Linear Systems I Lecture 1

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Objective of this course

(1)

(2)

Study linear ordinary differential equations of the form below

state equation: $\dot{x}(t) = A(t)x(t) + B(t)u(t)$, output equation: y(t) = C(t)x(t) + D(t)u(t),

- $\dot{x}(t) = dx(t)/dt$ denotes the derivative of x(t) w.r.t time
- $x(t): [0,\infty) \to \mathbb{R}^n$: the system state
- $u(t): [0,\infty) \to \mathbb{R}^k$: the system inputs
- ▶ $y(t) : [0, \infty) \to \mathbb{R}^m$: the system outputs
- $\blacktriangleright A(t): [0,\infty) \to \mathbb{R}^{n \times n}, \ B(t): [0,\infty) \to \mathbb{R}^{n \times k}, \ C(t): [0,\infty) \to \mathbb{R}^{m \times n}, \text{ and}$ $D(t):[0,\infty) \rightarrow \mathbb{R}^{m \times k}$ are matrices of appropriate dimensions

Linear time-varying system, or for short LTV system

LTI systems: *linear time invariant* systems

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{u} \in \mathbb{R}^{k},$$

 $\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t), \quad \mathbf{y} \in \mathbb{R}^{m}.$

tate space model

Why do we study linear state space systems?

- LTV systems are useful in many application areas.
 - Models of mechanical systems (force versus velocity laws for friction; force versus displacement laws for springs) or electrical systems (linear voltage versus current laws for resistors) whose parameters (for example, the stiffness of a spring or the inductance of a coil) change in time.

State-space representation: describing the system equations with a set of first order differential equations

x +

b

$$\begin{aligned} x_1 &= d \to \dot{x}_1 = \dot{d} = x_2 \\ x_2 &= \dot{d} \to \dot{x}_2 = \ddot{d} = -\frac{k}{m}d - \frac{b}{m}\dot{d} + \frac{1}{m}u = -\frac{k}{m}x_1 - \frac{b}{m}x_2 + \frac{1}{m}u \end{aligned}$$

$$m\ddot{d} = -kd - b\dot{d} + u$$

$$k$$

$$m \downarrow d(t)$$

$$m \downarrow u(t)$$

Let say we can only measure the displacement of the mass $y = d = \begin{bmatrix} 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix} x$

Linear time-invariant (LTI) system:
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Why do we study linear state space systems?

- But linear laws are only approximations to more complex nonlinear relations!
 - More reasonable class of systems to study appears to be

```
\dot{\mathbf{x}}(\mathbf{t}) = \mathbf{f}(\mathbf{x}(\mathbf{t}), \mathbf{u}(\mathbf{t})), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{u} \in \mathbb{R}^{k},
\mathbf{y}(\mathbf{t}) = \mathbf{g}(\mathbf{x}(\mathbf{t}), \mathbf{u}(\mathbf{t})), \quad \mathbf{y} \in \mathbb{R}^{m}.
```


Why do we study linear state space systems?

- LTV systems: linearizing a non-linear system around a trajectory
 - One often uses the full nonlinear dynamics to design an optimal trajectory to guide the system from its initial state to a desired final state.
 - One needs to ensure that the system will actually track this trajectory in the presence of disturbances.
 - One solution is to linearize the nonlinear system (i.e. approximate it by a linear system) around the optimal trajectory;
 - the approximation is accurate as long as the nonlinear system does not drift too far away from the optimal trajectory.
 - The result of the linearization is a LTV system, which can be controlled using the methods developed in this course.
 - If the control design is done well, the state of the nonlinear system will always stay close to the optimal trajectory, hence ensuring that the linear approximation remains valid.

