Optimal Control Lecture 1,2

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles underlying the analysis and design of (control) systems/processes.

Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles underlying the analysis and design of (control) systems/processes.

The objective in control theory

- stabilization, regulation, tracking

Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles underlying the analysis and design of (control) systems/processes.

The objective in control theory

- stabilization, regulation, tracking
- Impose performance on system behavior.

Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles underlying the analysis and design of (control) systems/processes.

The objective in control theory

- stabilization, regulation, tracking
- Impose performance on system behavior.

Optimum cruising altitude:
O-Ctimized flight path

Optimal control

- Performance measures considering step or ramp response:

mostly for SISO systems

- rise-time $\left(\mathrm{t}_{\mathrm{r}}\right)$
- settling time (t_{s})
- peak overshoot (M_{P})
- gain and phase margin and bandwidth
- steady state error

Optimal control

- Performance measures considering step or ramp response:

mostly for SISO systems

- rise-time $\left(\mathrm{t}_{\mathrm{r}}\right)$
- settling time (t_{s})
- peak overshoot (M_{P})
- gain and phase margin and bandwidth
- steady state error

- In this course:
- more complex performance measures, perhaps more closely related to the physical aspects of the system
- minimum fuel
- minimum control effort
- minimum time

Optimal control

- Performance measures considering step or ramp response:

mostly for SISO systems

- rise-time $\left(\mathrm{t}_{\mathrm{r}}\right)$
- settling time (t_{s})
- peak overshoot (M_{P})
- gain and phase margin and bandwidth
- steady state error

- In this course:
- more complex performance measures, perhaps more closely related to the physical aspects of the system
- minimum fuel
- minimum control effort
- minimum time
- satisfy some constraints on control and states of the system while optimizing performance measure

The objective of optimal control is to determine the control signals that will cause a process to satisfy the physical constraints and at the same time minimize (or maximize) some performance criterion.

The following three elements constitute the optimal control formulation|:

- model (a mathematical description) of the process/system to be controlled
- mathematical description of the (physical) constraints of the system
- a performance measure and its mathematical description

Performance measures

- Minimum-time problem: To transfer a system from arbitrary initial state $x\left(\mathrm{t}_{0}\right)=x_{0}$ to a specified target set \mathcal{S} in minimum time

$$
\begin{equation*}
\mathrm{J}=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{dt}, \tag{1}
\end{equation*}
$$

where t_{f} is the first instant of time when $\mathbf{x}(\mathrm{t})$ and \mathcal{S} intersect.

Performance measures

- Minimum-time problem: To transfer a system from arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target set \mathcal{S} in minimum time

$$
\begin{equation*}
\mathrm{J}=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{dt} \tag{1}
\end{equation*}
$$

where t_{f} is the first instant of time when $\mathbf{x}(\mathrm{t})$ and \mathcal{S} intersect. For discrete-time systems, minimum-time performance can be cast as

$$
\mathrm{J}=\mathrm{N}=\sum_{k=0}^{\mathrm{N}-1} 1
$$

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2} .\right.
$$

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2}\right.
$$

- Both positive and negative deviations are undesirable.

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2}\right.
$$

- Both positive and negative deviations are undesirable.
- Given the system model and the constrains, $x\left(t_{f}\right)=r\left(t_{f}\right)$ may not be accomplished.

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2} .\right.
$$

- Both positive and negative deviations are undesirable.
- Given the system model and the constrains, $x\left(t_{f}\right)=r\left(t_{f}\right)$ may not be accomplished.

A ballistic missile aimed at target S.

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2}\right.
$$

- Both positive and negative deviations are undesirable.
- Given the system model and the constrains, $x\left(t_{f}\right)=r\left(t_{f}\right)$ may not be accomplished.

A ballistic missile aimed at target S.

- In this case, we may wish to put more weight or penalty on the deviation of certain state more than others.

Performance measures

- Terminal control problem: to minimize the deviation of the final state of a system from its desired value $r\left(t_{f}\right) \in \mathbb{R}^{n}$

$$
J=\sum_{i=1}^{n}\left(x_{i}\left(t_{f}\right)-r_{i}\left(t_{f}\right)\right)^{2}=\left(x\left(t_{f}\right)-r\left(t_{f}\right)^{\top}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|^{2}\right.
$$

- Both positive and negative deviations are undesirable.
- Given the system model and the constrains, $x\left(t_{f}\right)=r\left(t_{f}\right)$ may not be accomplished.

A ballistic missile aimed at target S.

