Linear Systems I Lecture 2

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine

solmaz@uci.edu

© Solmaz Kia, UCI

	Outline	
Linear system $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t)		ack Box

Assumption: If an excitation or input is applied to the input terminal a unique response or output signal can be measured at the output terminal.

Objective: Discuss some of the basic properties of state-space linear systems

- Basic properties of LTV/LTI systems
 - Causality
 - Linearity
 - Time invariance
- Characterization of all the outputs to a given input
 - Impulse response
 - Laplace transformation (review)
 - Transfer functions

Basic properties of LTV/LTI systems: Causality

Def. A <u>causal</u> or <u>non-anticipatory</u> system is a system whose current output depends on past and current inputs but not on future inputs.

$$\begin{array}{c} x(t_0) = x_0 \\ u(t), \ t \geqslant t_0 \end{array} \right\} \rightarrow \ y(t), \qquad \begin{array}{c} x(t_0) = x_0 \\ \bar{u}(t), \ t \geqslant t_0 \end{array} \right\} \rightarrow \ \bar{y}(t).$$
Then, if $u(t) = \bar{u}(t)$ for $t \in [t_0, T]$, then $y(t) = \bar{y}(t)$ for $t \in [t_0, T]$.

(a) Causal system

(b) Noncausal system Figure credit: Ref [1].

ILTIN Systems are casual.

© Solmaz Kia, UCI

Concept of state

Def. The state $x(t_0)$ of a system at time t_0 is the information at t_0 that together with the input u(t), for $t \ge t_0$, determine the output y(t) for all $t \ge t_0$,

$$\left. \begin{array}{c} x(t_0) \\ u(t), \ t \geqslant t_0 \end{array} \right\} \rightarrow \ y(t).$$

$\dot{\mathbf{x}}(\mathbf{t}) = \mathbf{A}\mathbf{x}(\mathbf{t}) + \mathbf{B}\mathbf{u}(\mathbf{t}),$	Initial condition
$\mathbf{y}(\mathbf{t}) = C\mathbf{x}(\mathbf{t}) + \mathbf{D}\mathbf{u}(\mathbf{t}).$	$x(t_0) \in \mathbb{R}^n$

Def. A system is said to be <u>lumped</u> if its number of state variables is finite.

$$x(t) = u(t - T),$$
 Initial condition
 $y(t) = x(t).$ Def. A system is said to be distributed if it
has infinitely many state variables.

Basic properties of LTV/LTI systems: Linearity

Def. A system is linear if and only if for every initial conditions the following hold

$$\begin{array}{c} x(t_0) = x_1 \\ u_1(t), t \geqslant t_0 \end{array} \right\} \rightarrow y_1(t), \qquad \begin{array}{c} x(t_0) = x_2 \\ u_2(t), t \geqslant t_0 \end{array} \right\} \rightarrow y_2(t)$$

we have

$$\begin{array}{l} x(t_0) = \alpha x_1 + \beta x_2 \\ \alpha u_1(t) + \beta u_2(t), \quad t \ge t_0 \end{array} \right\} \rightarrow \ \alpha y_1(t) + \beta y_2(t)$$

or alternatively

$$\begin{array}{c} x(t_0) = x_1 + x_2 \\ u_1(t) + u_2(t), \ t \ge t_0 \end{array} \right\} \rightarrow \ y_1(t) + y_2(t), \quad \mbox{(additivity)} \\ \\ x(t_0) = \alpha x_1 \\ \alpha u_1(t), \ t \ge t_0 \end{array} \right\} \rightarrow \ \alpha y_1(t), \quad \mbox{(homogeneity)}$$

Basic properties of LTV/LTI systems: Time invariance

Def. A system is time invariant if its characteristics do not change with time.

$$\left. \begin{array}{l} x(t_0) = x_0 \\ u(t), \ t \geqslant t_0 \end{array} \right\} \rightarrow \ y(t),$$

then the system is time-invariant if and only if

Characterization of all the outputs to a given input

Def If the input u(t) = 0 for all $t \ge t_0$, then the output will be excited exclusively by the initial state $x(t_0)$. This output is called zero-input response (homogeneous response) and will be denoted by y_h or y_{zi}

$$\begin{array}{c} x(t_0) \\ u(t) = 0, \quad t \geqslant t_0 \end{array} \right\} \rightarrow \ y_{zi}(t).$$

Def If the initial state $x(t_0)$ is zero, the output will be excited exclusively by the input . This output is called zero-state response (forced response) and will be denoted by y_f or y_{zs}

$$\begin{array}{l} x(t_0) = 0 \\ u(t), t \ge t_0 \end{array} \right\} \rightarrow y_{zs}(t).$$

Theorem: Let y be an output corresponding to a given input u of a linear system. All outputs corresponding to u can be obtained by

Response=zero-input response + zero-state response

$$y = y_{zs} + y_{zi}$$

To construct all the outputs due to u:

- Find one particular output corresponding to the input u and zero initial condition.
- Final all outputs corresponding to the zero input.