• LTV systems: linearizing a non-linear system around a trajectory

 $\dot{\mathbf{x}}(\mathbf{t}) = \mathbf{f}(\mathbf{x}(\mathbf{t}), \mathbf{u}(\mathbf{t})), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{u} \in \mathbb{R}^{k},$ $\mathbf{y}(\mathbf{t}) = \mathbf{g}(\mathbf{x}(\mathbf{t}), \mathbf{u}(\mathbf{t})), \quad \mathbf{y} \in \mathbb{R}^{m}.$

Let $x^{sol} : [0, \infty), u^{sol} : [0, \infty), y^{sol} : [0, \infty)$ be a nominal trajectory, i.e., $\dot{x}^{sol}(t) = f(x^{sol}(t), u^{sol}(t)), \quad x^{sol}(0) = x_0^{sol},$ $y^{sol}(t) = q(x^{sol}(t), u^{sol}(t)),$ Small perturbation around nominal trajectory for all $t \ge 0$ ($t \in \mathbb{R}_{\ge 0}$) • perturbation in control input: $u(t) = u^{sol}(t) + \delta u(t)$ • perturbation in initial conditions: $x(0) = x_0^{sol} + \delta x(0)$ Results in small perturbation in $\mathbf{x}(t) = \mathbf{x}^{\mathsf{sol}}(t) + \delta \mathbf{x}(t), \quad \mathbf{y}(t) = \mathbf{y}^{\mathsf{sol}}(t) + \delta \mathbf{y}(t)$

Linearization about a nominal solution

To investigate how x(t) and y(t) are perturbed, we are interested in dynamics of $\delta \dot{x}(t)$:

$$\delta x(t) = x(t) - x^{sol}(t), \quad \delta y(t) = y(t) - y^{sol}(t)$$

$$\begin{split} \delta \dot{x}(t) = & \dot{x}(t) - \dot{x}^{\text{sol}} = f(x(t), u(t)) - f(x^{\text{sol}}(t), u^{\text{sol}}(t)) = \\ & f(x^{\text{sol}}(t) + \delta x(t), u^{\text{sol}}(t) + \delta u(t)) - f(x^{\text{sol}}, u^{\text{sol}}) = \\ & f(x^{\text{sol}}, u^{\text{sol}}) + \frac{\partial f}{\partial x}(x^{\text{sol}}, u^{\text{sol}}) \delta x(t) + \frac{\partial f}{\partial u}(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - f(x^{\text{sol}}, u^{\text{sol}}) \delta u(t) + o(\|\delta x(t)\|^2, \|\delta u(t)\|^2) - o(\|\delta x(t)\|^2) + o(\|$$

For small perturbations, then we obtain

$$\delta \dot{x}(t) = \frac{\partial f}{\partial x}(x^{\text{sol}}, u^{\text{sol}})\delta x(t) + \frac{\partial f}{\partial u}(x^{\text{sol}}, u^{\text{sol}})\delta u(t)$$

In a similar way obtain the following for the output

$$\delta y(t) = \frac{\partial g}{\partial x}(x^{\text{sol}}, u^{\text{sol}})\delta x(t) + \frac{\partial g}{\partial u}(x^{\text{sol}}, u^{\text{sol}})\delta u(t)$$

Linearization about a nominal solution

Local linearization of the original nonlinear model around nominal trajectory (x^{sol}, u^{sol})

$$\begin{split} \delta \dot{\mathbf{x}}(t) &= A(t) \delta \mathbf{x}(t) + B(t) \delta \mathbf{u}(t), \\ \delta \mathbf{y}(t) &= C(t) \delta \mathbf{x}(t) + D(t) \delta \mathbf{u}(t) \end{split}$$

where

$$\begin{aligned} A(t) &= \frac{\partial f}{\partial x}(x^{\text{sol}}(t), u^{\text{sol}}(t)), \\ B(t) &= \frac{\partial f}{\partial u}(x^{\text{sol}}(t), u^{\text{sol}}(t)), \\ C(t) &= \frac{\partial g}{\partial x}(x^{\text{sol}}(t), u^{\text{sol}}(t)), \\ D(t) &= \frac{\partial g}{\partial u}(x^{\text{sol}}(t), u^{\text{sol}}(t)), \end{aligned}$$

Linearization about a nominal solution: example

From Newtons law: $ml^2\ddot{\theta} = mgl\sin(\theta) - b\dot{\theta} + T$ Let ml = 1, $\frac{b}{ml} = 1$. Linearize this system around constant angular velocity $\dot{\theta} = \omega$ trajectory, started at $\theta(0) = 0$. The output of the system we monitor is the angle of rotation.

