Linear Systems I Lecture 5

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine

solmaz@uci.edu

Summary of previous lecture and today's outline

We want to study the properties of solutions to SS LTV systems

 $\dot{x}(t) = A(t)x(t) + B(t)u(t),$ u(t) = C(t)x(t) + D(t)u(t),

$$\begin{split} A(t): [0,\infty) &\to \mathbb{R}^{n \times n}, \ B(t): [0,\infty) \to \mathbb{R}^{n \times p}, \ C(t): [0,\infty) \to \mathbb{R}^{q \times n}, \\ D(t): [0,\infty) \to \mathbb{R}^{q \times p}. \end{split}$$

P1. For every $t_0,\,\varphi(t,t_0)$ is the unique solution of

$$\frac{\mathsf{d}}{\mathsf{d} t}\varphi(t,t_0)=A(t)\varphi(t,t_0),\quad\varphi(t_0,t_0)=I,\quad t\geqslant t_0.$$

P.2 For evert fixed $t_0,$ the i^{th} column of $\varphi(t,t_0)$ is the unique solution to

$$\dot{\mathbf{x}} = \mathbf{A}(\mathbf{t})\mathbf{x}(\mathbf{t}), \quad \mathbf{x}(\mathbf{t}_0) = \mathbf{e}_i, \quad \mathbf{t} \geqslant \mathbf{t}_0$$

where e_i is the i^{th} column of identity matrix I_n , or equivalently a column vector of all zero entries except for the i^{th} which is equal to 1.

P3. For every t, s, τ we have

$$\phi(t,s)\phi(s,\tau) = \phi(t,\tau).$$

This property is called the semigroup property.

P4. For evert $t,\tau,\,\varphi(\,t,t_0\,),$ is nonsingular and

$$\varphi(t,\tau)^{-1} = \varphi(\tau,t)$$

Theorem (Variation of constants): The unique solution to LTV SS equation above is given by

$$\begin{split} x(t) &= \varphi(t,t_0)x_0 + \int_{t_0}^t \varphi(t,\tau)B(\tau)u(\tau)d\tau \\ y(t) &= C(t)\varphi(t,t_0)x_0 + \int_{t_0}^t C(t)\varphi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t), \end{split}$$

where $\varphi(t,t_0)$ is the state transition matrix (as defined before).

$$y(t) = \underbrace{C(t)\varphi(t,t_0)x_0}_{\text{homogeneous response}} + \underbrace{\int_{t_0}^t C(t)\varphi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t)}_{\text{forced response}}.$$

Lecture 5 covers

- Solution of LTI systems
 - Properties of matrix exponential
 - Cayley-Hamilton Theorem
 - Methods to compute e^{At}

We want to study the properties of solutions to SS LTI systems

 $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t),$ $\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t),$

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{q \times n}$, $D \in \mathbb{R}^{q \times p}$. Start by study of

homogeneous linear system: $\dot{x} = Ax(t)$, $x(t_0) = x_0 \in \mathbb{R}^n$, $t \ge t_0$. (1)

Theorem (Peano-Baker Series). The unique solution to (1) is given by

$$\mathbf{x}(t) = \boldsymbol{\varphi}(t, t_0) \mathbf{x}_0, \quad (2)$$

$$\begin{split} \varphi(t, t_0) &= I + \int_{t_0}^t A d\tau_1 + \int_{t_0}^t A \int_{t_0}^{\tau_1} A d\tau_2 d\tau_1 + \int_{t_0}^t A \int_{t_0}^{\tau_1} A \int_{t_0}^{\tau_2} A d\tau_3 d\tau_2 d\tau_1 + \cdots \\ &= I + A \int_{t_0}^t d\tau_1 + A^2 \int_{t_0}^t \int_{t_0}^{\tau_1} d\tau_2 d\tau_1 + A^3 \int_{t_0}^t \int_{t_0}^{\tau_1} \int_{t_0}^{\tau_2} d\tau_3 d\tau_2 d\tau_1 + \cdots \\ &= I + \frac{(t - t_0)}{1} A + \frac{(t - t_0)^2}{2!} A^2 + \frac{(t - t_0)^3}{3!} A^3 + \cdots + \frac{(t - t_0)^k}{k!} A^k + \cdots = \sum_{k=0}^{\infty} \frac{(t - t_0)^k}{k!} A^k \end{split}$$

