
Linear Systems I
Lecture 8

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
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Reading assignment: Ch 5.3, Example 5.5, Ch 3.9 and Ch. 3.11 of Ref [1]; Ch 4.2
and Ch 3.5 of Ref [1].

Note: These slides only cover part of the discussions in the class. For further details,
consult your in-class notes.
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Rest of today’s lecture

Stability of LTV and LTI systems
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Stability of LTV systems

{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

Stability addresses what happens to our solutions

do they remain bounded
will they get progressively smaller
they diverge to infinity

Response is due to : response due to x0︸ ︷︷ ︸
internal stability

+ response due to u︸ ︷︷ ︸
Input-output stability

Lets start with Internal stability:

Recall homogeneous system,

ẋ = A(t)x, x(t0) = x0 ∈ Rn

Our solution is
x(t) = φ(t, t0)x0, t > t0
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Internal stability of LTV systems

Lyapunov stability. The system (LTV) is said to be

1 (marginally) stable if, for ∀ x0 ∈ Rn, if x(t) = φ(t, t0)x0 is uniformly
bounded

2 asymptotically stable if, in addition, for ∀ x0 ∈ Rn , we have x(t)→ 0 as
t→∞,

3 exponentially stable if, in addition, ∃ c, λ > 0, s.t. for ∀ x0 ∈ Rn, we have

||x(t)|| 6 ce−λ(t−t0)||x0||, ∀t > 0

4 unstable if it is not marginally stable in the Lyapunov sense.
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Eigenvalue stability conditions for LTI systems

ẋ = Ax, x(0) = x0 ∈ Rn ⇒ x(t) = eAtx0

J = QAQ−1 ⇐⇒ A = Q−1JQ,

eAt = Q−1


eJ1t 0 0 · · · 0
0 eJ2t 0 · · · 0
0 0 eJ3t · · · 0
...

...
...

. . .
...

0 0 0 · · · eJlt

Q

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi


ni×ni

, eJit = eλit



1 t t2

2!
t3

3!
· · · tni−1

(ni−1)!

0 1 t t2

2!
· · · tni−2

(ni−2)!

0 0 1 t · · · tni−3

(ni−3)!

...
...

...
. . .

. . .
...

0 0 0 0
. . . t

0 0 0 0 · · · 1



5 / 8



Eigenvalue conditions for Lyapunov stability of LTI systems

Consider
ẋ = Ax, x(0) = x0 ∈ Rn

Theorem (Eigenvalue conditions) The LTI system above is

1 marginally stable if and only if all the eigenvalues of A have negative real
parts and all the Jordan blocks corresponding to eigenvalues with zero real
parts are 1× 1

2 asymptotically stable if and only if all the eigenvalues of A have strictly
negative real parts

3 exponentially stable if and only if all the eigenvalues of A have strictly
negative real parts

4 unstable if and only if at least one of eigenvalues of A has a positive real part
or zero real parts but the corresponding Jordan block is larger than 1× 1
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Internal stability of LTI systems: examples

A1 =


−1 3 4 5
0 −2 1 −5
0 0 −2 1
0 0 0 −0.1


λ = −1,−2,−2,−0.1

Asymptotically stable

A2 =


−1 3 4 5
0 0 1 −5
0 0 −2 1
0 0 0 −0.1


λ = −1, 0,−2,−0.1

(Marginally) stable

A3 =


−1 3 4 5
0 0 0 −5
0 0 0 1
0 0 0 −0.1


λ = −1, 0, 0,−0.1

nullity(0I−A3) = 2

(Marginally) stable

A4 =


−1 3 4 5
0 0 1 −5
0 0 0 1
0 0 0 −0.1


λ = −1, 0, 0,−0.1

nullity(0I−A4) = 1

Unstable

A5 =


−1 3 4 5
0 −2 1 −5
0 0 −2 1
0 0 0 0.1


λ = −1,−2,−2, 0.1

Unstable
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Stability of LTV systems: examples

ẋ =A(t)x(t), x(0) = x0 ∈ Rn

Does the eigenvalue conditions for Lyapunov stability of LTI systems extend to LTV systems?

1

A1(t) =

[
−1 e4t

0 −5

]
,

{
x1(t) = e−(t−t0)x1(t0) + (t− t0)e−t(e5t0x2(t0)),
x2(t) = e−5(t−t0)x2(t0)

t > t0.

Eigenvalues: − 1 and − 5

Asymptotically/exponentially stable

2

A2(t)=

[
−2 e3t

0 −1

]
,

{
x1(t) = e−2(t−t0)x1(t0)+

1
4 e2tet0x2(t0)− 1

4 e−2te5t0x2(t0),
x2(t) = e−(t−t0)x2(t0),

t > t0

Eigenvalues : −2 and − 1

Unstable

3

A3(t) =

[
−1 4e0.5t

2+3t

0 −t

]
Eigenvalues: −1 and −t

unstable
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