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Calculus of variation and its connection to optimal control

We are going to focus on solving

u?(t)
∣∣∣
t∈[t0,tf]

= argmin
u(t)∈U

(J = h(x(tf), tf) +

∫tf
t0

g(x(t),u(t), t)), s.t.

ẋ(t) = f(x(t),u(t), t),

x(t0), t0 is given,

m(x(tf), tf) = 0← when final state is constrained,

x(t) : R→ Rn, u(t) : R→ Rm, f : Rn × Rm × R→ Rn.

Observations:

J is a function of x(t), u(t) both functions over t ∈ [t0, tf]

J is a functional (function of a function)

Static parameter optimization:

objective: determine a point that
minimizes a specific function (the
performance measure)

Optimization in continuous-time:

objective: determine a function that
minimizes a specific functional (the
performance measure)
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Function vs. functional

Def (function): A function f is a rule of correspondence that assigns to each element q in a
certain set D (domain of the function) a unique element in a set R (range or image of the
function)

Def (functional): A functional J is a rule of correspondence that assigns to each function x in a
certain class Ω (domain of the functional) a unique real number. The set of real numbers
associated with the functions Ω is called the range of the functional.

functional: function of function
domain is a class of functions

Example: x: continuous function of t defined in the interval [t0, tf] and

J(x) =

∫tf
t0

x(t)dt.

is a functional. Its range is the area under x(t) curves.
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Calculus of variation

discrete-time optimal control: can be cast as parameter optimization with a finite
dimensional decision variable and constraints

continuous-time optimal control: infinite dimensional decision variable

Continuous-time optimal control: use Calculus of Variation

Calculus of Variation

field of mathematical analysis that deals with maximization/minimization of functionals

functionals are defined as integrals involving functions and their derivatives

interest is in extremal functions that make the functional attain

maximum
minimum
or stationary functions (those where the rate of change of the functional is
zero)
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Extremal of a functional: fundamental theorem of the calculus of variation

q? = argmin f(q)

Point q? is a minimizer of a function f(q) iff

f(q?) 6 f(q)

for all admissible q in ‖q−q?‖ 6 ε

x? = argmin J =

∫tf
t0

g(x(t), ẋ(t), t)

Function x?(t) is a minimizer of functional
J(x(t)) iff

J(x?(t)) 6 J(x(t))

for all admissible x(t) in ‖x(t) − x?(t)‖ 6 ε.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Tools we need for our studies:

How to measure closeness of two functions?

How to compute/approximate variation of a functional due to ‘small’ changes in its
arguments, which are functions?
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closeness of functions

Norm:

in n-dimensional Euclidean space: rule of
correspondence which assigns to each point q a
real number.

1 ‖q‖ > 0 and ‖q‖ = 0 iff q = 0

2 ‖αq‖ = |α|‖q‖ for all α ∈ R
3 ‖q1 +q2‖ 6 ‖q1‖+ ‖q2‖

q1 and q2 close together ⇔ ‖q1 −q2‖ is small

of a function: rule of correspondence which
assigns to each function x ∈Ω, defined for
t ∈ [t0, tf], a real number.

1 ‖x‖ > 0 and ‖x‖ = 0 iff x(t) = 0 for all
t ∈ [t0, tf]

2 ‖αx‖ = |α|‖x‖ for all α ∈ R
3 ‖x1 + x2‖ 6 ‖x1‖+ ‖x2‖

Intuitively speaking norm of the difference of
two functions should be

zero if the functions are identical

small, if the functions are “close”

large if the functions are “far apart”

Examples

‖x‖2 = (
∫tf
t0
x>(t)x(t)dt)1/2

‖x‖ = max
t06t6tf

(|x(t)|), (scalar x)
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Increment of functional

Increment:

of a function f: If q, q+∆q ∈D, the
increment of f is

∆f = f(q+∆q) − f(q).

of a functional J: If x and x+ δx are functions
for which the functional J is defined, then
increment of J is

∆J = J(x+ δx) − J(x).