$$\phi(t, t_0) = e^{A(t-t_0)}$$
$$e^{A(t-t_0)} = \sum_{k=0}^{\infty} \frac{(t-t_0)^k}{k!} A^k$$

 $\bullet\,$ P1. For every $t_0,\,\varphi(t,t_0)$ is the unique solution of

$$\frac{\mathsf{d}}{\mathsf{d} t} \varphi(t, t_0) = A(t) \varphi(t, t_0), \quad \varphi(t_0, t_0) = I, \quad t \geqslant t_0.$$

• LTI: The function e^{At} is the unique solution of

$$\frac{d}{dt}e^{At} = Ae^{At}, \quad e^{A0} = I, \quad t \ge 0.$$

• P.2 For evert fixed t_0 , the i^{th} column of $\varphi(t, t_0)$ is the unique solution to

$$\dot{\mathbf{x}} = \mathbf{A}(\mathbf{t})\mathbf{x}(\mathbf{t}), \quad \mathbf{x}(\mathbf{t}_0) = \mathbf{e}_i, \quad \mathbf{t} \geqslant \mathbf{t}_0.$$

• LTI: The i^{th} column of e^{At} is the unique solution to

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(\mathbf{t}), \quad \mathbf{x}(\mathbf{0}) = \mathbf{e}_{\mathbf{i}}, \quad \mathbf{t} \ge \mathbf{0}.$$

• P3. For every t, s, τ we have (semigroup property)

$$\phi(t,s)\phi(s,\tau) = \phi(t,\tau)$$

• LTI: For every $t, \tau \in \mathbb{R}$

$$e^{A\tau}e^{At} = e^{At}e^{A\tau} = e^{A(t+\tau)}$$
. But in general $e^{At}e^{Bt} \neq e^{(A+B)t}$.

• P4. For evert t, τ , $\varphi(t, \tau)$, is nonsingular and

$$\phi(\mathbf{t}, \boldsymbol{\tau})^{-1} = \phi(\boldsymbol{\tau}, \mathbf{t}).$$

• LTI: For every $t \in \mathbb{R},$ the function $e^{A\,t}$ is nonsingular and

$$\mathsf{e}^{\mathsf{A}\mathsf{t}})^{-1} = \mathsf{e}^{-\mathsf{A}\mathsf{t}}.$$

© Solmaz Kia, UCI

Cayley-Hamilton

Notation: For a given polynomial

 $p(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n$

and an $n \times n$ matrix A, we define

 $p(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I_{n \times n}$

which is also an $n \times n$ matrix.

Def (Characteristic polynomial of an $n \times n$ **matrix A)**:

$$\Delta(s) := \det(sI - A) = s^{n} + a_{1} s^{n-1} + a_{2} s^{n-2} + \dots + a_{n-1} s + a_{n}$$

Theorem (Cayley-Hamilton). For every $n \times n$ matrix A,

 $\Delta(A) = A^{n} + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I_{n \times n} = \mathbf{0}_{n \times n}.$

Corollary of the Cayley-Hamilton Theorem: For any given $n \times n$ matrix, for any $k \ge 0$, A^k can be written as linear combination of $\{A^{n-1}, A^{n-2}, \dots, A, I_{n \times n}\}$.

Properties of the transition matrix of and LTI system

Corollary of the Cayley-Hamilton Theorem: For any given $n \times n$ matrix, for any $k \ge 0$, A^k can be written as linear combination of $\{A^{n-1}, A^{n-2}, \dots, A, I_{n \times n}\}$.

