Linear Systems I Lecture 2

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Outline

Linear system

$$
\begin{aligned}
\dot{x}(\mathrm{t}) & =\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}), \\
\mathrm{y}(\mathrm{t}) & =\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t}) .
\end{aligned}
$$

Assumption: If an excitation or input is applied to the input terminal a unique response or output signal can be measured at the output terminal.

Objective: Discuss some of the basic properties of state-space linear systems

- Basic properties of LTV/LTI systems
- Causality
- Linearity
- Time invariance
- Characterization of all the outputs to a given input
- Impulse response
- Laplace transformation (review)
- Transfer functions

Basic properties of LTV/LTI systems: Causality

Def. A causal or non-anticipatory system is a system whose current output depends on past and current inputs but not on future inputs.

$$
\left.\left.\begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
u(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y(t), \quad \begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
\bar{u}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow \bar{y}(t) .
$$

Then, if $u(t)=\bar{u}(t)$ for $t \in\left[t_{0}, T\right]$, then $y(t)=\bar{y}(t)$ for $t \in\left[t_{0}, T\right]$.

(a) Causal system

(b) Noncausal system

Concept of state

Def. The state $x\left(t_{0}\right)$ of a system at time t_{0} is the information at t_{0} that together with the input $u(t)$, for $t \geqslant t_{0}$, determine the output $y(t)$ for all $t \geqslant t_{0}$,

$$
\left.\begin{array}{l}
x\left(t_{0}\right) \\
u(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y(t)
$$

$$
\begin{gathered}
\dot{\mathrm{x}}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}), \quad \begin{array}{c}
\text { Initial condition } \\
\mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t}) . \\
x\left(t_{0}\right) \in R^{n}
\end{array} .
\end{gathered}
$$

Def. A system is said to be lumped if its number of state variables is finite.

$$
\begin{array}{ll}
x(t)=u(t-T), & \begin{array}{l}
\text { Initial condition } \\
y(t)=x(t) .
\end{array} \quad \begin{array}{l}
\text { Def. A system is said to be distributed if it } \\
\text { has infinitely many state variables. }
\end{array} \text { l } 4(\tau), \quad \tau \in\left[-T, t_{0}\right]
\end{array}
$$

Basic properties of LTV/LTI systems: Linearity

Def. A system is linear if and only if for every initial conditions the following hold

$$
\left.\left.\begin{array}{l}
x\left(t_{0}\right)=x_{1} \\
u_{1}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y_{1}(t), \quad \begin{array}{l}
x\left(t_{0}\right)=x_{2} \\
u_{2}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y_{2}(t)
$$

we have

$$
\left.\begin{array}{l}
x\left(t_{0}\right)=\alpha x_{1}+\beta x_{2} \\
\alpha u_{1}(t)+\beta u_{2}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow \alpha y_{1}(t)+\beta y_{2}(t)
$$

or alternatively

$$
\begin{aligned}
& \left.\begin{array}{l}
x\left(t_{0}\right)=x_{1}+x_{2} \\
u_{1}(t)+u_{2}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y_{1}(t)+y_{2}(t), \quad \text { (additivity) } \\
& \left.\begin{array}{l}
x\left(t_{0}\right)=\alpha x_{1} \\
\alpha u_{1}(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow \alpha y_{1}(t), \quad \text { (homogeneity) }
\end{aligned}
$$

Basic properties of LTV/LTI systems: Time invariance

Def. A system is time invariant if its characteristics do not change with time.

$$
\left.\begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
u(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y(t),
$$

then the system is time-invariant if and only if

$$
\left.\begin{array}{l}
x\left(t_{0}+\tau\right)=x_{0} \\
\bar{u}(t)=u(t-\tau), \quad t \geqslant t_{0}+\tau
\end{array}\right\} \rightarrow \bar{y}(t)=y(t-\tau), \quad t \geqslant t_{0}+\tau \quad \text { (time shifting) }
$$

A time invariance system

Characterization of all the outputs to a given input

Def If the input $u(t)=0$ for all $t \geqslant t_{0}$, then the output will be excited exclusively by the initial state $x\left(t_{0}\right)$. This output is called zero-input response (homogeneous response) and will be denoted by y_{h} or $y_{z i}$

$$
\left.\begin{array}{l}
x\left(t_{0}\right) \\
u(t)=0, \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y_{z i}(t) .
$$

Def If the initial state $x\left(t_{0}\right)$ is zero, the output will be excited exclusively by the input. This output is called zero-state response (forced response) and will be denoted by y_{f} or $y_{z s}$

$$
\left.\begin{array}{l}
x\left(t_{0}\right)=0 \\
u(t), \quad t \geqslant t_{0}
\end{array}\right\} \rightarrow y_{z s}(t)
$$

Input-output description

Theorem: Let y be an output corresponding to a given input u of a linear system. All outputs corresponding to u can be obtained by
Response=zero-input response + zero-state response

$$
y=y_{z s}+y_{z i}
$$

To construct all the outputs due to u:

- Find one particular output corresponding to the input u and zero initial condition.
- Final all outputs corresponding to the zero input.

