Linear Systems I Lecture 6

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Summary of previous lecture and today's otutline

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}), \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t}), \phi(\mathrm{t}, \mathrm{t})
\end{aligned}
$$

$$
\leqslant e A_{1}
$$

Theorem (Variation of constants): The unique solution to $\tau \tau$), equation above is given by

$$
\begin{gathered}
x(t)=\phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \phi(t, \tau) B(\tau) u(\tau) d \tau \\
y(t)=C(t) \phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} C(t) \phi(t, \tau) B(\tau) u(\tau) d \tau+D(t) u(t),
\end{gathered}
$$

where $\phi\left(t, t_{0}\right)$ is the state transition matrix (as defined before).

$$
y(t)=\underbrace{C(t) \phi\left(t, t_{0}\right) x_{0}}_{\text {homogeneous response }}+\underbrace{\int_{t_{0}}^{t} C(t) \phi(t, \tau) B(\tau) u(\tau) d \tau+D(t) u(t)}_{\text {forced response }} .
$$

How to compute $e^{A t}$:

- The ith column of $e^{A t}$ is the solution of $\dot{x}=A x, x(0)=e_{i}$
- $e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]$

Def(Algebraically equivalent) Two continuous-time LTI systems

$$
\left\{\begin{array} { l }
{ \dot { x } (t) = A x (t) + \mathrm { Bu } (\mathrm { t }) , } \\
{ \mathrm { y } (\mathrm { t }) = \mathrm { Cx } (\mathrm { t }) + \mathrm { Du } (\mathrm { t }) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{\bar{x}}(\mathrm{t})=\overline{\mathrm{A}} \overline{\mathrm{x}}(\mathrm{t})+\overline{\mathrm{B}} \mathrm{u}(\mathrm{t}), \\
\mathrm{y}(\mathrm{t})=\overline{\mathrm{C}} \overline{\mathrm{x}}(\mathrm{t})+\overline{\mathrm{D}} u(\mathrm{t}),
\end{array}\right.\right.
$$

are called algebraically equivalent if and only if there exists a nonsingular T s. t . ($\bar{A}=\mathrm{TAT}^{-1}, \overline{\mathrm{~B}}=\mathrm{TB}, \overline{\mathrm{C}}=\mathrm{CT}^{-1}, \overline{\mathrm{D}}=\mathrm{D}$). The corresponding map $\overline{\mathrm{x}}=\mathrm{Tx}$ is called a similarity transformation or an equivalence transformation.
A and \bar{A} have same eigenvalues.

Lecture 6 covers

- Review of eigenvalues and eigenvectors of a matrix
- Jordan form of a matrix
- Use of Jordan/diagonalized form to compute $e^{A t}$

Consider a matrix $A \in \mathbb{R}^{n \times n}$,

$$
A p=\lambda p,
$$

- $\lambda \in \mathbb{C}$ is eigenvalue iff we have $p \in \mathbb{C}^{n \times 1}, p \neq 0_{n \times 1}$
- Compute $\lambda: \Delta(A)=\operatorname{det}(\lambda I-A)=0$; has n roots $\Rightarrow n$ eigenvalues
- Computing eigenvectors: $q \neq 0$ such that $(\lambda I-A) p=0$, i.e., q is in the nullspace of $(\lambda I-A)$,
- Some of the properties of the eigenvectors
- When all the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of a $n \times n$ matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of ($\lambda_{i} \mathrm{I}-\AA$) is equal to 1 . Moreover, the corresponding eigenvector set $\left\{p_{1}, \cdots, p_{n}\right\}$ is linearly independent.
- When $\bar{\lambda}$ is an eigenvalue of A with multiplicity of $m \in[2, n]$, then we have $1 \leqslant$ nullity $(\bar{\lambda} I-A) \leqslant m$.

Diagonalizable matrix

If A has only simple eigenvalues, it always has a diagonal form representation, i.e., there exists Q such that

$$
\mathrm{J}=Q A Q^{-1}
$$

An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.

$$
Q=P^{-1}
$$

In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.

When all the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of a $n \times n$ matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of $\left(\lambda_{i} I-A\right)$ is equal to 1 . Moreover, the corresponding eigenvector set $\left\{p_{1}, \cdots, p_{n}\right\}$ is linearly independent.

If A has a repeated eigenvalues, then it may not have a diagonal form representation. However, it has a block-diagonal and triangular form representation.