$$\begin{cases} x_1 = \theta, \\ x_2 = \dot{\theta} \end{cases} \Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = T + g \sin(x_1) - x_2 \\ y = x_1 \end{cases}$$

$$\blacktriangleright \text{ Constant angular velocity trajectory: } \begin{cases} x_1^{sol}(t) = \omega t + x_1(0) = \omega t \\ x_2^{sol}(t) = \omega, \end{cases} \quad \begin{cases} x_1^{sol}(0) = 0, \\ x_2^{sol}(0) = \omega, \end{cases}$$

($x_1^{sol}(t), x_2^{sol}(t)$) should satisfy the equations of the motion of the pendulum:

$$\begin{cases} \dot{x}_1^{\text{sol}} = x_2^{\text{sol}} \\ \dot{x}_2^{\text{sol}} = \mathsf{T}^{\text{sol}} + g\sin(x_1^{\text{sol}}) - x_2^{\text{sol}} \end{cases} \Rightarrow \begin{cases} \omega = \omega \\ 0 = \mathsf{T}^{\text{sol}} + g\sin(\omega t) - \omega \end{cases} \Rightarrow \mathsf{T}^{\text{sol}} = -g\sin(\omega t) + \omega.$$

Linearized model is

$$\delta \dot{x}(t) = A(t)\delta x(t) + B(t)\delta u(t),$$

$$\delta y(t) = C(t)\delta x(t) + D(t)\delta u(t)$$

where

$$\begin{aligned} A(t) &= \frac{\partial f}{\partial x}(x^{\text{sol}}(t), u^{\text{sol}}(t)) = \begin{bmatrix} 0 & 1\\ g\cos(\omega t) & -1 \end{bmatrix}, \quad B(t) = \frac{\partial f}{\partial u}(x^{\text{sol}}(t), u^{\text{sol}}(t)) = \begin{bmatrix} 0\\ 1 \end{bmatrix}, \\ C(t) &= \frac{\partial g}{\partial x}(x^{\text{sol}}(t), u^{\text{sol}}(t)), = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D(t) = \frac{\partial g}{\partial u}(x^{\text{sol}}(t), u^{\text{sol}}(t)) = 0, \end{aligned}$$

Linearization about a equilibrium point

• LTI systems: linearizing a non-linear system around an equilibrium point.

Equilibrium point: A pair $(x^{eq}, u^{eq}) \in \mathbb{R}^n \times \mathbb{R}^k$ is called an equilibrium point of

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{u} \in \mathbb{R}^{k},$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{y} \in \mathbb{R}^{m}.$$
(5b)

if $f(x^{eq}, u^{eq}) = 0$. In this case $u(t) = u^{eq}$, $x(t) = x^{eq}$, $y(t) = y^{eq} = g(x^{eq}, u^{eq})$ is a solution to (5).

Linearizing around (x^{eq}, u^{eq}) gives the following LTI system $\delta \dot{x}(t) = A \delta x(t) + B \delta u(t),$ $\delta y(t) = C \delta x(t) + D \delta u(t)$ $A = \frac{\partial f}{\partial x}(x^{eq}, u^{eq}), \quad B = \frac{\partial f}{\partial u}(x^{eq}, u^{eq}),$ $C = \frac{\partial g}{\partial x}(x^{eq}, u^{eq}), \quad D = \frac{\partial g}{\partial u}(x^{eq}, u^{eq}),$ • Feedback linearization Example :

 $M(q)\ddot{q} + B(q,\dot{q})\dot{q} + G(q) = F, \qquad q \in \mathbb{R}^k, \ F \in \mathbb{R}^k,$

• Feedback linearization: *strict feedback form*

$$\dot{x}_1 = f_1(x_1) + x_2,$$

 $\dot{x}_2 = f_2(x_1, x_2) + u.$

To feedback linearize, let

$$z_2 := \mathsf{f}_1(\mathsf{x}_1) + \mathsf{x}_2$$

Then

$$\dot{x}_1 = z_2,$$

$$\dot{z}_2 = \frac{\partial f_1}{\partial x_1}(x_1)\dot{x}_1 + \dot{x}_2 = \frac{\partial f_1}{\partial x_1}(x_1)(f_1(x_1) + x_2) + f_2(x_1, x_2) + u.$$

