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Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles

underlying the analysis and design of (control) systems/processes.

The objective in control theory

stabilization, regulation, tracking

Impose performance on system behavior.
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Optimal control

I Performance measures considering step or ramp response:

• rise-time (tr)

• settling time (ts)

• peak overshoot (MP)

• gain and phase margin and

bandwidth

• steady state error

mostly for SISO systems

I In this course:

• more complex performance measures, perhaps more closely related to the

physical aspects of the system

minimum fuel
minimum control effort
minimum time

• satisfy some constraints on control and states of the system while optimizing

performance measure
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Optimal control

The objective of optimal control is to determine the control signals that will

cause a process to satisfy the physical constraints and at the same time minimize

(or maximize) some performance criterion.

The following three elements constitute the optimal control formulation|:

model (a mathematical description) of the process/system to be controlled

mathematical description of the (physical) constraints of the system

a performance measure and its mathematical description
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Performance measures

Minimum-time problem: To transfer a system from arbitrary initial state

x(t0) = x0 to a specified target set S in minimum time

J = tf - t0 =

Z
tf

t0

dt, (1)

where tf is the first instant of time when x(t) and S intersect.

For discrete-time systems, minimum-time performance can be cast as

J =N =
XN-1

k=0
1.
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Performance measures

Terminal control problem: to minimize the deviation of the final state of a system

from its desired value r(tf) 2 Rn

J =
Xn

i=1
(xi(tf)- ri(tf))

2 = (x(tf)- r(tf)
>(x(tf)- r(tf)) = kx(tf)- r(tf)k2.

Both positive and negative deviations are undesirable.

Given the system model and the constrains, x(tf) = r(tf) may not be

accomplished.

A ballistic missile aimed at target S.

In this case, we may wish to put more weight or penalty on the deviation of

certain state more than others.

J = (x(tf)- r(tf))
>
H (x(tf)- r(tf)) = kx(tf)- r(tf)k2H, H > 0,
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Performance measures

Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state

x(t0) = x0 to a specified target S, with a minimum expenditure of control effort.

Form of “ minimum control effort” cost depends on physical application:

For a space craft (u(t): thrust of the engine), the minimum-control-effort

J =

Z
tf

t0

|u(t)| dt.

For a discrete-time system

J =
XN-1

k=0
|uk|.

For an electric network without energy storage element (u(t): voltage source)

J =

Z
tf

t0

u
2(t) dt.

For several control inputs, we can write the cost function as

J =

Z
tf

t0

u
>(t)Ru(t) dt =

Z
tf

t0

ku(t)k2
R

dt, R >

For a discrete-time system:

J =
1

2

XN-1

k=0
u
>
k
Ruk.
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Performance measures

Tracking problem: to maintain the system state x(t) as close as possible to the

desired state r(t) in the interval [t0, tf]:

J =

Z
tf

t0

(x(t)- r(t))>(t)Q(x(t)- r(t)) dt =

Z
tf

t0

kx(t)- r(t)k2
Q

dt, Q > 0
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Regulation problem: r(t) = 0 for all t 2 [t0, tf]
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Performance measures

All the performance measures discussed above are special cases of the general form

Continuous-time

J = h(x(tf), tf)| {z }
terminal cost

+

Z
tf

t0

g(x(t),u(t), t)dt

| {z }
running cost

.

Discrete-time

J = �(xN,N)| {z }
terminal cost

+
XN-1

k=0
L
k(xk,uk)dt

| {z }
running cost

.
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Optimal Control Problem

Find admissible u
?

which cause ẋ = f(x(t),u(t), t) to follow admissible x
?

that minimize

J = h(x(tf), tf) +

Z
tf

t0

g(x(t),u(t), t)dt.

- u
?
: optimal control x

?
: optimal trajectory

J
? = h(x?(tf), tf) +

Z
tf

t0

g(x?(t),u?(t), t)dt

6 h(x(tf), tf) +

Z
tf

t0

g(x(t),u(t), t)dt, u 2 U, x 2 X.

We are looking for global minimum

Find all local minimum, and pick the smallest as global minimum

Solution is not unique

con: complicates computational procedures

pro: choose among multiple possibilities accounting for other measures
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Parameter static optimization: when time is not a parameter in the problem

Unconstrained optimization

Constrained optimization
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Unconstrained optimization

u
? = argmin

u2Rm

F(u),

where F : Rm ! R is differentiable

Local (weak) minimum point: A point u
? 2 Rm

is said to be a (weak) local
minimum point of F over Rm

if

9✏ > 0 s.t. F(u?) 6 F(u) 8u 2 Rm, ku- u
?k < ✏

Local (strong) minimum point:

9✏ > 0 s.t. F(u?) < F(u) 8u 2 Rm, ku- u
?k < ✏

(a) strong minimum, (b) weak minimum
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9✏ > 0 s.t. F(u?) < F(u) 8u 2 Rm, ku- u
?k < ✏

(a) strong minimum, (b) weak minimum
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