Diagonalizable matrix

If A has only simple eigenvalues, it always has a diagonal form representation, i.e., there exists Q such that

$$
\begin{aligned}
& J=Q A Q^{-1} \\
& Q=P^{-1}
\end{aligned}
$$

$$
\begin{gathered}
A q_{i}=\lambda_{i} q_{i}, i \in\{1, \cdots, n\} \rightarrow A\left[\begin{array}{lll}
p_{1} & \cdots & p_{n}
\end{array}\right]=\left[\begin{array}{lll}
p_{1} & \cdots & p_{n}
\end{array}\right]\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right) \\
A=P \mathrm{~J} P^{-1}
\end{gathered}
$$

When all the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of a $n \times n$ matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of $\left(\lambda_{i} I-A\right)$ is equal to 1 . Moreover, the corresponding eigenvector set $\left\{p_{1}, \cdots, p_{n}\right\}$ is linearly independent.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \Delta(A)=\operatorname{det}(\lambda I-A)=0 \\
& \Delta(A)=\lambda(\lambda+1)(\lambda-2)=0 \\
& \quad------------ \\
& \lambda_{1}=-1:(A-(-1) I) p_{1}=0, \\
& \lambda_{2}=0:(A-0 I) p_{2}=0, \\
& \lambda_{3}=2:(A-2 I) p_{3}=0,
\end{aligned}
$$

linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$

$$
\begin{gathered}
P=\underbrace{\left[\begin{array}{c|c|c}
2 & 0 & 0 \\
1 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right]}_{\text {J with } Q=P-1} \\
A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]} P^{-1}
\end{gathered}
$$

Jordan normal form

Theorem(Jordan normal form): For every matrix $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular change of basis $\mathbf{Q} \in \mathbb{C}^{n \times n}$ that transforms A into

$$
\mathrm{J}=\mathrm{QAQ}^{-1}=\left[\begin{array}{ccccc}
\mathrm{J}_{1} & 0 & 0 & \cdots & 0 \\
0 & \mathrm{~J}_{2} & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~J}_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{~J}_{l}
\end{array}\right]=\operatorname{Diag}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \cdots, \mathrm{~J}_{\mathrm{l}}\right)
$$

where each J_{i} is a Jordan block of the form

$$
\mathrm{J}_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

- For every eigenvalue λ_{i} of \mathbf{A}, there is at least one Jordan block associated with
- The number of Jordan block associated with each λ_{i} of \mathbf{A} is equal to the nullity of ($A-\lambda_{i} I$).
- If λ_{j} is an eigenvalue with multiplicity of $m_{j}=1$, the Jordan block associated with it is $\mathrm{J}_{\mathrm{j}}=\mathrm{\lambda}_{\mathrm{j}}$

Jordan normal form

Theorem(Jordan normal form): For every matrix $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular change of basis $\mathbf{Q} \in \mathbb{C}^{n \times n}$ that transforms A into

$$
\mathrm{J}=\mathrm{QAQ}^{-1}=\left[\begin{array}{ccccc}
\mathrm{J}_{1} & 0 & 0 & \cdots & 0 \\
0 & \mathrm{~J}_{2} & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~J}_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{~J}_{l}
\end{array}\right]=\operatorname{Diag}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \cdots, \mathrm{~J}_{\mathrm{l}}\right),
$$

where each J_{i} is a Jordan block of the form

$$
\mathrm{J}_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

Attention: There can be several Jordan blocks for the same eigenvalue, but in that case there must be more than one independent eigenvector for that eigenvalue.

- λ_{i} is an eigenvalue of A
- l, number of Jordan blocks: total number of linearly independent eigenvectors of A
- J is unique up to a reordering of the Jordan blocks
- J is called Jordan normal form of A

Diagonalizable matrix

- An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.
- In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.
- If A has only simple eigenvalues, it always has a diagonal form representation.
- If A has a repeated eigenvalues, then it may not have a diagonal form representation. However, it has a block-diagonal and triangular form representation.

Def. (Semisimple) A matrix is called semi-simple or diagonalizable if its Jordan normal form is diagonal.

