Optimal Control Lecture 10

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Suggested ready: Section 4.1 and 4.2 of Ref[1] (see class website or the class syllabus for the list of references)

Calculus of variation and its connection to optimal control

We are going to focus on solving

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right), \text { s.t. } \\
& \dot{x}(t)=f(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

Observations:

- J is a function of $x(t), u(t)$ both functions over $t \in\left[t_{0}, t_{f}\right]$
- J is a functional (function of a function)

Static parameter optimization:

- objective: determine a point that minimizes a specific function (the performance measure)

Optimization in continuous-time:

- objective: determine a function that minimizes a specific functional (the performance measure)

Function vs. functional

Def (function): A function f is a rule of correspondence that assigns to each element q in a certain set \mathcal{D} (domain of the function) a unique element in a set \mathcal{R} (range or image of the function)

Def (functional): A functional J is a rule of correspondence that assigns to each function x in a certain class Ω (domain of the functional) a unique real number. The set of real numbers associated with the functions Ω is called the range of the functional.

- functional: function of function
- domain is a class of functions

Example: x : continuous function of t defined in the interval $\left[t_{0}, t_{f}\right]$ and

$$
J(x)=\int_{t_{0}}^{t_{f}} x(t) d t
$$

is a functional. Its range is the area under $x(t)$ curves.

Calculus of variation

- discrete-time optimal control: can be cast as parameter optimization with a finite dimensional decision variable and constraints
- continuous-time optimal control: infinite dimensional decision variable
- Continuous-time optimal control: use Calculus of Variation

Calculus of Variation

- field of mathematical analysis that deals with maximization/minimization of functionals
- functionals are defined as integrals involving functions and their derivatives
- interest is in extremal functions that make the functional attain
- maximum
- minimum
- or stationary functions (those where the rate of change of the functional is zero)

Extremal of a functional: fundamental theorem of the calculus of variation

$$
\mathbf{q}^{\star}=\operatorname{argmin} f(\mathbf{q})
$$

Point q^{\star} is a minimizer of a function $f(q)$ iff

$$
f\left(q^{\star}\right) \leqslant f(q)
$$

for all admissible q in $\left\|\mathrm{q}-\mathrm{q}^{\star}\right\| \leqslant \epsilon$

$$
x^{\star}=\operatorname{argmin} J=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t)
$$

Function $x^{\star}(t)$ is a minimizer of functional $J(x(t))$ iff

$$
J\left(x^{\star}(t)\right) \leqslant J(x(t))
$$

for all admissible $x(t)$ in $\left\|x(t)-x^{\star}(t)\right\| \leqslant \epsilon$.

Tools we need for our studies:

- How to measure closeness of two functions?
- How to compute/approximate variation of a functional due to 'small' changes in its arguments, which are functions?

closeness of functions

Norm:

in n-dimensional Euclidean space: rule of correspondence which assigns to each point q a real number.
(1) $\|\mathrm{q}\| \geqslant 0$ and $\|\mathrm{q}\|=0$ iff $\mathrm{q}=0$
(2) $\|\alpha \mathbf{q}\|=|\alpha|\|q\|$ for all $\alpha \in \mathbb{R}$
(3) $\left\|q^{1}+q^{2}\right\| \leqslant\left\|q^{1}\right\|+\left\|q^{2}\right\|$
q^{1} and q^{2} close together $\Leftrightarrow\left\|q^{1}-q^{2}\right\|$ is small
of a function: rule of correspondence which assigns to each function $x \in \Omega$, defined for $t \in\left[t_{0}, t_{f}\right]$, a real number.
(1) $\|x\| \geqslant 0$ and $\|x\|=0$ iff $x(t)=0$ for all $t \in\left[t_{0}, t_{f}\right]$
(2) $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{R}$
(3) $\left\|x^{1}+x^{2}\right\| \leqslant\left\|x^{1}\right\|+\left\|x^{2}\right\|$

Intuitively speaking norm of the difference of two functions should be

- zero if the functions are identical
- small, if the functions are "close"
- large if the functions are "far apart"