Input-output description: Impulse response

Impulse response : mathematical description of zero-state response.

Assumption: System is relaxed

Def. (relaxed system): A system is said to be relaxed at t_0 if its initial state $x(t_0)$ is 0. In this case the output $y(t), t \ge t0$ is excited exclusively by the input u(t) for $t \ge t0$.

Input-output description: Impulse response

 $g(t,\tau) = \lim_{\Delta \to 0} g_{\Delta}(t-k\Delta)$

 $g(t,\tau)$

 $\oint \delta(t-\tau)$

 $\frac{1}{0\tau}$

Consider a relaxed SISO system

Zero-state response of a SISO linear system given a
$$u: [0, \infty) \to R$$
:
 $u(t) \mapsto y(t) = \int_{t_0}^{\infty} g(t, \tau)u(\tau)d\tau, \quad \forall t \ge 0$
 $u(t) \mapsto y(t) = \int_{t_0}^{t} g(t, \tau)u(\tau)d\tau, \quad \forall t \ge 0$
We are concerned with **causal** systems:
causal $\Leftrightarrow g(t, \tau) = 0$ for $\forall \tau > t$
i.e., the output is not going to appear before we apply an input.

Input-output description: Impulse response of MIMO systems

Impulse response for MIMO : mathematical description of zero-state response for a system with k input and m output (**linear**, **causal** and **relaxed** system)

$$y(t) = \int_{t_0}^t G(t,\tau) u(\tau) d\tau$$

where

$$G(t,\tau) = \begin{bmatrix} g_{11}(t,\tau) & g_{12}(t,\tau) & \cdots & g_{1k}(t,\tau) \\ g_{21}(t,\tau) & g_{22}(t,\tau) & \cdots & g_{2k}(t,\tau) \\ \vdots & \vdots & & \vdots \\ g_{m1}(t,\tau) & g_{m2}(t,\tau) & \cdots & g_{mk}(t,\tau) \end{bmatrix}$$

 $g_{ij}(t,\tau)$ is the system's output at time t at the ith output due to an impulse at time τ at the jth input terminal, while the input of there terminals being identically zero.

Input-output description: Impulse response of LTI systems

Input-output description (Impulse response) for relaxed and linear system

$$y(t) = \int_{t_0}^t G(t,\tau) u(\tau) d\tau, \quad \forall t \ge 0$$

 $G(t, \tau)$ is the system's output at time t due to an impulse at time τ .

Input-output description (Impulse response) for relaxed and linear time-invariant system $y(t) = \int_{t_0}^{t} G(t) u(t - \tau) d\tau, \quad \forall t \ge 0$

G(t) is the system's output at time t due to an impulse at time 0.

Def. Given a Continuous-time signal x(t), $t \in \mathbb{R}_{\ge 0}$, its (unilateral) Laplace transform is given by

$$\mathcal{L}[\mathbf{x}(\mathbf{t})] = \hat{\mathbf{x}}(s) = \int_0^\infty \mathbf{x}(\mathbf{t}) e^{-s\mathbf{t}} d\mathbf{t}, \quad s \in \mathbb{C}.$$

Some properties of Laplace transform:

•
$$\mathcal{L}[\dot{x}(t)] = s\hat{x}(s) - x(0)$$
, $s \in \mathbb{C}$

•
$$\mathcal{L}[(x \star y)(t)] = \mathcal{L}\left[\int_0^t x(\tau)y(t-\tau)d\tau\right] = \hat{x}(s)\hat{y}(s), \quad s \in \mathbb{C}.$$

Table of Laplace Transforms							
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\left\{f(t)\right\}$		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\left\{f(t)\right\}$		
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$		
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^{p}, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$		
5.	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{rac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$		
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$		
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$		
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$		
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$		
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$		

Every linear, time-invariant system has a transfer function.

 $\hat{G}(s) = \mathcal{L}[G(t)] = \int_0^\infty G(t) e^{-st} dt, \quad s \in \mathbb{C},$

 $\mathcal{L}[(x \star y)(t)] = \mathcal{L}\left[\int_0^t x(\tau)y(t-\tau)d\tau\right] = \hat{x}(s)\,\hat{y}(s), \quad s \in \mathbb{C}.$

Input-output description for relaxed and linear time-invariant system

$$y(t) = \int_{t_0}^{t} G(t) u(t-\tau) d\tau, \qquad \forall t \ge 0$$

Input-output description in Laplace domain

$$\hat{y}(s) = \hat{G}(s) \,\hat{u}(s), \qquad \forall t \ge 0$$

References

[1] Joao P. Hespanha, ``Linear systems theory", Princeton University Press (Chapter 3)