δx is the variation of the function x

7 / 15



The variation of a functional

variation of a functional ∼ differential of a function

The increment of a functional can be written as
∆J(x(t),δx(t)) = δJ(x(t),δx(t)) + g(x(t),δx(t)).‖δx(t)‖,

where δJ is a linear in δx(t). If

lim
‖δx(t)‖→0

(g(x(t), δx(t))) = 0,

then J is said to be differentiable on x and δJ is the variation of J evaluated for a
function x.
A variation of the functional is a linear approximation of this increment, i.e.,
δJ(x(t), δx(t)) is linear in δx(t).

∆J(x(t), δx(t)) = δJ(x(t), δx(t)) +H.O.T .,
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The variation of a functional: example 1

How to compute variation of J(x(t)) =
∫tf
t0
f(x(t))dt (assuming f has first and

second continuous derivative)?

δJ(x(t), δx(t)) =
∫tf
t0

∂f(x(t))
∂x(t) · δxdt+ f(x(tf))δtf − f(x(t0))δt0

See next page for the derivation
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The variation of a functional: example 1 (cont’d)

∆J(x(t),δx(t)) = J(x(t) + δx(t)) − J(x(t))

=

∫tf+δtf
t0+δt0

(f(x(t) + δx(t))dt−

∫tf
t0

f(x(t))dt

= −

∫t0+δt0
t0

(f(x(t) + δx(t))dt+

∫tf+δtf
tf

(f(x(t) + δx(t))dt

+

∫tf
t0

(f(x(t) + δx(t))dt−

∫tf
t0

f(x(t))dt

−−−−−−−−−−−−−−−−

I
∫t0+δt0
t0

f(x(t) + δx(t))dt ≈ (f(x(t0) + δx(t0))δt0 = −f(x(t0))δt0 +H.O.T

I
∫tf+δtf
tf

f(x(t) + δx(t))dt ≈ (f(x(tf) + δx(tf))δtf = f(x(tf))δtf +H.O.T

I
∫tf
t0
f(x(t) + δx(t))dt−

∫tf
t0
f(x(t))dt =

∫tf
t0

(
f(x(t) + δx(t)) − f(x(t)

)
dt

=
∫tf
t0

(
f(x(t) +

∂f(x(t))
∂x(t) · δx+H.O.T − f(x(t)

)
dt ≈

∫tf
t0

∂f(x(t))
∂x(t) · δx dt

−−−−−−−−−−−−−−−−−

δJ(x(t),δx(t))=
∫tf
t0

∂f(x(t))
∂x(t) · δxdt+ f(x(tf))δtf − f(x(t0))δt0
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The variation of a functional: example 2

How to compute variation of J(x(t)) =
∫tf
t0
g(x(t), ẋ(t), t)dt for fixed t0

(assuming f has first and second continuous derivative)?

δJ(x(t), δx(t)) =

∫tf
t0

(gx −
d
dt
gẋ) · δxdt+ gẋ(x(tf), ẋ(tf), tf)δx(tf)+

g(x(tf), ẋ(tf), tf)δtf

(gx = ∂g
∂x

, gẋ = ∂g
∂ẋ

)

See next page for the derivation
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The variation of a functional: example 2 (cont’d)

∆J(x(t),δx(t)) =J(x(t)+δx(t))− J(x(t))

=

∫tf+δtf
t0

(g(x(t)+δx(t), ẋ(t)+δẋ(t),t)dt−

∫tf
t0
g(x(t), ẋ(t),t)dt

=

∫tf+δtf
tf

(g(x(t)+δx(t), ẋ(t)+δẋ(t),t)dt

+

∫tf
t0

(g(x(t)+δx(t), ẋ(t)+δẋ(t),t)dt−

∫tf
t0
g(x(t), ẋ(t),t)dt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

?

∫tf+δtf
tf

(g(x(t)+δx(t), ẋ(t)+δẋ(t),t)dt≈ (g(x(tf)+δx(tf), ẋ(tf)+δẋ(tf),tf)δtf =

g(x(tf), ẋ(tf),tf)δtf+H.O.T

?

