Optimal Control Lecture 10

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Suggested ready: Section 4.1 and 4.2 of Ref[1] (see class website or the class syllabus for the list of references)

We are going to focus on solving

$$\begin{split} u^{\star}(t)\Big|_{t\in[t_0,t_f]} &= \underset{u(t)\in\mathcal{U}}{\operatorname{argmin}}(J = h(x(t_f),t_f) + \int_{t_0}^{t_f} g(x(t),u(t),t)), \ \text{ s.t.} \\ \dot{x}(t) &= f(x(t),u(t),t), \\ x(t_0), \ t_0 \ \text{is given}, \\ m(x(t_f),t_f) &= 0 \leftarrow \ \text{when final state is constrained}, \end{split}$$

 $x(t):\mathbb{R}\to\mathbb{R}^n,\quad u(t):\mathbb{R}\to\mathbb{R}^m,\quad f:\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}\to\mathbb{R}^n.$

Observations:

- J is a function of x(t), u(t) both functions over $t \in [t_0, t_f]$
- J is a functional (function of a function)

Static parameter optimization:

 objective: determine a point that minimizes a specific function (the performance measure)

Optimization in continuous-time:

 objective: determine <u>a function</u> that minimizes a specific functional (the performance measure)

Function vs. functional

Def (function): A function f is a rule of correspondence that assigns to each element q in a certain set \mathcal{D} (domain of the function) a unique element in a set \mathcal{R} (range or image of the function)

Def (functional): A functional J is a rule of correspondence that assigns to each function x in a certain class Ω (domain of the functional) a unique real number. The set of real numbers associated with the functions Ω is called the range of the functional.

- functional: function of function
- domain is a class of functions

Example: x: continuous function of t defined in the interval $[t_0, t_f]$ and

$$J(\mathbf{x}) = \int_{t_0}^{t_f} \mathbf{x}(t) dt$$

is a functional. Its range is the area under x(t) curves.

- discrete-time optimal control: can be cast as parameter optimization with a finite dimensional decision variable and constraints
- continuous-time optimal control: infinite dimensional decision variable
 - Continuous-time optimal control: use Calculus of Variation

Calculus of Variation

- field of mathematical analysis that deals with maximization/minimization of functionals
- functionals are defined as integrals involving functions and their derivatives
- interest is in extremal functions that make the functional attain
 - maximum
 - minimum
 - or stationary functions (those where the rate of change of the functional is zero)

$$\begin{split} q^{\star} &= \text{argmin } f(q) \\ \text{Point } q^{\star} \text{ is a minimizer of a function } f(q) \text{ iff} \\ f(q^{\star}) \leqslant f(q) & J(x) \\ \text{for all admissible } q \text{ in } \|q - q^{\star}\| \leqslant \varepsilon \end{split}$$

$$x^{\star} = \text{argmin} \ J = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t)$$

Function $x^{\star}(t)$ is a minimizer of functional J(x(t)) iff

$$J(x^{\star}(t)) \leqslant J(x(t))$$

for all admissible x(t) in $\|x(t)-x^\star(t)\|\leqslant\varepsilon.$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Tools we need for our studies:

• How to measure closeness of two functions?

_ _ _ _ _ _ _ _ _ _ _ _ _ _

 How to compute/approximate variation of a functional due to 'small' changes in its arguments, which are functions?

Norm:

in n-dimensional Euclidean space: rule of correspondence which assigns to each point q a real number.

$$\textcircled{1} \|q\| \geqslant 0 \text{ and } \|q\| = 0 \text{ iff } q = 0$$

2
$$\|\alpha q\| = |\alpha| \|q\|$$
 for all $\alpha \in \mathbb{R}$

$$\|q^1 + q^2\| \leqslant \|q^1\| + \|q^2\|$$

$$q^1 \text{ and } q^2 \text{ close together} \Leftrightarrow \|q^1 - q^2\| \text{ is small}$$

of a function: rule of correspondence which assigns to each function $x \in \Omega$, defined for $t \in [t_0, t_f]$, a real number.

 $\label{eq:constraint} \|x\| \geqslant 0 \text{ and } \|x\| = 0 \text{ iff } x(t) = 0 \text{ for all } t \in [t_0,t_f]$

2
$$\|\alpha x\| = |\alpha| \|x\|$$
 for all $\alpha \in \mathbb{R}$

3
$$||x^1 + x^2|| \leq ||x^1|| + ||x^2||$$

Intuitively speaking norm of the difference of two functions should be

- zero if the functions are identical
- small, if the functions are "close"
- large if the functions are "far apart"

Examples

• $\|x\|_2 = (\int_{t_0}^{t_f} x^\top(t) x(t) dt)^{1/2}$

•
$$||x|| = \max_{t_0 \leqslant t \leqslant t_f} (|x(t)|)$$
, (scalar x)

