Linear Systems I Lecture 5

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Summary of previous lecture and today's outline

We want to study the properties of solutions to SS LTV systems

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{u}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{C}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{D}(\mathrm{t}) \mathrm{u}(\mathrm{t})
\end{aligned}
$$

$A(t):[0, \infty) \rightarrow \mathbb{R}^{n \times n}, B(t):[0, \infty) \rightarrow \mathbb{R}^{n \times p}, C(t):[0, \infty) \rightarrow \mathbb{R}^{q \times n}$, $\mathrm{D}(\mathrm{t}):[0, \infty) \rightarrow \mathbb{R}^{q \times p}$.

P1. For every $t_{0}, \phi\left(t, t_{0}\right)$ is the unique solution of

$$
\frac{\mathrm{d}}{\mathrm{dt}} \phi\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{A}(\mathrm{t}) \phi\left(\mathrm{t}, \mathrm{t}_{0}\right), \quad \phi\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)=\mathrm{I}, \quad \mathrm{t} \geqslant \mathrm{t}_{0} .
$$

P. 2 For evert fixed t_{0}, the $i^{\text {th }}$ column of $\phi\left(t, t_{0}\right)$ is the unique solution to

$$
\dot{x}=A(t) x(t), \quad x\left(t_{0}\right)=e_{i}, \quad t \geqslant t_{0}
$$

where e_{i} is the $i^{\text {th }}$ column of identity matrix I_{n}, or equivalently a column vector of all zero entries except for the $i^{\text {th }}$ which is equal to 1 .
P3. For every t, s, τ we have

$$
\phi(t, s) \phi(s, \tau)=\phi(t, \tau) .
$$

This property is called the semigroup property.
P4. For evert $t, \tau, \phi\left(t, t_{0}\right)$, is nonsingular and

$$
\phi(t, \tau)^{-1}=\phi(\tau, t) .
$$

Theorem (Variation of constants): The unique solution to LTV SS equation above is given by

$$
\begin{gathered}
x(\mathrm{t})=\phi\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \phi(\mathrm{t}, \tau) \mathrm{B}(\tau) u(\tau) \mathrm{d} \tau \\
y(\mathrm{t})=\mathrm{C}(\mathrm{t}) \phi\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{C}(\mathrm{t}) \phi(\mathrm{t}, \tau) \mathrm{B}(\tau) u(\tau) \mathrm{d} \tau+\mathrm{D}(\mathrm{t}) u(\mathrm{t}),
\end{gathered}
$$

where $\phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$ is the state transition matrix (as defined before).

$$
y(t)=\underbrace{C(t) \phi\left(t, t_{0}\right) x_{0}}_{\text {homogeneous response }}+\underbrace{\int_{t_{0}}^{t} C(t) \phi(t, \tau) B(\tau) u(\tau) d \tau+D(t) u(t)}_{\text {forced response }} .
$$

Lecture 5 covers

- Solution of LTI systems
- Properties of matrix exponential
- Cayley-Hamilton Theorem
- Methods to compute $e^{A t}$

Solution of an LTI system

We want to study the properties of solutions to SS LTI systems

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}), \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t}),
\end{aligned}
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times p}$. Start by study of homogeneous linear system: $\dot{x}=A x(t), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, t \geqslant t_{0}$.

Theorem (Peano-Baker Series). The unique solution to (1) is given by

$$
\begin{gather*}
x(t)=\phi\left(t, t_{0}\right) x_{0}, \quad(2) \tag{2}\\
\phi\left(t, t_{0}\right)=I+\int_{t_{0}}^{t} A d \tau_{1}+\int_{t_{0}}^{t} A \int_{t_{0}}^{\tau_{1}} A d \tau_{2} d \tau_{1}+\int_{t_{0}}^{t} A \int_{t_{0}}^{\tau_{1}} A \int_{t_{0}}^{\tau_{2}} A d \tau_{3} d \tau_{2} d \tau_{1}+\cdots \\
=I+A \int_{t_{0}}^{t} d \tau_{1}+A^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{\tau_{1}} d \tau_{2} d \tau_{1}+A^{3} \int_{t_{0}}^{t} \int_{t_{0}}^{\tau_{1}} \int_{t_{0}}^{\tau_{2}} d \tau_{3} d \tau_{2} d \tau_{1}+\cdots \\
=I+\frac{\left(t-t_{0}\right)}{1} A+\frac{\left(t-t_{0}\right)^{2}}{2!} A^{2}+\frac{\left(t-t_{0}\right)^{3}}{3!} A^{3}+\cdots+\frac{\left(t-t_{0}\right)^{k}}{k!} A^{k}+\cdots=\sum_{k=0}^{\infty} \frac{\left(t-t_{0}\right)^{k}}{k!} A^{k}
\end{gather*}
$$

$$
\begin{gathered}
\phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right)} \\
e^{A\left(t-t_{0}\right)}=\sum_{k=0}^{\infty} \frac{\left(t-t_{0}\right)^{k}}{k!} A^{k}
\end{gathered}
$$