∫tf
t0

(g(x(t)+δx(t), ẋ(t)+δẋ(t),t)dt−

∫tf
t0
g(x(t), ẋ(t),t)dt

=

∫tf
t0

(
gx(x(t), ẋ(t),t)δx(t)+gẋ(x(t), ẋ(t),t)δẋ(t)

)
dt

Let u= gẋ , and dv= δẋdt to get:

=

∫tf
t0
gx(x(t), ẋ(t),t)δx(t)dt−

∫tf(
t0

d

dt
gẋ(x(t), ẋ(t),t)δx(t)dt+gẋ(x(t), ẋ(t),t)

∣∣tf
t=0

δẋ=
d

dt
δx (δẋ and δx are not independent)

Integration by parts:
∫b
a
udv=uv

∣∣∣b
a

−

∫b
a
vdu.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

δJ(x(t),δx(t)) =g(x(tf), ẋ(tf),tf)δtf+gẋ(x(tf), ẋ(tf),tf)δx(tf)−

��
���

���
���

��: 0

δx(t0)=0,fixed and given initial condition︷ ︸︸ ︷
gẋ(x(t0), ẋ(t0),t0)δx(t0) +∫tf

t0

(
gx(x(t), ẋ(t),t)−

d

dt
gẋ(x(t), ẋ(t),t)

)
δx(t)dt
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Extremal of a functional: fundamental theorem of the calculus of variation

Minimizer of a function f(q) is q? if

f(q?) 6 f(q)

for all admissible q in ‖q−q?‖ 6 ε

Minimizer of a functional J(x(t)) is x?(t) if

J(x?(t)) 6 J(x(t))

for all admissible x(t) in ‖x(t) − x?(t)‖ 6 ε.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fundamental theorem of the calculus of variation

Let x be a vector function of t in the class Ω, and
J(x) be a differential functional of x.

Assume that all x ∈Ω are not constrained by any
boundaries. If x? is an extremal function, the
variation of J must vanish in x?

δJ(x?,δx) = 0

for all admissible x ∈Ω.
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Optimal control problems of interest

We are going to study

u?(t)
∣∣∣
t∈[t0,tf]

= argmin
u(t)∈U

(J = h(x(tf), tf) +

∫tf
t0

g(x(t),u(t), t)dt), s.t.

ẋ(t) = f(x(t),u(t), t),

x(t0), t0 is given,

m(x(tf), tf) = 0← when final state is constrained,

x(t) : R→ Rn, u(t) : R→ Rm, f : Rn × Rm × R→ Rn.

We will first focus on the special case below.1

x?(t)
∣∣∣
t∈[t0,tf]

= argmin
(
J(x(t)) =

∫tf
t0

g(x(t), ẋ(t), t)dt
)
s.t.

x(t0) = x0,

x(tf) = xf (various terminal conditions )

1“Think of it as a case that we can find u(t) in terms of (x(t), ẋ(t)) from ẋ(t) = f(x(t),u(t),t). Then the optimal
control problem above can be cast with u(t) eliminated.”
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First order optimality conditions

x?(t)
∣∣∣
t∈[t0,tf]

= argmin
(
J(x(t)) =

∫tf
t0

g(x(t), ẋ(t), t)dt
)
s.t.

x(t0) = x0,

x(tf) = xf (various terminal conditions )

Variation
δJ(x(t),δx(t)) =g(x(tf), ẋ(tf), tf)δtf + gẋ(x(tf), ẋ(tf), tf)δx(tf)+∫tf

t0

(
gx(x(t), ẋ(t), t) −

d

dt
gẋ(x(t), ẋ(t), t)

)
δx(t)dt

From this variation, for different terminal conditions, we are going to derive first order necessary
conditions for optimality using the Fundamental Theorem of Calculus of Variation.

Both tf and x(tf) are specified and are given
In this case δtf = 0 and δx(tf) = 0

δJ(x(t), δx(t)) =
∫tf
t0

(
gx(x(t), ẋ(t), t) −

d
dt
gẋ(x(t), ẋ(t), t)

)
δx(t)dt = 0⇒

the (first order) necessary condition for a maximum or minimum is called Euler Equation

gx(x(t), ẋ(t), t) −
d

dt
gẋ(x(t), ẋ(t), t) = 0

In this case we solve the Euler Equation with the boundary conditions x(0) = x0 and
x(tf) = xf
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