Now, define

$$u = u_{nl}(x_1, x_2) + v, \quad u_{nl}(x_1, x_2) = -\frac{\partial f_1}{\partial x_1}(x_1)(f_1(x_1) + x_2) - f_2(x_1, x_2),$$

Then, we obtain the following LTI system

$$\dot{\mathbf{x}}_1 = \mathbf{z}_2$$
,
 $\dot{\mathbf{z}}_2 = \mathbf{v}$.

Linear State Space Systems

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t),$$

Some terminology:

- ▶ the system above is called *linear time-varying (LTV)* system
- when u takes scalar values (k = 1): single input (SI); otherwise multiple input (MI)
- when y takes scalar values (m = 1): single output (SO); otherwise multiple output (MO)
- when there is no state (n=0), i.e, y(t) = D(t)u(t) the system is called memoryless.

Learn something about linear systems:

$$\begin{split} \dot{x}(t) &= A(t)x(t) + B(t)u(t), \\ y(t) &= C(t)x(t) + D(t)u(t), \end{split} \label{eq:constraint}$$

Questions of interest:

- Is this system stable?
 - The zero solution x(t) = 0 of a zero input LTV system is stable if, for all $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that if $||x(0)|| \leq \delta$, then $||x(t)|| \leq \varepsilon$, for all $t \in \mathbb{R}_{\geq 0}$.
- Does this system converge? (Asymptotic stability)
 - If in addition to being stable, for every initial condition $x(t_0) = x_0 \in \mathbb{R}^n$, we have $x(t) \to 0$ as $t \to \infty$.
- Is this system controllable?
 - An LTV system is called controllable if and only if for all $x_0 \in \mathbb{R}^n$ and for all $\hat{x} \in \mathbb{R}^n$, and for all finite T > 0, there exists $u(t) : [0, T] \to \mathbb{R}^k$ such that the solution of system (*) with initial condition $x(0) = x_0$ under the input u(t) is such that $x(T) = \hat{x}$.
- Is this system observable?

- Unfortunately, answering to our questions from the definition is not tractable (impossible).
 - This would require calculating all trajectories that start at all initial conditions.
 - For example to check for controllability, except for trivial cases (like the linear system $\dot{x}(t) = u(t)$) this calculation is intractable, since the initial states, x_0 , the times T of interest, and the possible input trajectories $u(t) : [0, T] \rightarrow \mathbb{R}^k$ are all infinite.
- Fortunately, linear algebra can be used to answer the question without even computing a single solution.

Example: Consider a LTI system

```
\dot{\mathbf{x}}(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + B\mathbf{u}(\mathbf{t}), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{u} \in \mathbb{R}^{k}. (*)
```

Theorem: An LTI system is asymptotically stable if all eigenvalues of A have negative real parts.

Theorem: An LTI system is controllable iff the matrix $[B \ AB \ \cdots, A^{n-1}B] \in \mathbb{R}^{n \times nk}$ is rank n.

Photo by courtesy of tinyurl.com/fzy48hrc

Learn something about linear systems: How?

Linear systems theory brings together two areas of mathematics: algebra and analysis.

- As we will soon see, the state space, Rⁿ, of the systems has both an algebraic structure (it is a vector space) and a topological structure (it is a normed space).
- The algebraic structure allows us to perform linear algebra operations, compute projections, eigenvalues, etc.
- The topological structure, on the other hand, forms the basis of analysis, the definition of derivatives, etc.

The **main point of linear systems theory is** to exploit the algebraic structure to develop tractable "algorithms" that allow us to answer analysis questions which appear intractable by themselves. Learn something about linear systems:

 $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t),$ $\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t),$

exploit the *algebraic* structure to develop tractable "algorithms" that allow us to answer *analysis* questions (stability, convergence, controllability, etc) which appear intractable by themselves