• P5. For evert $n \times n$ matrix A, there exist n functions $\alpha_0(t), \alpha_1(t), \cdots, \alpha_{n-1}(t)$ for which

$$e^{At} = \sum_{i=0}^{n-1} \alpha_i(t) A^i, \quad \forall t \in \mathbb{R}.$$

• P6. For every $n \times n$ matrix A,

$$Ae^{At} = e^{At}A, \quad \forall t \in \mathbb{R}.$$
$$\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A, \quad \forall t \in \mathbb{R}.$$

Properties of the transition matrix of and LTI system

 $\bullet\,$ P1. For every $t_0,\, \varphi(t,t_0)$ is the unique solution of

$$\frac{d}{dt}\varphi(t,t_0) = A(t)\varphi(t,t_0), \quad \varphi(t_0,t_0) = I, \quad t \ge t_0.$$

 \bullet LTI: The function $e^{A\,t}$ is the unique solution of

$$\frac{d}{dt}e^{At} = Ae^{At}, \quad e^{A0} = I, \quad t \ge 0.$$

• P.2 For

• LT

$$\begin{aligned} \mathcal{L}[\frac{d}{dt}e^{At}] = \mathcal{L}[Ae^{At}] \Leftrightarrow \\ s\mathcal{L}[e^{At}] - e^{A0} = A\mathcal{L}[e^{At}] \Leftrightarrow \\ s\mathcal{L}[e^{At}] - I = A\mathcal{L}[e^{At}] \Leftrightarrow \\ (sI - A)\mathcal{L}[e^{At}] = I \Leftrightarrow \\ \mathcal{L}[e^{At}] = (sI - A)^{-1} \Leftrightarrow e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}] \end{aligned}$$

• P4. For evert t, τ , $\phi(t, \tau)$, is nonsingular and

$$\label{eq:phi} \begin{split} \varphi(t,\tau)^{-1} &= \varphi(\tau,t). \\ \bullet \ \mbox{LTI: For every } t \in \mathbb{R}, \ \mbox{the function } e^{At} \ \ \mbox{is nonsingular and} \\ (e^{At})^{-1} &= e^{-At}. \end{split}$$

Some note on computing
$$\mathcal{L}^{-1}[(sI - A)^{-1}]$$

 $e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$
 $(sI - A)^{-1} = \frac{\begin{bmatrix} \text{polynomials with order} \\ \text{of at most } n - 1 \end{bmatrix}}{\det(sI - A)} = \frac{\begin{bmatrix} \hat{n}_{1,1}(s) & \cdots & \hat{n}_{1,n}(s) \\ \vdots & \ddots & \vdots \\ \hat{n}_{n,1}(s) & \cdots & \hat{n}_{n,n}(s) \end{bmatrix}}{(s - \lambda_1)^{m_1}(s - \lambda_2)^{m_2} \cdots (s - \lambda_k)^{m_k}}$

$$\label{eq:linear} \begin{split} \lambda_i \text{ an eigenvalue of } A \text{ with multiplicity of } m_i, \ i \in \{1,\ldots,k\} \\ \text{(notice } m_1+m_2+\cdots+m_k=n) \end{split}$$

© Solmaz Kia, UCI

$$e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$$
: example

Compute
$$e^{At}$$
 for $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$. The eigenvalues of A are $\{0, -1, 2\}$.
$$sI - A = \begin{bmatrix} s & 0 & 0 \\ -1 & s & -2 \\ 0 & -1 & s -1 \end{bmatrix}$$
, $det(sI - A) = (s - 0)(s + 1)(s - 2) = s(s + 1)(s - 2)$