Input-output description: Impulse response

Impulse response : mathematical description of zero-state response.

Assumption: System is relaxed

Def. (relaxed system): A system is said to be relaxed at t_{0} if its initial state $x\left(t_{0}\right)$ is 0 . In this case the output $y(t), t \geq t 0$ is excited exclusively by the input $u(t)$ for , $t \geq t 0$.

Input-output description: Impulse response

Consider a relaxed SISO system

Approximation to an input signal $u:[0, \infty) \rightarrow R$:

$$
u_{\Delta}(t)=\sum_{k=0}^{\infty} u(k \Delta) \Delta \delta_{\Delta}(t-k \Delta), \quad \forall t \geq 0
$$

Step approximation to a continuous-time signal.
Figure credit: Ref [1].

For each $\tau \geq 0$, let $g_{\Delta}(t, \tau), t \geq 0$ be an output corresponding to input $\delta_{\Delta}(t-\tau)$:

$$
\delta_{\Delta}(t-\tau) \longmapsto g_{\Delta}(t, \tau)
$$

Linearity

Approximation to an input signal $u:[0, \infty) \rightarrow R$:

$$
u_{\Delta}(t) \longmapsto y_{\Delta}(t)=\sum_{k=0}^{\infty} g_{\Delta}(t, k \Delta) u(k \Delta) \Delta, \quad \forall t \geq 0
$$

When $\Delta \rightarrow 0$ we have $u_{\Delta}(t) \rightarrow u(t):$
$u(t) \mapsto y(t)=\lim _{\Delta \rightarrow 0} y_{\Delta}(t)=\lim _{\Delta \rightarrow 0} \sum_{k=0}^{\infty} g_{\Delta}(t-k \Delta) u(k \Delta) \Delta=\int_{0}^{\infty} g(t, \tau) u(\tau) d \tau, \quad \forall t \geq 0$

$$
g(t, \tau)=\lim _{\Lambda \rightarrow n} g_{\Delta}(t, k \Delta)
$$

Input-output description: Impulse response

Consider a relaxed SISO system

Zero-state response of a SISO linear system given a $u:[0, \infty) \rightarrow R$:

$$
u(t) \mapsto y(t)=\int_{t_{0}}^{\infty} g(t, \tau) u(\tau) d \tau, \quad \forall t \geq 0
$$

$$
u(t) \mapsto y(t)=\int_{t_{0}}^{t} g(t, \tau) u(\tau) d \tau, \quad \forall t \geq 0
$$

We are concerned with causal systems:

$$
\text { causal } \Leftrightarrow \mathrm{g}(\mathrm{t}, \tau)=0 \text { for } \forall \tau>\mathrm{t}
$$

i.e., the output is not going to appear before we apply an input.

Input-output description: Impulse response of MIMO systems

Impulse response for MIMO : mathematical description of zero-state response for a system with k input and m output (linear, causal and relaxed system)

$$
y(t)=\int_{t_{0}}^{t} G(t, \tau) u(\tau) d \tau
$$

where

$$
G(t, \tau)=\left[\begin{array}{cccc}
g_{11}(t, \tau) & g_{12}(t, \tau) & \cdots & g_{1 k}(t, \tau) \\
g_{21}(t, \tau) & g_{22}(t, \tau) & \cdots & g_{2 k}(t, \tau) \\
\vdots & \vdots & & \vdots \\
g_{\mathfrak{m} 1}(t, \tau) & g_{\mathfrak{m} 2}(t, \tau) & \cdots & g_{\mathfrak{m k}}(t, \tau)
\end{array}\right]
$$

$g_{i j}(\mathrm{t}, \tau)$ is the system's output at time t at the $\mathfrak{i}^{\text {th }}$ output due to an impulse at time τ at the $j^{\text {th }}$ input terminal, while the input of there terminals being identically zero.