Examples

- $\|x\|_{2}=\left(\int_{t_{0}}^{t_{f}} x^{\top}(t) x(t) d t\right)^{1 / 2}$
- $\|x\|=\max _{t_{0} \leqslant t \leqslant t_{f}}(|x(t)|)$, (scalar $\left.x\right)$

Increment of functional

Increment:

of a function f : If $q, q+\Delta q \in \mathcal{D}$, the increment of f is

$$
\Delta f=f(q+\Delta q)-f(q) .
$$

of a functional J: If x and $x+\delta x$ are functions for which the functional J is defined, then increment of J is

$$
\Delta \mathrm{J}=\mathrm{J}(\mathrm{x}+\delta \mathrm{x})-\mathrm{J}(\mathrm{x}) .
$$

δx is the variation of the function x

The variation of a functional

variation of a functional ~ differential of a function
The increment of a functional can be written as

$$
\Delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta x(\mathrm{t}))=\delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta x(\mathrm{t}))+\mathrm{g}(\mathrm{x}(\mathrm{t}), \delta x(\mathrm{t})) \cdot\|\delta \mathrm{x}(\mathrm{t})\|,
$$

where $\delta \mathrm{J}$ is a linear in $\delta x(\mathrm{t})$. If

$$
\lim _{\|\delta x(t)\| \rightarrow 0}(g(x(t), \delta x(t)))=0
$$

then J is said to be differentiable on x and $\delta \mathrm{J}$ is the variation of J evaluated for a function x.
A variation of the functional is a linear approximation of this increment, i.e., $\delta J(x(t), \delta x(t))$ is linear in $\delta x(t)$.

$$
\Delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta \mathrm{x}(\mathrm{t}))=\delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta \mathrm{x}(\mathrm{t}))+\text { H.O.T. }
$$

How to compute variation of $J(x(t))=\int_{t_{0}}^{t_{f}} f(x(t)) d t$ (assuming f has first and second continuous derivative)?

$$
\delta J(x(t), \delta x(t))=\int_{t_{0}}^{t_{f}} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x d t+f\left(x\left(t_{f}\right)\right) \delta t_{f}-f\left(x\left(t_{0}\right)\right) \delta t_{0}
$$

See next page for the derivation

The variation of a functional: example 1 (cont'd)

$$
\Delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta x(\mathrm{t}))=\mathrm{J}(\mathrm{x}(\mathrm{t})+\delta \mathrm{x}(\mathrm{t}))-\mathrm{J}(\mathrm{x}(\mathrm{t}))
$$

$$
\begin{aligned}
= & \int_{t_{0}+\delta t_{0}}^{t_{f}+\delta t_{f}}\left(f(x(t)+\delta x(t)) d t-\int_{t_{0}}^{t_{f}} f(x(t)) d t\right. \\
= & -\int_{t_{0}}^{t_{0}+\delta t_{0}}\left(f(x(t)+\delta x(t)) d t+\int_{t_{f}}^{t_{f}+\delta t_{f}}(f(x(t)+\delta x(t)) d t\right. \\
& +\int_{t_{0}}^{t_{f}}\left(f(x(t)+\delta x(t)) d t-\int_{t_{0}}^{t_{f}} f(x(t)) d t\right.
\end{aligned}
$$

$>\int_{t_{0}}^{t_{0}+\delta t_{0}} f(x(t)+\delta x(t)) d t \approx\left(f\left(x\left(t_{0}\right)+\delta x\left(t_{0}\right)\right) \delta t_{0}=-f\left(x\left(t_{0}\right)\right) \delta t_{0}+\right.$ H.O.T
$-\int_{t_{f}}^{t_{f}+\delta t_{f}} f(x(t)+\delta x(t)) d t \approx\left(f\left(x\left(t_{f}\right)+\delta x\left(t_{f}\right)\right) \delta t_{f}=f\left(x\left(t_{f}\right)\right) \delta t_{f}+\right.$ H.O.T
$>\int_{t_{0}}^{t_{f}} f(x(t)+\delta x(t)) d t-\int_{t_{0}}^{t_{f}} f(x(t)) d t=\int_{t_{0}}^{t_{f}}(f(x(t)+\delta x(t))-f(x(t)) d t$ $=\int_{t_{0}}^{t_{f}}\left(f\left(x(t)+\frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x+\right.\right.$ H.O.T $-f(x(t)) d t \approx \int_{t_{0}}^{t_{f}} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x d t$