Theorem Fo an $n \times n$ matrix A, the following statements are equivalent:

- A is semi-simple.
- A has n linearly independent eigenvectors.
- For any λ_{i} of A with multiplicity of m_{i}, we have nullity $\left(\lambda_{i} I-A\right)=m_{i}$.
(1) Compute eigenvalues of A
(2) List all possible Jordan normal forms that are compatible with the eigenvalues of A :
- eigenvalues with multiplicity equal to 1 must always correspond to 1×1 Jordan blocks
- eigenvalues with multiplicity equal to 2 can correspond to one 2×2 block or two 1×1 blocks
- eigenvalues with multiplicity equal to 3 can correspond to one 3×3 block, one 2×2 and two 1×1 blocks, or three 1×1 blocks, etc.
(3) For each candidate Jordan normal form, check wether there exists a nonsingular matrix Q for which $\mathrm{J}=\mathrm{QAQ}^{-1}$. To find out wether this is so, you may solve the (equivalent, but simpler) linear equation

$$
\mathrm{JQ}=\mathrm{QA}
$$

for the unknown matrix Q and check wether it has a nonsingular solutions.

Jordan normal form

A a 5×5 matrix with a simple eigenvalue λ_{1}, and λ_{2} with multiplicity of $m=4$ \exists invertible $\mathrm{Q}: \quad J=\mathrm{Q}^{-1} \mathrm{AQ}$
$J=\left[\begin{array}{c|c|c|c|c}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{2} & 0 & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 0 \\ \hline 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$
$\mathrm{J}=\left[\begin{array}{c|cc|cc}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{2} & & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$

$$
\begin{gathered}
J=\left[\begin{array}{c|cccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{2} & 1 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \\
\text { nullity }\left(\lambda_{2} I-A\right)=1
\end{gathered}
$$

$\mathrm{J}=\left[\begin{array}{c|c|c|cc}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{2} & 0 & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$
$\operatorname{nullity}\left(\lambda_{2} I-A\right)=3$
$J=\left[\begin{array}{c|c|ccc}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{2} & 1 & 0 \\ 0 & 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$ $\operatorname{nullity}\left(\lambda_{2} I-A\right)=2$

Diagonal Jordan form: example

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\begin{gathered}
\Delta(A)=\operatorname{det}(\lambda I-A)=0 \\
\Delta(A)=\lambda(\lambda+1)(\lambda-2)=0 \\

\end{gathered}
$$

$\lambda_{1}=-1:(A-(-1) I) p_{1}=0$,
$\lambda_{2}=0:(A-0 I) p_{2}=0$,
$\lambda_{3}=2:(A-2 I) p_{3}=0$,
linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$

$$
\begin{gathered}
P=\underbrace{\left[\begin{array}{c|c|c}
2 & 0 & 0 \\
1 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right]}_{\mathrm{J} \text { with } \mathrm{Q}=\mathrm{P}-1} \\
\mathrm{~A}=\mathrm{P} \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]} \mathrm{P}^{-1}
\end{gathered}
$$

$$

$$

λ 's are district

the matrix is diagonalizable

- the Jordan form is a diagonal matrix

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
3 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
\Delta(A) & =\operatorname{det}(\lambda I-A)=0 \\
\Delta(A) & =(\lambda+1)(\lambda-2)^{2}=0
\end{aligned}
$$

$$
\lambda_{1}=-1:(A-(-1) I) p_{1}=0,
$$

$$
\left\{\begin{array}{l}
\lambda_{2}=2, \text { with } m_{2}=2, \\
\text { note that nullity }(A-2 I)=2, \text { therefore } \\
\text { two linearly independent eigenvectors exist for } \lambda_{2}: \\
(A-2 I) p_{2}=0, \quad(A-2 I) p_{3}=0,
\end{array}\right.
$$

linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$

$$
P=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 2 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{J \text { with } Q=P-1} \mathrm{P}^{-1}
$$

Recall that

- The number of Jordan block associated with each λ_{i} of A is equal to the nullity of $\left(A-\lambda_{i} I\right)$.
if for every λ_{i} with multiplicity $m_{i} \geqslant 1$, we have $\operatorname{nullity}(A-\lambda I)=m_{i}$
- the matrix is diagonalizable
- the Jordan form is a diagonal matrix

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
3 & 1.5 & -2 \\
0 & 2 & 0 \\
1 & 1.25 & 0
\end{array}\right] \\
\Delta(A)=\operatorname{det}(\lambda I-A)=0 \\
\Delta(A)=(s-2)^{2}(s-1)=0 \\
\lambda_{1}=1: \quad(A-I) p_{1}=0 .
\end{gathered}
$$

($\lambda_{2}=2$, with multiplicity $m_{2}=2$,
nullity of $(A-2 I)=1$, therefore, only one linearly independent eigenvector exists for

$$
\lambda_{2}=2, \quad(A-2 I) p_{2}=0
$$

$$
J=\left[\begin{array}{l|ll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