$$(sI - A)^{-1} = \frac{1}{s(s+1)(s-2)} \begin{bmatrix} s^2 - s - 2 & 0 & 0 \\ s - 1 & s^2 - s & 2s \\ 1 & s & s^2 \end{bmatrix}$$
$$= \frac{1}{s(s+1)(s-2)} \begin{bmatrix} (s-2)(s+1) & 0 & 0 \\ (s-1) & s(s-1) & 2s \\ 1 & s & s^2 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\frac{1}{s}}{\frac{s}{(s+1)(s-2)}} & \frac{0}{\frac{s-1}{(s+1)(s-2)}} & \frac{2}{(s+1)(s-2)} \\ \frac{1}{s(s+1)(s-2)} & \frac{\frac{s-1}{(s+1)(s-2)}}{\frac{1}{(s+1)(s-2)}} & \frac{2}{(s+1)(s-2)} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\frac{1}{s}}{\frac{2}{s}} & 0 & 0 \\ \frac{1}{2} - \frac{2}{\frac{3}{s}} + \frac{1}{\frac{5}{s-2}} & \frac{2}{\frac{3}{(s+1)}} + \frac{1}{\frac{3}{s-2}} & \frac{-2}{\frac{3}{(s+1)}} + \frac{2}{\frac{3}{s-2}} \end{bmatrix}$$
$$e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} - \frac{2}{3}e^{-t} + \frac{1}{6}e^{2t} & -\frac{1}{3}e^{-t} + \frac{1}{3}e^{2t} & -\frac{2}{3}e^{-t} + \frac{2}{3}e^{2t} \end{bmatrix}$$

For mor examples check out <u>https://tinyurl.com/wfc75cbm</u>

A brief review of some relevant concept and theory from linear algebra

Consider a matrix $A \in \mathbb{C}^{n \times n}$,

$$Ap = \lambda p$$
,

•
$$\lambda \in \mathbb{C}$$
 is eigenvalue iff we have $p \in \mathbb{C}^{n \times 1}$, $p \neq 0_{n \times 1}$

- Compute λ : $\Delta(A) = det(\lambda I A) = 0$; has n roots \Rightarrow n eigenvalues
- Computing eigenvectors: $q \neq 0$ such that $(\lambda I A)p = 0$, i.e., q is in the nullspace of $(\lambda I - A)$,
- Some of the properties of the eigenvectors
 - When all the eigenvalues {λ₁, · · · , λ_n} of a n × n matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of (λ_iI – A) is equal to 1. Moreover, the corresponding eigenvector set {p₁, · · · , p_n} is linearly independent.
 - When $\overline{\lambda}$ is an eigenvalue of A with multiplicity of $m \in [2, n]$, then we have $1 \leq \text{nullity}(\overline{\lambda}I A) \leq m$.

The set of vectors {x₁, x₂, · · · , x_m} in ℝⁿ is said to be linearly dependent if and only if there exists real number α₁, · · · , α_m not all zero such that

 $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_m x_m = 0 \quad (1)$

- If the only set of α_i's for which (1) holds is α₁ = α₂ = ··· = α_m = 0 then the set of vectors {x₁, x₂, ···, x_m} is said to be **linearly independent**.
- The dimension of a linear space can be defined as the maximum number of linearly independent vectors in the space. Therefore, in Rⁿ, we can find at most n linearly independent vectors.
- Basis and representation A set of linearly independent vectors in Rⁿ is called a basis if every vector in Rⁿ can be expressed as a unique linear combination of the set. In Rⁿ, any set of n linearly independent vectors can be used as a basis.
- Rank of a matrix is the number of linearly independent columns of a matrix.

Solution of Ax = y

Theorem: Ax = y, $A \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^{n \times 1}$ are given matrices

- A is nonsingular (inverse of A exisits)
 - for every y, $x = A^{-1}y$ is the unique solution
 - for $y=\mathbf{0}_{n\times 1},~x=\mathbf{0}_{n\times 1}$ is the unique solution
- Ax = 0, $x \neq 0$ if and only if A is singular
 - nullity of A: number of linearly independent solutions of Ax = 0

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 6 & 5 \\ -1 & -2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 6 & 5 \\ -1 & -2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

Nullity: 1

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
Nullity: 2

References

[1] Joao P. Hespanha, ``Linear systems theory", Princeton University Press (Chapter 6)