$$
\delta J(x(t), \delta x(t))=\int_{t_{0}}^{t_{f}} \frac{\partial f(x(t))}{\partial x(t)} \cdot \delta x d t+f\left(x\left(t_{f}\right)\right) \delta t_{f}-f\left(x\left(t_{0}\right)\right) \delta t_{0}
$$

The variation of a functional: example 2

How to compute variation of $J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t$ for fixed t_{0} (assuming f has first and second continuous derivative)?

$$
\begin{aligned}
\delta J(x(t), \delta x(t))= & \int_{t_{0}}^{t_{f}}\left(g_{x}-\frac{d}{d t} g_{\dot{x}}\right) \cdot \delta x d t+g_{\dot{x}}\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta x\left(t_{f}\right)+ \\
& g\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta t_{f}
\end{aligned}
$$

$$
\left(g_{x}=\frac{\partial g}{\partial x}, g_{\dot{x}}=\frac{\partial g}{\partial \dot{x}}\right)
$$

See next page for the derivation

The variation of a functional: example 2 (contd)

$$
\star \int_{t_{f}}^{t_{f}+\delta t_{f}}\left(g (x (t) + \delta x (t) , \dot { x } (t) + \delta \dot { x } (t) , t) d t \approx \left(g\left(x\left(t_{f}\right)+\delta x\left(t_{f}\right), \dot{x}\left(t_{f}\right)+\delta \dot{x}\left(t_{f}\right), t_{f}\right) \delta t_{f}=\right.\right.
$$

$$
g\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta t_{f}+\text { H.O.T }
$$

$\star \int_{t_{0}}^{t_{f}}\left(g(x(t)+\delta x(t), \dot{x}(t)+\delta \dot{x}(t), t) d t-\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t\right.$

$$
=\int_{t_{0}}^{t_{f}}\left(g x(x(t), \dot{x}(t), t) \delta x(t)+g_{\dot{x}}(x(t), \dot{x}(t), t) \delta \dot{x}(t)\right) d t
$$

$$
\text { Let } u=g_{\dot{x}}, \text { and } \mathbf{d} v=\delta \dot{x} \mathbf{d} t \text { to get: }
$$

$\delta \dot{x}=\frac{d}{d t} \delta x \quad(\delta \dot{x}$ and δx are not independent $)$
$=\int_{t_{0}}^{t_{f}} g x(x(t), \dot{x}(t), t) \delta x(t) d t-\quad$ Integration by parts: $\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u$.

$$
\begin{aligned}
\delta J(x(t), \delta x(t))= & g\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta t_{f}+g_{\dot{x}}\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta x\left(t_{f}\right)-\quad \underbrace{g_{\dot{x}}\left(x\left(t_{0}\right), \dot{x}\left(t_{0}\right), t_{0}\right) \delta x\left(t_{0}\right)}_{t_{0}} \\
& \int_{f}^{t_{f}}\left(g x(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)\right) \delta x(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathrm{J}(\mathrm{x}(\mathrm{t}), \delta \mathrm{x}(\mathrm{t}))=\mathrm{J}(\mathrm{x}(\mathrm{t})+\delta \mathrm{x}(\mathrm{t}))-\mathrm{J}(\mathrm{x}(\mathrm{t})) \\
& =\int_{t_{0}}^{t_{f}+\delta t_{f}}\left(g(x(t)+\delta x(t), \dot{x}(t)+\delta \dot{x}(t), t) d t-\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t\right. \\
& =\int_{t_{f}}^{t_{f}+\delta t_{f}}(g(x(t)+\delta x(t), \dot{x}(t)+\delta \dot{x}(t), t) d t \\
& +\int_{t_{0}}^{t_{f}}\left(g(x(t)+\delta x(t), \dot{x}(t)+\delta \dot{x}(t), t) d t-\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t\right.
\end{aligned}
$$