To find Q that satisfies $J=Q A Q^{-1}$, we solve

$$
\left[\right]
$$

$$
=\left[\begin{array}{lll}
3 q_{11}+q_{13} & 1.5 q_{11}+2 q_{12}+1.25 q_{13} & -2 q_{11} \\
3 q_{21}+q_{23} & 1.5 q_{21}+2 q_{22}+1.25 q_{23} & -2 q_{21} \\
3 q_{31}+q_{33} & 1.5 q_{31}+2 q_{32}+1.25 q_{33} & -2 q_{31}
\end{array}\right]
$$

which gives (solution is not unique)

$$
Q=\left[\begin{array}{ccc}
-04082 & -0.4082 & 0.8165 \\
0.6727 & -1.0328 & -0.6727 \\
0 & 0.1682 & 0
\end{array}\right]
$$

Matrix exponential of two algebraically equivalent matrix

- Let T be nonsingular
- Let $A=T \bar{A} T^{-1}$,

$$
\mathrm{e}^{\mathrm{A} \mathrm{t}}=\mathrm{T} \mathrm{e}^{\overline{\mathrm{A}} \mathrm{t}} \mathrm{~T}^{-1}
$$

Proof

$$
\begin{gathered}
A^{k}=\underbrace{A A A \cdots A}_{k \text { times }}=\underbrace{\left(T \bar{A} T^{-1}\right)\left(T \bar{A} T^{-1}\right) \cdots\left(T \bar{A} T^{-1}\right)}_{k \text { times }}=T \bar{A}^{k} T^{-1} \\
e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} T \bar{A}^{k} T^{-1}=T\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \bar{A}^{k}\right) T^{-1}=T e^{\bar{A}} t T^{-1}
\end{gathered}
$$

How to compute $e^{A t}$ using the Jordan normal form of A

$$
\begin{gathered}
J=Q A Q^{-1} \Longleftrightarrow A=Q^{-1} J Q, \\
A^{k}=\underbrace{A A A \cdots A}_{k \text { times }}=\underbrace{Q^{-1} J Q Q^{-1} J Q \cdots Q^{-1} J Q}_{k \text { times }}=Q^{-1} J^{k} Q \\
e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}=Q^{-1} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k} Q= \\
{\left[\begin{array}{ccccc}
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} J_{1}^{k} & 0 & 0 & \cdots & 0 \\
0 & \sum_{k=0}^{\infty} \frac{t^{k}}{k!} J_{2}^{k} & 0 & \cdots & 0 \\
0 & 0 & \sum_{k=0}^{\infty} \frac{t^{k}}{k!} J_{3}^{k} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \sum_{k=0}^{\infty} \frac{t^{k}}{k!} l_{l}^{k}
\end{array}\right]} \\
=Q^{-1}\left[\begin{array}{ccccc}
e^{J_{1} t} & 0 & 0 & \cdots & 0 \\
0 & e^{J_{2} t} & 0 & \cdots & 0 \\
0 & 0 & e^{J_{3} t} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{J_{l} t}
\end{array}\right]
\end{gathered}
$$

How to compute $e^{A t}$ using the Jordan normal form of A

$$
\mathrm{J}_{\mathrm{i}}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

Claim: $\mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}=\mathrm{e}^{\lambda_{i} \mathrm{t}}\left[\begin{array}{cccccc}1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \frac{\mathrm{t}^{3}}{3!} & \cdots & \frac{\mathrm{t}^{n_{i}-1}}{\left(n_{i}-1\right)!} \\ 0 & 1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \cdots & \frac{\mathrm{t}^{n_{i}-2}}{\left(n_{i}-2!\right.} \\ 0 & 0 & 1 & \mathrm{t} & \cdots & \frac{\mathrm{t}^{n_{i}-3}}{\left(n_{i}-3\right)!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & \mathrm{t} \\ 0 & 0 & 0 & 0 & \cdots & 1\end{array}\right]$

How to compute $e^{A t}$ using the Jordan normal form of A

Verification: we show that $e^{J_{i}}$ is the transition matrix of $J_{i}\left(e^{J_{i}}=\phi(t, 0)\right)$ by showing that it satisfies $\left\{\begin{array}{l}\frac{\mathrm{d}}{\mathrm{dt}} \phi(\mathrm{t}, 0)=\mathrm{J}_{\mathrm{i}} \phi(\mathrm{t}, 0) \\ \phi(0,0)=\mathrm{I} \text {. That is }\end{array}\right.$

