Turn in your code for problem 4 electronically to Canvas.

Problem 1 (Kirk 2.6). Figure below shows a rocket that is to be approximated by a particle of instantaneous mass $\mathrm{m}(\mathrm{t})$.

The instantaneous velocity is $v(t), T(t)$ is the thrust, and $\beta(t)$ is the thrust angle. If we assume no aerodynamics or gravitational forces, and if we select $x_{1}=x, x_{2}=\dot{x}, x_{3}=y, x_{4}=\dot{y}, x_{5}=$ $m, u_{1}=T, u_{2}=\beta$, the state equations are

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}=\frac{u_{1}(t) \cos \left(u_{2}(\mathrm{t})\right)}{x_{5}(t)} \\
& \dot{x}_{3}(t)=x_{4}(t) \\
& \dot{x}_{4}=\frac{u_{1}(t) \sin \left(u_{2}(\mathrm{t})\right)}{x_{5}(t)} \\
& \dot{x}_{5}=-\frac{1}{c} u_{1}(t)
\end{aligned}
$$

where c is a constant of proportionality. The rocket starts from rest at the point $x=0, y=0$.
a) Determine a set of physically reasonable state and control constraints.
b) Suggest a performance measure, and any additional constraints imposed, if the objective is to make $y\left(t_{f}\right)=3$ miles and maximize $x\left(t_{f}\right) ; t_{f}$ is specified.
c) Suggest a performance measure, and any additional constraints imposed, if it is desired to reach the point $x=500 \mathrm{mi}, y=3 \mathrm{mi}$ in 2.5 min with maximum possible vehicle mass.

Problem 2 (review material). Give two criteria to determine if a symmetric real matrix is positive definite or positive semidefinite. Using one of them to test if the following matrix is positive definite

$$
A=\left[\begin{array}{ccc}
4 & -1 & -2 \\
-1 & 2 & -2 \\
-2 & -2 & 4
\end{array}\right]
$$

Problem 3.

a) Using the first-order necessary conditions, find a minimum point of the function $F(x, y, z)=2 x^{2}+x y+y^{2}+y z+z^{2}-6 x-7 y-8 z+9$
b) Verify that the point is a local minimum point by verifying that the second-order sufficiency conditions hold.
c) Prove that the point is a global minimum point.

Problem 4. This problem explores the use of steepest descent algorithm and Matlab fminunc function to solve the optimization problem of Problem 3 numerically. Lets re-state the problem as

$$
F(x)=F\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}-6 x_{1}-7 x_{2}-8 x_{3}+9
$$

$x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
The steepest decent algorithm is

$$
x(k+1)=x(k)-\alpha(k) F_{x}\left(x_{1}(k), x_{2}(k), x_{3}(k)\right),
$$

where F_{x} is the gradient of the cost function F .
The underlying idea to pick $\alpha(k)$ is as follows: when you are at point $x(k)$ and you are moving in the direction $-\alpha(k) F_{x}\left(x_{1}(k), x_{2}(k), x_{3}(k)\right)$ to get to the point $x(k+1)$ you what to pick $\alpha(k)$ such that $G(\alpha(k))=F\left(x(k)-\alpha(k) F_{x}\left(x_{1}(k), x_{2}(k), x_{3}(k)\right)\right)$ is minimized. There are different methods to obtain this minimum value; you can consult any classic optimization book for more details. In this problem, $G(\alpha(k))$ will be a quadratic function and finding its minimum is pretty straightforward.
a) Using $x(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, write out the first iteration of the steepest descent algorithm and obtain the optimum value for $\alpha(0)$. What is the value of the $x(1)$ you get?
b) Write a MATLAB code to solve this problem using a steepest descent algorithm and an initial value of $x(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ using optimal $\alpha(k)$ at each time step as well as constant steps $\alpha=0.1, \alpha=0.5 \alpha=1$. Use $\|x(k+1)-x(k)\| \leq 10^{-6}$ as stopping criterion. How many iterations does it take to converge? Explain your results.
c) Use MATLAB's fminunc function to solve for the minimum and compare its performance with your algorithm.