- In this case, we may wish to put more weight or penalty on the deviation of certain state more than others.

$$
J=\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)^{\top} H\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)=\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|_{H}^{2}, \quad H \geqslant 0,
$$

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort.

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:
- For a space craft $(u(t)$: thrust of the engine), the minimum-control-effort

$$
J=\int_{t_{0}}^{t_{f}}|u(t)| d t
$$

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:
- For a space craft $(u(t)$: thrust of the engine), the minimum-control-effort

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}|u(\mathrm{t})| \mathrm{dt}
$$

For a discrete-time system

$$
J=\sum_{k=0}^{N-1}\left|u_{k}\right|
$$

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(\mathrm{t}_{0}\right)=x_{0}$ to a specified target S , with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:
- For a space craft $(u(t)$: thrust of the engine), the minimum-control-effort

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}|\mathfrak{u}(\mathrm{t})| \mathrm{dt} .
$$

For a discrete-time system

$$
J=\sum_{k=0}^{N-1}\left|\mathfrak{u}_{k}\right| .
$$

- For an electric network without energy storage element $(\mathfrak{u}(\mathrm{t})$: voltage source)

$$
J=\int_{t_{0}}^{t_{f}} u^{2}(t) d t .
$$

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:
- For a space craft $(u(t)$: thrust of the engine), the minimum-control-effort

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}|\mathfrak{u}(\mathrm{t})| \mathrm{dt} .
$$

For a discrete-time system

$$
\mathrm{J}=\sum_{k=0}^{\mathrm{N}-1}\left|\mathfrak{u}_{\mathrm{k}}\right| .
$$

- For an electric network without energy storage element $(\mathfrak{u}(t)$: voltage source)

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{u}^{2}(\mathrm{t}) \mathrm{dt} .
$$

For several control inputs, we can write the cost function as

$$
J=\int_{t_{0}}^{t_{f}} u^{\top}(t) R u(t) d t=\int_{t_{0}}^{t_{f}}\|u(t)\|_{R}^{2} d t, \quad R \geqslant
$$

Performance measures

- Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state $x\left(t_{0}\right)=x_{0}$ to a specified target S, with a minimum expenditure of control effort. Form of " minimum control effort" cost depends on physical application:
- For a space craft $(u(t)$: thrust of the engine), the minimum-control-effort

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}|\mathfrak{u}(\mathrm{t})| \mathrm{dt} .
$$

For a discrete-time system

$$
\mathrm{J}=\sum_{k=0}^{\mathrm{N}-1}\left|\mathfrak{u}_{\mathrm{k}}\right| .
$$

- For an electric network without energy storage element $(\mathfrak{u}(t)$: voltage source)

$$
\mathrm{J}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{u}^{2}(\mathrm{t}) \mathrm{dt} .
$$

For several control inputs, we can write the cost function as

$$
J=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}} u^{\top}(\mathrm{t}) \mathrm{Ru}(\mathrm{t}) \mathrm{dt}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\|u(\mathrm{t})\|_{\mathrm{R}}^{2} d t, \quad \mathrm{R} \geqslant
$$

For a discrete-time system:

$$
J=\frac{1}{2} \sum_{k=0}^{N-1} u_{k}^{\top} R u_{k}
$$

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $r(t)$ in the interval $\left[t_{0}, t_{f}\right]$:

$$
J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0
$$

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $r(t)$ in the interval $\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]$:

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0}_{\left\{\begin{array}{l}
\text { reasonable if constraints includes }\left|u_{i}(t)\right| \leqslant 1, i \in\{1, \ldots, m\} \\
\text { Otherwise may result in impulses in control and its derivatives }
\end{array}\right.}
$$

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $\mathrm{r}(\mathrm{t})$ in the interval $\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]$:

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0}
$$

\{reasonable if constraints includes $\left|u_{i}(t)\right| \leqslant 1, i \in\{1, \ldots, m\}$
Otherwise may result in impulses in control and its derivatives

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t},
$$

remove the hard control bounds from problem formulation or conserve energy while maintaining tracking

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $\mathrm{r}(\mathrm{t})$ in the interval $\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]$:

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0}
$$

\{reasonable if constraints includes $\left|u_{i}(t)\right| \leqslant 1, i \in\{1, \ldots, m\}$
Otherwise may result in impulses in control and its derivatives

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t},
$$

remove the hard control bounds from problem formulation or conserve energy while maintaining tracking

$$
J=\underbrace{\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|_{H}^{2}}+\int_{t_{0}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t .
$$

states be close to their desired value at final time

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $r(t)$ in the interval $\left[t_{0}, t_{f}\right]$:

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0}_{\left\{\begin{array}{l}
\text { reasonable if constraints includes }\left|u_{i}(t)\right| \leqslant 1, i \in\{1, \ldots, m\} \\
\text { Otherwise may result in impulses in control and its derivatives }
\end{array}\right.}
$$

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t},
$$

remove the hard control bounds from problem formulation or conserve energy while maintaining tracking

$$
J=\underbrace{\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|_{t_{0}}^{2}}_{\text {states be close to their desired value at final time }}+\int_{t_{f}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t .
$$

$$
\underbrace{\mathrm{J}=\frac{1}{2} x_{N}^{\top} \mathrm{H} x_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left(\left(x_{k}-r_{k}\right)^{\top} Q\left(x_{k}-r_{k}\right)+u_{k}^{\top} R u_{k}\right)}_{\text {for a discrete-time system }}
$$

Performance measures

- Tracking problem: to maintain the system state $x(t)$ as close as possible to the desired state $r(t)$ in the interval $\left[t_{0}, t_{f}\right]$:

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}(x(t)-r(t))^{\top}(t) Q(x(t)-r(t)) d t=\int_{t_{0}}^{t_{f}}\|x(t)-r(t)\|_{Q}^{2} d t, \quad Q \geqslant 0}
$$

$\left\{\right.$ reasonable if constraints includes $\left|u_{i}(t)\right| \leqslant 1, i \in\{1, \ldots, m\}$
Otherwise may result in impulses in control and its derivatives

$$
\underbrace{J=\int_{t_{0}}^{t_{f}}\left(\|x(t)-r(t)\|_{Q(t)}^{2}+\|u(t)\|_{R(t)}^{2}\right) d t}
$$

remove the hard control bounds from problem formulation or conserve energy while maintaining tracking

$$
J=\underbrace{\left\|x\left(t_{f}\right)-r\left(t_{f}\right)\right\|_{\mathrm{H}}^{2}}_{\text {states be close to their desired value at final time }}+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\left(\|x(\mathrm{t})-r(\mathrm{t})\|_{\mathrm{Q}(\mathrm{t})}^{2}+\|u(\mathrm{t})\|_{\mathrm{R}(\mathrm{t})}^{2}\right) d t
$$

- Regulation problem: $r(t)=0$ for all $t \in\left[t_{0}, t_{f}\right]$

Performance measures

All the performance measures discussed above are special cases of the general form

- Continuous-time

$$
\mathrm{J}=\underbrace{\mathrm{h}\left(x\left(\mathrm{t}_{\mathrm{f}}\right), \mathrm{t}_{\mathrm{f}}\right)}_{\text {terminal cost }}+\underbrace{\int_{t_{0}}^{\mathrm{t}_{\mathrm{f}}} g(x(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t}) \mathrm{dt}}_{\text {running cost }}
$$

- Discrete-time

$$
\mathrm{J}=\underbrace{\phi\left(\mathrm{x}_{\mathrm{N}}, \mathrm{~N}\right)}_{\text {terminal cost }}+\underbrace{\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{~L}^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathfrak{u}_{\mathrm{k}}\right) \mathrm{dt}}_{\text {running cost }} .
$$

Optimal Control Problem

Find admissible u^{\star} which cause $\dot{x}=f(x(t), u(t), t)$ to follow admissible x^{\star} that minimize

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t
$$

Optimal Control Problem

Find admissible u^{\star} which cause $\dot{x}=f(x(t), u(t), t)$ to follow admissible x^{\star} that minimize

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t
$$

- u^{\star} : optimal control $\quad x^{\star}$: optimal trajectory

$$
\begin{aligned}
J^{\star} & =h\left(x^{\star}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g\left(x^{\star}(t), u^{\star}(t), t\right) d t \\
& \leqslant h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t, \quad u \in U, x \in X .
\end{aligned}
$$

Optimal Control Problem

Find admissible u^{\star} which cause $\dot{x}=f(x(t), u(t), t)$ to follow admissible x^{\star} that minimize

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t
$$

- u^{\star} : optimal control $\quad x^{\star}$: optimal trajectory

$$
\begin{aligned}
J^{\star} & =h\left(x^{\star}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g\left(x^{\star}(t), u^{\star}(t), t\right) d t \\
& \leqslant h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t, \quad u \in U, x \in X .
\end{aligned}
$$

- We are looking for global minimum
- Find all local minimum, and pick the smallest as global minimum