Input-output description: Impulse response of LTI systems

Zero-state response of a SISO linear system given a $u:[0, \infty) \rightarrow R$:

Input-output description: Impulse response

Input-output description (Impulse response) for relaxed and linear system

$$
y(t)=\int_{t_{0}}^{t} G(t, \tau) u(\tau) d \tau, \quad \forall t \geq 0
$$

$G(t, \tau)$ is the system's output at time t due to an impulse at time τ.

Input-output description (Impulse response) for relaxed and linear time-invariant system

$$
y(t)=\int_{t_{0}}^{t} G(t) u(t-\tau) d \tau, \quad \forall t \geq 0
$$

$G(t)$ is the system's output at time t due to an impulse at time 0.

Laplace Transform (review)

Def. Given a Continuous-time signal $x(t), t \in \mathbb{R}_{\geqslant 0}$, its (unilateral) Laplace transform is given by

$$
\mathcal{L}[x(t)]=\hat{x}(s)=\int_{0}^{\infty} x(t) e^{-s t} d t, \quad s \in \mathbb{C} .
$$

Some properties of Laplace transform:

- $\mathcal{L}[\dot{\chi}(t)]=s \hat{\chi}(s)-\chi(0), \quad s \in \mathbb{C}$.
- $\mathcal{L}[(x \star y)(t)]=\mathcal{L}\left[\int_{0}^{t} x(\tau) y(t-\tau) d \tau\right]=\hat{x}(s) \hat{y}(s), \quad s \in \mathbb{C}$.

Table of Laplace Transforms				
	$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\mathfrak{L}\{f(t)\}$	$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\mathfrak{L}\{f(t)\}$
1.	1	$\underline{1}$	2. $\mathbf{e}^{a t}$	1
		s		$\frac{1}{s-a}$
3. $t^{n}, n=1,2,3, \ldots$		$\frac{n!}{s^{n+1}}$	4. $t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\sqrt{\pi}$	6. $t^{n-\frac{1}{2}}, \quad n=1,2,3, \ldots$	1.3.5 $\cdots(2 n-1) \sqrt{\pi}$
		$2 s^{\frac{2}{2}}$		$2^{n} s^{n+\frac{1}{2}}$
7. $\sin (a t)$		$\frac{a}{s^{2}+a^{2}}$	8. $\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
9. $t \sin (a t)$		$2 a s$	10. $t \cos (a t)$	$s^{2}-a^{2}$
		$\overline{\left(s^{2}+a^{2}\right)^{2}}$		$\overline{\left(s^{2}+a^{2}\right)^{2}}$
11. $\sin (a t)-a t \cos (a t)$		$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$	12. $\sin (a t)+a t \cos (a t)$	$\frac{2 a s^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
13. $\cos (a t)-a t \sin (a t)$		$\underline{s\left(s^{2}-a^{2}\right)}$	14. $\quad \cos (a t)+a t \sin (a t)$	$\underline{s\left(s^{2}+3 a^{2}\right)}$
		$\overline{\left(s^{2}+a^{2}\right)^{2}}$		$\frac{\left(s^{2}+a^{2}\right)^{2}}{}$
15. $\sin (a t+b)$		$\frac{s \sin (b)+a \cos (b)}{s^{2}+a^{2}}$	16. $\cos (a t+b)$	$\frac{s \cos (b)-a \sin (b)}{s^{2}+a^{2}}$
		$s^{2}+a^{2}$		$s^{2}+a^{2}$

Transfer function of a LTI system

Every linear, time-invariant system has a transfer function.

$$
\hat{\mathrm{G}}(\mathrm{~s})=\mathcal{L}[\mathrm{G}(\mathrm{t})]=\int_{0}^{\infty} \mathrm{G}(\mathrm{t}) \mathrm{e}^{-s t} \mathrm{dt}, \quad \mathrm{~s} \in \mathbb{C}
$$

$$
\mathcal{L}[(x \star y)(t)]=\mathcal{L}\left[\int_{0}^{t} x(\tau) y(t-\tau) d \tau\right]=\hat{x}(s) \hat{y}(s), \quad s \in \mathbb{C} .
$$

Input-output description for relaxed and linear time-invariant system

$$
y(t)=\int_{t_{0}}^{t} G(t) u(t-\tau) d \tau, \quad \forall t \geq 0
$$

Input-output description in Laplace domain

$$
\hat{y}(s)=\widehat{G}(s) \widehat{u}(s), \quad \forall t \geq 0
$$

References

[1] Joao P. Hespanha, " L inear systems theory", Princeton University Press (Chapter 3)