Properties of the transition matrix of and LTI system

- P1. For every $t_{0}, \phi\left(t, t_{0}\right)$ is the unique solution of

$$
\frac{\mathrm{d}}{\mathrm{dt}} \phi\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{A}(\mathrm{t}) \phi\left(\mathrm{t}, \mathrm{t}_{0}\right), \quad \phi\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)=\mathrm{I}, \quad \mathrm{t} \geqslant \mathrm{t}_{0} .
$$

- LTI: The function $e^{\mathcal{A t}}$ is the unique solution of

$$
\frac{d}{d t} e^{A t}=A e^{A t}, \quad e^{A 0}=I, \quad t \geqslant 0 .
$$

- P. 2 For evert fixed t_{0}, the $i^{\text {th }}$ column of $\phi\left(t, t_{0}\right)$ is the unique solution to

$$
\dot{x}=A(t) x(t), \quad x\left(t_{0}\right)=e_{i}, \quad t \geqslant t_{0} .
$$

- LTI: The $i^{\text {th }}$ column of $e^{\mathcal{A t}}$ is the unique solution to

$$
\dot{x}=A x(t), \quad x(0)=e_{i}, \quad t \geqslant 0 .
$$

- P3. For every t, s, τ we have (semigroup property)

$$
\phi(\mathrm{t}, \mathrm{~s}) \phi(\mathrm{s}, \tau)=\phi(\mathrm{t}, \tau) .
$$

- LTI: For every $\mathrm{t}, \tau \in \mathbb{R}$

$$
e^{A \tau} e^{A t}=e^{A t} e^{A \tau}=e^{A(t+\tau)} . \quad \text { But in general } \quad e^{A t} e^{B t} \neq e^{(A+B) t} .
$$

- P4. For evert $t, \tau, \phi(t, \tau)$, is nonsingular and

$$
\phi(\mathrm{t}, \tau)^{-1}=\phi(\tau, \mathrm{t}) .
$$

- LTI: For every $\mathrm{t} \in \mathbb{R}$, the function $\mathrm{e}^{\text {At }}$ is nonsingular and

$$
\left(e^{A t}\right)^{-1}=e^{-A t}
$$

Cayley-Hamilton

Notation: For a given polynomial

$$
p(s)=a_{0} s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n-1} s+a_{n}
$$

and an $n \times n$ matrix A, we define

$$
p(A)=a_{0} A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n-1} A+a_{n} I_{n \times n}
$$

which is also an $n \times n$ matrix.
Def (Characteristic polynomial of an $n \times n$ matrix A):

$$
\Delta(s):=\operatorname{det}(s I-A)=s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n-1} s+a_{n}
$$

Theorem (Cayley-Hamilton). For every $n \times n$ matrix A,

$$
\Delta(A)=A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n-1} A+a_{n} I_{n \times n}=0_{n \times n}
$$

Corollary of the Cayley-Hamilton Theorem: For any given $n \times n$ matrix, for any $k \geqslant 0$, A^{k} can be written as linear combination of $\left\{A^{n-1}, A^{n-2}, \cdots, A, I_{n \times n}\right\}$.

Properties of the transition matrix of and LTI system

Corollary of the Cayley-Hamilton Theorem: For any given $n \times n$ matrix, for any $k \geqslant 0$, A^{k} can be written as linear combination of $\left\{A^{n-1}, A^{n-2}, \cdots, A, I_{n \times n}\right\}$.

- P5. For evert $n \times n$ matrix A, there exist n functions $\alpha_{0}(t), \alpha_{1}(t), \cdots, \alpha_{n-1}(t)$ for which

$$
\mathrm{e}^{A t}=\sum_{i=0}^{n-1} \alpha_{i}(\mathrm{t}) A^{i}, \quad \forall \mathrm{t} \in \mathbb{R}
$$

- P6. For every $n \times n$ matrix A,

$$
\begin{gathered}
A e^{A t}=e^{A t} A, \quad \forall t \in \mathbb{R} \\
\frac{d}{d t} e^{A t}=A e^{A t}=e^{A t} A, \quad \forall t \in \mathbb{R} .
\end{gathered}
$$

Properties of the transition matrix of and LTI system

- P1. For every $t_{0}, \phi\left(t, t_{0}\right)$ is the unique solution of

$$
\frac{\mathrm{d}}{\mathrm{dt}} \phi\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{A}(\mathrm{t}) \phi\left(\mathrm{t}, \mathrm{t}_{0}\right), \quad \phi\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)=\mathrm{I}, \quad \mathrm{t} \geqslant \mathrm{t}_{0} .
$$

