of functionals
@ functionals are defined as integrals involving functions and their derivatives
@ interest is in extremal functions that make the functional attain

o maximum

@ minimum

e or stationary functions (those where the rate of change of the functional is
zero)



Extremal of a functional: fundamental theorem of the calculus of variation

* = argmin f(q) e
q =arg q x*:argmin]:J g(x(t),x(t),t)
Point g* is a minimizer of a function f(q) iff to

. Function x*(t) is a minimizer of functional
f(q*) < f(q) T(x(t)) iff

for all admissible q in || — q*|| < e J(x* (1)) < J(x(1))

Tools we need for our studies:

@ How to measure closeness of two functions?

@ How to compute/approximate variation of a functional due to ‘small’ changes in its
arguments, which are functions?



closeness of functions

Norm:
in n-dimensional Euclidean space: rule of of a function: rule of correspondence which
correspondence which assigns to each point q a assigns to each function x € Q, defined for
real number. t € [to, t¢], a real number.
@ llqll >0and | g =0iffqg=0 @ |Ix|| >0and ||x|| =0 iff x(t) = 0 for all

t € [to, t¢]
Q |ox]|| = || ||x]|| for all x € R
Q [Ix! + x| < I+ %]

Intuitively speaking norm of the difference of
two functions should be

Q [[xqll = lell[q]| for all x € R

Q lla' + @l < lla*ll + 1|l
q' and g2 close together < || q! — g?|| is small

@ zero if the functions are identical

@ small, if the functions are “close”

@ large if the functions are “far apart”
Examples

@ x|z = (ﬁof xT(t)x(t)dt)1/2

o ||x]| = tOgtaéxtf(Ix(t)l), (scalar x)



Increment of functional

Increment:
of a function f: If q, q + Aq € D, the of a functional J: If x and x 4+ 6x are functions
increment of f is for which the functional ] is defined, then

increment of | is

AT =TJ(x+dx) — J(x).

Af =f(q+ Aq)—f(q).

5x is the variation of the function x



The variation of a functional

a

variation of a functional ~ differential of a function

The increment of a functional can be written as
AJ(x(t), 8x(t)) = 8] (x(t), dx(t)) + g(x(t), 8x(t)).[[8x ()],

where 8] is a linear in &x(t). If

(g(x(t), ox(t))) =0,

lim
l5x(t)]|—0
then J is said to be differentiable on x and 8] is the variation of | evaluated for a
function x.

A variation of the functional is a linear approximation of this increment, i.e.,
8] (x(t), 5x(t)) is linear in &x(t).

AJ(x(t), x(t)) = 8J(x(t), 6x(t)) + H.O.T.,



The variation of a functional: example 1

te

How to compute variation of J(x(t)) = t f(x(t))dt (assuming f has first and

second continuous derivative)?

8J(x(t), 8x(t)) = [ 25U . sxdt + F(x(ts))5tr — f(x(to))Sto J

See next page for the derivation



The variation of a functional: example 1 (cont’d)

AJ(x(t), ox(t)) = J(x(t) + 6x(t)) — J(x(t))

te+Oty te
:J (f(x(t)véx[t])dtfj f(x(t))dt
to+ oty g
to+5tg te+oty
:—J (f(x(t)—l—éx(t))dt—O—J (f(x(t) +0x(t))dt
to te

te

te
+J (F(x(t) + 5x(t)) dt—[ f(x(1)) dt

to

> [0 f(x (1) + 8x (1)) dt & (f(x(to) + 8x(t0))5to = —F(x(to)) Sto + H.O.T
| J‘::Jrétf fx(t) +0x(t)) dt ~ (f(x(ts) + ox(ts))dts = f(x(tg))dty + H.O.T

> ﬁff (t) + 5x(t)) dt—jfff (1)) dt = tf(f(x(t)—l—&x( t)) — f(x(t)) dt

= i (FOc(t) + S ox + HLOT — f(x(t))dt & [;f 2 sxdt

8T (x(t), 5x(t))= [ ag\;t] Soxdt 4+ f(x(tg))dty — f(x(to))dto




The variation of a functional: example 2

How to compute variation of J(x(t)) = :Or g(x(t), x(t), t)dt for fixed tq

(assuming f has first and second continuous derivative)?