- $\mathrm{e}^{\mathrm{J}_{\mathrm{i}} 0}=\mathrm{I}$ (this is trivially satisfied)
- $\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}=\mathrm{J}_{\mathrm{i}} \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{e}^{\lambda_{i} t}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}\left[\begin{array}{ccccc}
1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \cdots & \frac{\mathrm{t}^{n_{i}-1}}{\left(n_{i}-1\right)!} \\
0 & 1 & \mathrm{t} & \cdots & \frac{\mathrm{t}^{n_{i}-1}}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n_{i}-3}}{\left(n_{i}-3\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=\lambda_{i} e^{\lambda_{i} t}\left[\begin{array}{ccccc}
1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!!} & \cdots & \frac{t^{n_{i}-1}}{\left(n_{i}-1\right)!} \\
0 & 1 & \mathrm{t} & \cdots & \frac{\mathrm{n}^{\mathrm{n}} \mathrm{i}-2}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n_{i}-2}}{\left(n_{i}-3\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]+ \\
& \mathrm{e}^{\lambda_{i} t}\left[\begin{array}{ccccc}
0 & 1 & \mathrm{t} & \cdots & \frac{\mathrm{t}^{n_{i}-2}}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{n^{i}-3}{\left(n_{i}-3\right.} \\
0 & 0 & 0 & \cdots & \frac{n_{i}-4}{\left(n_{i}-4\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]=\lambda_{i} e^{J_{i} t}+\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \mathrm{e}^{\mathrm{J}_{i} t}=\mathrm{J}_{\mathrm{i}} \mathrm{e}^{\lambda_{i} t} .
\end{aligned}
$$

How to compute $e^{A t}$ using the Jordan normal form of A: examples

$$
\begin{aligned}
& \mathrm{J}=\left[\begin{array}{c|c|ccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \Rightarrow \mathrm{e}^{\mathrm{Jt}}=\left[\begin{array}{ccc|ccc}
\mathrm{e}^{\lambda_{1} \mathrm{t}} & 0 & 0 & 0 & 0 \\
\hline 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & 0 & 0 & 0 \\
\hline 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{t} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}}
\end{array}\right] \\
& \mathrm{J}=\left[\begin{array}{c|cccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{2} & 1 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \Rightarrow \mathrm{e}^{\mathrm{Jt}}=\left[\begin{array}{ccccc}
\mathrm{e}^{\lambda_{1} \mathrm{t}} & 0 & 0 & 0 & 0 \\
\hline 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te} \mathrm{e}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{3}}{6} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te} \mathrm{e}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}}
\end{array}\right]
\end{aligned}
$$

How to compute $e^{A t}$ using the Jordan normal form of A: examples

$$
\begin{gathered}
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \\
\Delta(A)=\lambda(\lambda+1)(\lambda-2)=0 \\
----------- \\
\lambda_{1}=-1:(A-(-1) I) p_{1}=0,
\end{gathered}
$$

$$
\lambda_{2}=0:(A-0 I) p_{2}=0,
$$

$$
\lambda_{3}=2:(A-2 I) p_{3}=0
$$

linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$
$A \underbrace{\left[\begin{array}{l|l|l}\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3}\end{array}\right]}_{\mathrm{P}}=\left[\begin{array}{ll|l|l}\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3}\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$

$$
\begin{gathered}
\mathrm{P}=\left[\begin{array}{c|c|c}
2 & 0 & 0 \\
1 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right], \mathrm{P}-1=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\
\frac{1}{6} & \frac{1}{3} & \frac{2}{3}
\end{array}\right] \\
A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{\text {J with } \mathrm{Q}=\mathrm{P}-1} \mathrm{P}-1
\end{gathered}
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{e^{2 t}}{6}-\frac{2 e^{-t}}{3}+\frac{1}{2} & \frac{2 e^{3} t}{3}+\frac{e^{2 t}}{3} & \frac{2 e^{2 t}}{3}-\frac{2 e^{3}-t}{3} \\
\frac{e^{-t}}{3}+\frac{e^{2 t}}{6}-\frac{1}{2} & \frac{e^{2 t}}{3}-\frac{e^{-t}}{3} & \frac{e^{-t}}{3}+\frac{2 e^{2 t}}{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
e^{-t} & 0 & 0 \\
e^{2 t}-e^{-t} & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]
$$

References

[1] Joao P. Hespanha, " ‘Linear systems theory", Princeton University Press (Chapter 7)