- LTI: The function $e^{A t}$ is the unique solution of

$$
\frac{d}{d t} e^{A t}=A e^{A t}, \quad e^{A 0}=I, \quad t \geqslant 0
$$

- P. 2 For
- LT

$$
\mathcal{L}\left[\frac{d}{d t} e^{A t}\right]=\mathcal{L}\left[A e^{A t}\right] \Leftrightarrow
$$

$$
s \mathcal{L}\left[e^{A t}\right]-e^{A 0}=A \mathcal{L}\left[e^{A t}\right] \Leftrightarrow
$$

- P3. For

$$
s \mathcal{L}\left[\mathrm{e}^{A \mathrm{t}}\right]-\mathrm{I}=\mathrm{A} \mathcal{L}\left[\mathrm{e}^{A \mathrm{t}}\right] \Leftrightarrow
$$

$$
(\mathrm{sI}-A) \mathcal{L}\left[\mathrm{e}^{A \mathrm{t}}\right]=\mathrm{I} \Leftrightarrow
$$

$$
\mathcal{L}\left[e^{A t}\right]=(s I-A)^{-1} \Leftrightarrow e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]
$$

- P4. For evert $t, \tau, \Phi(t, \tau)$, is nonsingular and

$$
\phi(t, \tau)^{-1}=\phi(\tau, t) .
$$

- LTI: For every $t \in \mathbb{R}$, the function $e^{A t}$ is nonsingular and

$$
\left(e^{A t}\right)^{-1}=e^{-A t}
$$

Some note on computing $\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]$

$$
\begin{gathered}
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right] \\
(s I-A)^{-1}=\frac{\left[\begin{array}{ccc}
\hat{n}_{1,1}(s) & \cdots & \hat{n}_{1, n}(s) \\
\vdots & \ddots & \vdots \\
\hat{n}_{n, 1}(s) & \cdots & \hat{n}_{n, n}(s)
\end{array}\right]}{\operatorname{det}(s I-A)}=\frac{\left[\begin{array}{c}
\text { polynomials with order } \\
\text { of at most } n-1
\end{array}\right]}{\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \cdots\left(s-\lambda_{k}\right)^{m_{k}}}
\end{gathered}
$$

λ_{i} an eigenvalue of A with multiplicity of $m_{i}, i \in\{1, \ldots, k\}$
(notice $m_{1}+m_{2}+\cdots+m_{k}=n$)

Every entry of $(\mathbf{s I}-\mathbf{A})^{\mathbf{- 1}}$

$$
\begin{gathered}
\frac{\hat{n}_{i, j}(s)}{\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \cdots\left(s-\lambda_{k}\right)^{m_{k}}}=\frac{\beta_{1} s^{n-1}+\beta_{2} s^{n-2}+\cdots+\beta_{n-1} s+\beta_{n}}{\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \cdots\left(s-\lambda_{k}\right)^{m_{k}}} \\
=\frac{a_{1,1}}{\left(s-\lambda_{1}\right)}+\cdots+\frac{a_{1, m_{1}}}{\left(s-\lambda_{1}\right)^{m_{1}}}+\cdots+\frac{a_{k, 1}}{\left(s-\lambda_{k}\right)}+\cdots+\frac{a_{k, m_{k}}}{\left(s-\lambda_{k}\right)^{m_{k}}}
\end{gathered}
$$

Use

$$
\mathcal{L}^{-1}\left[\frac{1}{(s+a)^{n+1}}\right]=\frac{1}{n!} t^{n} e^{-a t}, \quad t \geqslant 0
$$

$$
\begin{gathered}
\cos (x)=\frac{e^{i x}+e^{-i x}}{2} \\
\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i} \\
\mathcal{L}^{-1}\left[\frac{b}{(s-a)^{2}+b^{2}}\right]=e^{a t} \sin (b t) \\
\mathcal{L}^{-1}\left[\frac{s-a}{(s-a)^{2}+b^{2}}\right]=e^{a t} \cos (b t)
\end{gathered}
$$

$$
\mathrm{e}^{\mathrm{At}}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]: \text { example }
$$

Compute $e^{A t}$ for $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$. The eigenvalues of A are $\{0,-1,2\}$.