Increment:

of a function f: If q, $q + \Delta q \in D$, the increment of f is

$$\Delta \mathbf{f} = \mathbf{f}(\mathbf{q} + \Delta \mathbf{q}) - \mathbf{f}(\mathbf{q}).$$

of a functional J: If x and $x+\delta x$ are functions for which the functional J is defined, then increment of J is

$$\Delta \mathbf{J} = \mathbf{J}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{J}(\mathbf{x}).$$

 δx is the variation of the function x

The variation of a functional

variation of a functional \sim differential of a function

The increment of a functional can be written as

$$\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) = \delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) + g(\mathbf{x}(t), \delta \mathbf{x}(t)) \| \delta \mathbf{x}(t) \|,$$

where δJ is a linear in $\delta x(t)$. If

$$\lim_{\|\delta x(t)\|\to 0} (g(x(t), \delta x(t))) = 0,$$

then J is said to be *differentiable* on x and δJ is the variation of J evaluated for a function x.

A variation of the functional is a linear approximation of this increment, i.e., $\delta J(x(t), \delta x(t))$ is linear in $\delta x(t)$.

$$\Delta J(x(t), \delta x(t)) = \delta J(x(t), \delta x(t)) + H.O.T.,$$

How to compute variation of $J(x(t)) = \int_{t_0}^{t_f} f(x(t)) dt$ (assuming f has first and second continuous derivative)?

 $\delta J(x(t), \delta x(t)) = \int_{t_0}^{t_f} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x dt + f(x(t_f)) \delta t_f - f(x(t_0)) \delta t_0$

See next page for the derivation

The variation of a functional: example 1 (cont'd)

$$\begin{split} \Delta J(x(t), \delta x(t)) &= J(x(t) + \delta x(t)) - J(x(t)) \\ &= \int_{t_0 + \delta t_0}^{t_f + \delta t_f} (f(x(t) + \delta x(t)) \, dt - \int_{t_0}^{t_f} f(x(t)) \, dt \\ &= - \int_{t_0}^{t_0 + \delta t_0} (f(x(t) + \delta x(t)) \, dt + \int_{t_f}^{t_f + \delta t_f} (f(x(t) + \delta x(t)) \, dt \\ &+ \int_{t_0}^{t_f} (f(x(t) + \delta x(t)) \, dt - \int_{t_0}^{t_f} f(x(t)) \, dt \end{split}$$

•
$$\int_{t_0}^{t_0+\delta t_0} f(x(t) + \delta x(t)) dt \approx (f(x(t_0) + \delta x(t_0))\delta t_0 = -f(x(t_0)) \delta t_0 + H.O.T$$

 $\blacktriangleright \int_{t_f}^{t_f + \delta t_f} f(x(t) + \delta x(t)) dt \approx (f(x(t_f) + \delta x(t_f)) \delta t_f = f(x(t_f)) \delta t_f + H.O.T$

$$\int_{t_0}^{t_f} f(x(t) + \delta x(t)) dt - \int_{t_0}^{t_f} f(x(t)) dt = \int_{t_0}^{t_f} (f(x(t) + \delta x(t)) - f(x(t))) dt$$

$$= \int_{t_0}^{t_f} (f(x(t) + \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x + H.O.T - f(x(t))) dt \approx \int_{t_0}^{t_f} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x dt$$

 $\delta J(x(t), \delta x(t)) = \int_{t_0}^{t_f} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x dt + f(x(t_f)) \delta t_f - f(x(t_0)) \delta t_0$

How to compute variation of $J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt$ for fixed t_0 (assuming f has first and second continuous derivative)?

$$\begin{split} \delta J(x(t),\delta x(t)) = & \int_{t_0}^{t_f} (g_x - \frac{d}{dt}g_{\dot{x}}) \cdot \delta x dt + g_{\dot{x}}(x(t_f),\dot{x}(t_f),t_f) \delta x(t_f) + \\ & g(x(t_f),\dot{x}(t_f),t_f) \delta t_f \end{split}$$

 $(g_x = \frac{\partial g}{\partial x}, g_{\dot{x}} = \frac{\partial g}{\partial \dot{x}})$

See next page for the derivation

The variation of a functional: example 2 (cont'd)

$$\begin{split} \Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) &= J(\mathbf{x}(t) + \delta \mathbf{x}(t)) - J(\mathbf{x}(t)) \\ &= \int_{t_0}^{t_f + \delta t_f} (g(\mathbf{x}(t) + \delta \mathbf{x}(t), \dot{\mathbf{x}}(t) + \delta \dot{\mathbf{x}}(t), t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_f}^{t_f + \delta t_f} (g(\mathbf{x}(t) + \delta \mathbf{x}(t), \dot{\mathbf{x}}(t) + \delta \dot{\mathbf{x}}(t), t) \, dt \\ &+ \int_{t_0}^{t_f} (g(\mathbf{x}(t) + \delta \mathbf{x}(t), \dot{\mathbf{x}}(t) + \delta \dot{\mathbf{x}}(t), t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &+ \int_{t_f}^{t_f + \delta t_f} (g(\mathbf{x}(t) + \delta \mathbf{x}(t), \dot{\mathbf{x}}(t) + \delta \dot{\mathbf{x}}(t), t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= g(\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f) \, \delta t_f + H.O.T \end{split}$$

$$* \int_{t_0}^{t_f} (g(\mathbf{x}(t) + \delta \mathbf{x}(t), \dot{\mathbf{x}}(t) + \delta \dot{\mathbf{x}}(t), t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} (g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt - \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) + \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, dt \\ &= \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt + g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) + \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}(t) \, dt \\ &= \int_{t_0}^{t_f} (g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \, \delta \mathbf{x}($$