Optimal Control Problem

Find admissible u^{\star} which cause $\dot{x}=f(x(t), u(t), t)$ to follow admissible x^{\star} that minimize

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t
$$

- u^{\star} : optimal control $\quad x^{\star}$: optimal trajectory

$$
\begin{aligned}
J^{\star} & =h\left(x^{\star}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g\left(x^{\star}(t), u^{\star}(t), t\right) d t \\
& \leqslant h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t, \quad u \in U, x \in X .
\end{aligned}
$$

- We are looking for global minimum
- Find all local minimum, and pick the smallest as global minimum
- Solution is not unique
- con: complicates computational procedures

Optimal Control Problem

Find admissible u^{\star} which cause $\dot{x}=f(x(t), u(t), t)$ to follow admissible x^{\star} that minimize

$$
J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t
$$

- u^{\star} : optimal control $\quad x^{\star}$: optimal trajectory

$$
\begin{aligned}
J^{\star} & =h\left(x^{\star}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g\left(x^{\star}(t), u^{\star}(t), t\right) d t \\
& \leqslant h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t, \quad u \in U, x \in X .
\end{aligned}
$$

- We are looking for global minimum
- Find all local minimum, and pick the smallest as global minimum
- Solution is not unique
- con: complicates computational procedures
- pro: choose among multiple possibilities accounting for other measures

Parameter static optimization: when time is not a parameter in the problem

- Unconstrained optimization
- Constrained optimization

Unconstrained optimization

$$
u^{\star}=\underset{\sim}{\operatorname{argmin}} F(u)
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable

Unconstrained optimization

$$
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(u)
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable
Local (weak) minimum point: A point $u^{\star} \in \mathbb{R}^{m}$ is said to be a (weak) local minimum point of F over \mathbb{R}^{m} if

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right) \leqslant F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Unconstrained optimization

$$
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(u)
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable
Local (weak) minimum point: A point $u^{\star} \in \mathbb{R}^{m}$ is said to be a (weak) local minimum point of F over \mathbb{R}^{m} if

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right) \leqslant F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Local (strong) minimum point:

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right)<F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Unconstrained optimization

$$
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(u)
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable
Local (weak) minimum point: A point $u^{\star} \in \mathbb{R}^{m}$ is said to be a (weak) local minimum point of F over \mathbb{R}^{m} if

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right) \leqslant F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Local (strong) minimum point:

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right)<F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

$$
x^{2}+y^{2}
$$

(definite)
(a)

(b)
(a) strong minimum, (b) weak minimum

Unconstrained optimization

$$
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(u),
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable
A point $u^{\star} \in \mathbb{R}^{m}$ is said to be a Local (weak) minimum point of F over \mathbb{R}^{m} if

$$
\exists \epsilon>0 \text { s.t. } F\left(u^{\star}\right) \leqslant F(u) \forall u \in \mathbb{R}^{m}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Local (strong) minimum point: $\exists \epsilon>0$ s.t. $F\left(u^{\star}\right)<F(u) \forall u \in \mathbb{R}^{m},\left\|u-u^{\star}\right\|<\epsilon$
Global minimum: (weak) $F\left(u^{\star}\right) \leqslant F(u) \forall, u \in \mathbb{R}^{m}, \quad$ (strong) $F\left(u^{\star}\right)<F(u) \forall, u \in \mathbb{R}^{m}$

Unconstrained optimization

$$
u^{\star}=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} F(u),
$$

where $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable
A point $u^{\star} \in \mathbb{R}^{m}$ is said to be a Local (weak) minimum point of F over \mathbb{R}^{m} if

$$
\exists \epsilon>0 \text { s.t. } \mathrm{F}\left(u^{\star}\right) \leqslant \mathrm{F}(\mathrm{u}) \forall u \in \mathbb{R}^{\mathrm{m}}, \quad\left\|u-u^{\star}\right\|<\epsilon
$$

Local (strong) minimum point: $\exists \epsilon>0$ s.t. $F\left(u^{\star}\right)<F(u) \forall u \in \mathbb{R}^{m},\left\|u-u^{\star}\right\|<\epsilon$
Global minimum: (weak) $F\left(u^{\star}\right) \leqslant F(u) \forall, u \in \mathbb{R}^{m}, \quad$ (strong) $F\left(u^{\star}\right)<F(u) \forall, u \in \mathbb{R}^{m}$

$f(x)=2+\cos (x)+0.5 \cos (2 x-0.5)$ has multiple local and global minimizer. $13 / 13$