Extremal of a functional: fundamental theorem of the calculus of variation

Minimizer of a function $f(q)$ is q^{\star} if

$$
f\left(q^{\star}\right) \leqslant f(q)
$$

for all admissible q in $\left\|\mathrm{q}-\mathrm{q}^{\star}\right\| \leqslant \epsilon$

Minimizer of a functional $J(x(t))$ is $x^{\star}(t)$ if

$$
J\left(x^{\star}(t)\right) \leqslant J(x(t))
$$

for all admissible $x(t)$ in $\left\|x(t)-x^{\star}(t)\right\| \leqslant \epsilon$.

Fundamental theorem of the calculus of variation

- Let x be a vector function of t in the class Ω, and $J(x)$ be a differential functional of x.
- Assume that all $x \in \Omega$ are not constrained by any boundaries. If x^{\star} is an extremal function, the variation of J must vanish in x^{\star}

$$
\delta J\left(x^{\star}, \delta x\right)=0
$$

for all admissible $x \in \Omega$.

Optimal control problems of interest

We are going to study

$$
\begin{aligned}
& \left.u^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\underset{u(t) \in u}{\operatorname{argmin}}\left(J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t\right), \text { s.t. } \\
& \dot{x}(t)=f(x(t), u(t), t), \\
& x\left(t_{0}\right), t_{0} \text { is given, } \\
& m\left(x\left(t_{f}\right), t_{f}\right)=0 \leftarrow \text { when final state is constrained, } \\
& x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad u(t): \mathbb{R} \rightarrow \mathbb{R}^{m}, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

We will first focus on the special case below. ${ }^{1}$

$$
\begin{aligned}
& \left.x^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\operatorname{argmin}\left(J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t\right) \text { s.t. } \\
& x\left(t_{0}\right)=x_{0}, \\
& \left.x\left(t_{f}\right)=x_{f} \quad \text { (various terminal conditions }\right)
\end{aligned}
$$

1 "Think of it as a case that we can find $u(t)$ in terms of $(x(t), \dot{x}(t))$ from $\dot{x}(t)=f(x(t), u(t), t)$. Then the optimal control problem above can be cast with $u(t)$ eliminated."

First order optimality conditions

$$
\begin{aligned}
& \left.x^{\star}(t)\right|_{t \in\left[t_{0}, t_{f}\right]}=\operatorname{argmin}\left(J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t\right) \text { s.t. } \\
& x\left(t_{0}\right)=x_{0}, \\
& \left.x\left(t_{f}\right)=x_{f} \quad \text { (various terminal conditions }\right)
\end{aligned}
$$

Variation

$$
\begin{aligned}
\delta J(x(t), \delta x(t))= & g\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta t_{f}+g_{\dot{x}}\left(x\left(t_{f}\right), \dot{x}\left(t_{f}\right), t_{f}\right) \delta x\left(t_{f}\right)+ \\
& \int_{t_{0}}^{t_{f}}\left(g_{x}(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)\right) \delta x(t) d t
\end{aligned}
$$

From this variation, for different terminal conditions, we are going to derive first order necessary conditions for optimality using the Fundamental Theorem of Calculus of Variation.

- Both t_{f} and $x\left(t_{f}\right)$ are specified and are given
- In this case $\delta t_{f}=0$ and $\delta x\left(t_{f}\right)=0$
- $\delta J(x(t), \delta x(t))=\int_{t_{0}}^{t_{f}}\left(g_{x}(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)\right) \delta x(t) d t=0 \Rightarrow$
the (first order) necessary condition for a maximum or minimum is called Euler Equation

$$
g_{x}(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)=0
$$

In this case we solve the Euler Equation with the boundary conditions $x(0)=x_{0}$ and