Extremal of a functional: fundamental theorem of the calculus of variation

 $\begin{array}{ll} \mbox{Minimizer of a function } f(q) \mbox{ is } q^{\star} \mbox{ if } & \mbox{Minimizer of a functional } J(x(t)) \mbox{ is } x^{\star}(t) \mbox{ if } \\ f(q^{\star}) \leqslant f(q) & \mbox{ } J(x^{\star}(t)) \leqslant J(x(t)) \\ \mbox{for all admissible } q \mbox{ in } \|q - q^{\star}\| \leqslant \varepsilon & \mbox{for all admissible } x(t) \mbox{ in } \|x(t) - x^{\star}(t)\| \leqslant \varepsilon. \\ \end{array}$

Fundamental theorem of the calculus of variation

- Let x be a vector function of t in the class Ω , and J(x) be a differential functional of x.
- Assume that all $x \in \Omega$ are not constrained by any boundaries. If x^* is an extremal function, the variation of J must vanish in x^*

$$\delta J(\mathbf{x}^{\star}, \delta \mathbf{x}) = \mathbf{0}$$

for all admissible $x \in \Omega$.

Optimal control problems of interest

We are going to study

$$\begin{split} u^{\star}(t)\Big|_{t\in[t_0,t_f]} &= \underset{u(t)\in\mathcal{U}}{\operatorname{argmin}}(J = h(x(t_f),t_f) + \int_{t_0}^{t_f} g(x(t),u(t),t)dt), \ \text{ s.t.} \\ \dot{x}(t) &= f(x(t),u(t),t), \\ x(t_0), \ t_0 \ \text{is given}, \\ m(x(t_f),t_f) &= 0 \leftarrow \ \text{when final state is constrained}, \end{split}$$

 $x(t):\mathbb{R}\to\mathbb{R}^n,\quad u(t):\mathbb{R}\to\mathbb{R}^m,\quad f:\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}\to\mathbb{R}^n.$

We will first focus on the special case below.¹

$$\begin{split} x^{\star}(t) \Big|_{t \in [t_0, t_f]} &= \text{argmin} \left(J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt \right) \, s.t. \\ x(t_0) &= x_0, \\ x(t_f) &= x_f \quad (\text{various terminal conditions }) \end{split}$$

^{1&}quot;Think of it as a case that we can find u(t) in terms of $(x(t), \dot{x}(t))$ from $\dot{x}(t) = f(x(t), u(t), t)$. Then the optimal control problem above can be cast with u(t) eliminated."

First order optimality conditions

$$\begin{split} x^{\star}(t) \Big|_{t \in [t_0, t_f]} &= \text{argmin} \left(J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt \right) \, s.t. \\ x(t_0) &= x_0, \\ x(t_f) &= x_f \quad (\text{various terminal conditions }) \end{split}$$

Variation

$$\begin{split} \delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) = & g(\mathbf{x}(t_{f}), \dot{\mathbf{x}}(t_{f}), t_{f}) \, \delta t_{f} + g_{\dot{\mathbf{x}}}(\mathbf{x}(t_{f}), \dot{\mathbf{x}}(t_{f}), t_{f}) \, \delta \mathbf{x}(t_{f}) + \\ & \int_{t_{0}}^{t_{f}} \left(g_{\mathbf{x}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \right) \delta \mathbf{x}(t) \, dt \end{split}$$

From this variation, for different terminal conditions, we are going to derive first order necessary conditions for optimality using the Fundamental Theorem of Calculus of Variation.

- Both t_f and $x(t_f)$ are specified and are given
 - $\bullet\,$ In this case $\delta t_{\rm f}=0$ and $\delta x(t_{\rm f})=0$
 - $\delta J(x(t),\delta x(t)) = \int_{t_0}^{t_f} \left(g_x(x(t),\dot{x}(t),t) \frac{\mathrm{d}}{\mathrm{d}t}g_{\dot{x}}(x(t),\dot{x}(t),t) \right) \delta x(t) \, \mathrm{d}t = 0 \Rightarrow$

the (first order) necessary condition for a maximum or minimum is called Euler Equation

$$g_x(x(t),\dot{x}(t),t) - \frac{d}{dt}g_{\dot{x}}(x(t),\dot{x}(t),t) = 0$$

In this case we solve the Euler Equation with the boundary conditions $\chi(0) = \chi_0$ and