For mor examples check out https://tinyurl.com/wfc75cbm

$$
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2}-\frac{2}{3} e^{-t}+\frac{1}{6} e^{2 t} & \frac{2}{3} e^{-t}+\frac{1}{3} e^{2 t} & -\frac{2}{3} e^{-t}+\frac{2}{3} e^{2 t} \\
-\frac{1}{2}+\frac{1}{3} e^{-t}+\frac{1}{6} e^{2 t} & -\frac{1}{3} e^{-t}+\frac{1}{3} e^{2 t} & \frac{1}{3} e^{-t}+\frac{2}{3} e^{2 t}
\end{array}\right]
$$

$$
\begin{aligned}
& s I-A=\left[\begin{array}{ccc}
s & 0 & 0 \\
-1 & s & -2 \\
0 & -1 & s-1
\end{array}\right], \quad \operatorname{det}(s I-A)=(s-0)(s+1)(s-2)=s(s+1)(s-2) \\
& (s I-A)^{-1}=\frac{1}{s(s+1)(s-2)}\left[\begin{array}{ccc}
s^{2}-s-2 & 0 & 0 \\
s-1 & s^{2}-s & 2 s \\
1 & s & s^{2}
\end{array}\right] \\
& =\frac{1}{s(s+1)(s-2)}\left[\begin{array}{ccc}
(s-2)(s+1) & 0 & 0 \\
(s-1) & s(s-1) & 2 s \\
1 & s & s^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{s} & 0 & 0 \\
\frac{s-1}{s(s+1)(s-2)} & \frac{1}{(s+1)(s-2)} & \frac{2}{(s+1)(s-2)} \\
\frac{1}{s(s+1)(s-2)} & \frac{1}{(s+1)(s-2)} & \frac{\mathrm{s}}{(s+1)(s-2)}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{s} & 0 & 0 \\
\frac{\frac{1}{2}}{s}-\frac{\frac{2}{3}}{s+1}+\frac{\frac{1}{6}}{s-2} & \frac{\frac{2}{3}}{(s+1)}+\frac{\frac{1}{3}}{(s-2)} & \frac{-2}{3}(s+1) \\
\frac{-\frac{1}{2}}{s}+\frac{\frac{1}{3}}{s+1}+\frac{\frac{1}{6}}{s-2} & \frac{\frac{-1}{3}}{s+1}+\frac{\frac{1}{3}}{s-2} & \frac{\frac{1}{3}}{s+1}+\frac{\frac{2}{3}}{s-2}
\end{array}\right]
\end{aligned}
$$

A brief review of some relevant concept and theory from linear algebra

Eigenvalues and eigenvectors of a matrix

Consider a matrix $A \in \mathbb{C}^{n \times n}$,

$$
A p=\lambda p,
$$

- $\lambda \in \mathbb{C}$ is eigenvalue iff we have $p \in \mathbb{C}^{n \times 1}, p \neq 0_{n \times 1}$
- Compute $\lambda: \Delta(A)=\operatorname{det}(\lambda I-A)=0$; has n roots $\Rightarrow n$ eigenvalues
- Computing eigenvectors: $q \neq 0$ such that $(\lambda I-A) p=0$, i.e., q is in the nullspace of $(\lambda I-A)$,
- Some of the properties of the eigenvectors
- When all the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of a $n \times n$ matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of $\left(\lambda_{i} I-A\right)$ is equal to 1 . Moreover, the corresponding eigenvector set $\left\{p_{1}, \cdots, p_{n}\right\}$ is linearly independent.
- When $\bar{\lambda}$ is an eigenvalue of A with multiplicity of $m \in[2, n]$, then we have $1 \leqslant \operatorname{nullity}(\bar{\lambda} I-A) \leqslant m$.

Basic definitions from linear algebra

- The set of vectors $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ in \mathbb{R}^{n} is said to be linearly dependent if and only if there exists real number $\alpha_{1}, \cdots, \alpha_{m}$ not all zero such that

$$
\begin{equation*}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}=0 \tag{1}
\end{equation*}
$$

- If the only set of α_{i} 's for which (1) holds is $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=0$ then the set of vectors $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ is said to be linearly independent.
- The dimension of a linear space can be defined as the maximum number of linearly independent vectors in the space. Therefore, in \mathbb{R}^{n}, we can find at most n linearly independent vectors.
- Basis and representation A set of linearly independent vectors in \mathbb{R}^{n} is called a basis if every vector in \mathbb{R}^{n} can be expressed as a unique linear combination of the set. In \mathbb{R}^{n}, any set of n linearly independent vectors can be used as a basis.
- Rank of a matrix is the number of linearly independent columns of a matrix.

Solution of $A x=y$

Theorem: $A x=y, A \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^{n \times 1}$ are given matrices

- A is nonsingular (inverse of A exisits)
- for every $y, x=A^{-1} y$ is the unique solution
- for $y=0_{n \times 1}, x=0_{n \times 1}$ is the unique solution
- $A x=0, x \neq 0$ if and only if A is singular
- nullity of A : number of linearly independent solutions of $A x=0$

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 6 & 5 \\
-1 & -2 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 6 & 5 \\
-1 & -2 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

Nullity: 1
$A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1\end{array}\right], \quad\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \quad\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Nullity: 2

References

[1] Joao P. Hespanha, " L inear systems theory", Princeton University Press (Chapter 6)