8 (x(t), dx(t)) ZLf (gx — Egk) - Oxdt + gx (x(tr), x(tr), tr)ox(ts)+
g(x(te), x(tr), te)Ote

2l
«
=-

[l
ol
e

(9x =

See next page for the derivation



The variation of a functional: example 2 (cont’d)

AJ(x(t),8x(t)) =J(x(t) +8x(t)) —J(x(t))

ty+oty ty
:J (g(x(t) +ox(t),%(t) + bx[l\,t]dth' g(x(t),%(t),t)dt
to to

th+6tf

¢ (g(x(t) +8x(t),x(t) +8%x(t),t)dt
f

ty . . ty .
+J (g(x(t]+6x(t),x(t]+5x(t),t]dt7J g(x(t),x(t), t)dt
to to

ety . . . .
* L (g(x(t) +8x(t),%(t) +8%(t), 1) dt = (g(x(ty) +8x(te) x(te) +8%(tg) te)dty =
f

g(x(tg),x(tg), tg)dty +H.OT

ty ty
<] Tatn wsx o Fexn v ar— [ Tax ke, 0 at
to to

t
:Lf (gx (x(t),%(t), t)dx(t)+gy (x(t), x(t), t)ox(t))dt
0

Let u=gg, and dv = 5xdt to get: 8% = gy dx (8% and 5x are not independent)

tr . b b (b
:J gx (x(t),x(t),t)dx(t)dt— Integration by parts:J udv:uv| 7J vdu.
to a a a

A ) ) te
[ Hg*[x[t]‘x(t),t)bx(t)dt+g;4[x(’t).x[t]‘t)“:0 o

Jtg
5x (tg)=0fixed and give"m
Bl(x(t)véx(t))=9(X(tf]v*(tf]vtfjétf+g)'((x(tf),).((tf),tf)BX(tf)—Wto),to)éx(to) +
t

L; (9% (x (0. %(0,0) — 2 g (x (1), % (0, 0) 5x (1) at




Extremal of a functional: fundamental theorem of the calculus of variation

Minimizer of a function f(q) is q* if Minimizer of a functional J(x(t)) is x*(t) if
f(q*) < f(q) Jx* (1)) < J(x(t))

for all admissible g in || — q*|| < e for all admissible x(t) in ||x(t) —x*(t)|| < €.

Fundamental theorem of the calculus of variation

O P )

o+

@ Let x be a vector function of t in the class Q, and
J(x) be a differential functional of x. C

@ Assume that all x € Q are not constrained by any
boundaries. If x* is an extremal function, the
variation of J must vanish in x*

3 (x*,8x) =0

for all admissible x € Q.

[ C——




Optimal control problems of interest

We are going to study

te

i) = BTN = Rx(e0). 1) + | " g(x(0) u(t), av),

t) = f(x(t), u(t), t),
to), to is given,

u*(t)
x(
x(

m(x(ts), tf) = 0« when final state is constrained,

x(t):R—R", u(t):R—R™, f:R"xR™xR— R".

We will first focus on the special case below.!

te

x* (1) = argmin (](x(t)) :J

t€lto, tr] tg

g(x(t),x(t),t)dt) s

x(to) = xo,

x(tf) = x¢ (various terminal conditions )

“Think of it as a case that we can find u(t) in terms of (x(t),x(t)) from x(t) = f(x(t),u(t), t). Then the optimal
control problem above can be cast with 1 (t) eliminated.



First order optimality conditions

. tf .
x*(t ‘te[to,m — argmin (](x(t)) :LO g(x(t),x(t),t)dt) s.t.
x(to) = xo,

x(tf) = x¢ (various terminal conditions )

Variation
8J(x(t), 6x(t)) =g(x(te), x(te), te) 8te + gu(x(te), % (te), te) Ox(te)+
e ) d .
| " (gnxtt) (0, 1) = S os(x(0), %(0), 1) 8x (1) dt
to
From this variation, for different terminal conditions, we are going to derive first order necessary
conditions for optimality using the Fundamental Theorem of Calculus of Variation.

@ Both tf and x(t¢) are specified and are given
o In this case 6ty = 0 and 6x(t;) =0

o BJ(x(1), 5x(1)) = [}/ (91 (x(1), %(1), 1) ~ s (x(1), X(1), 1) dx(t) dt =0 =

the (first order) necessary condition for a maximum or minimum is called

0x (x(1), %(£), 1) — - g (x(1), £(£), £) =0

In this case we solve the Euler Equation with the boundary conditions x(0) = x¢ and



