Linear Systems I Lecture 7

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Relevant reading material: Lecture 7 of Ref[2]. Ch 3.1 to 3.4 from Ref[1]. Pages 63-70 of Ref [1] discuss the matrix exponential and its properties.

Today's lecture

- Use of Jordan/diagonalized form to computer $\mathrm{e}^{\text {At }}$

Note: this note only contains parts of the in-class discussions. For more details and complete lecture overview, refer to your in-class notes.

Matrix exponential of two algebraically equivalent matrix.

- Let T be nonsingular
- Let $A=T \bar{A} T^{-1}$,

$$
\mathrm{e}^{A \mathrm{t}}=\mathrm{T} \mathrm{e}^{\overline{\mathrm{A}} \mathrm{t}} \mathrm{~T}^{-1}
$$

Proof

$$
\begin{gathered}
A^{k}=\underbrace{A A A \cdots A}_{k \text { times }}=\underbrace{\left(T \bar{A} T^{-1}\right)\left(T \bar{A} T^{-1}\right) \cdots\left(T \bar{A} T^{-1}\right)}_{k \text { times }}=T \bar{A}^{k} T^{-1} \\
e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} T \bar{A}^{k} T^{-1}=T\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \bar{A}^{k}\right) T^{-1}=T e^{\bar{A} t} T^{-1}
\end{gathered}
$$

(Review of eigenvalues and eigenvectors of a matrix)

Consider a matrix $A \in \mathbb{R}^{n \times n}$,

$$
A p=\lambda p
$$

- $\lambda \in \mathbb{C}$ is eigenvalue iff we have $p \in \mathbb{C}^{n \times 1}, p \neq 0_{n \times 1}$
- Compute $\lambda: \Delta(A)=\operatorname{det}(\lambda I-A)=0$; has n roots $\Rightarrow n$ eigenvalues
- Computing eigenvectors: $q \neq 0$ such that $(\lambda I-A) p=0$, i.e., q is in the nullspace of $(\lambda I-A)$,
- Some of the properties of the eigenvectors
- When all the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of a $n \times n$ matrix A are distinct (multiplicity of all eigenvalues is 1), the nullity of $\left(\lambda_{i} I-A\right)$ is equal to 1 . Moreover, the corresponding eigenvector set $\left\{p_{1}, \cdots, p_{n}\right\}$ is linearly independent.
- When $\bar{\lambda}$ is an eigenvalue of A with multiplicity of $m \in[2, n]$, then we have $1 \leqslant \operatorname{nullity}(\bar{\lambda} I-A) \leqslant m$.

Diagonalizable matrix

- An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.
- In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.
- If A has only simple eigenvalues, it always has a diagonal form representation.
- If A has a repeated eigenvalues, then it may not have a diagonal form representation. However, it has a block-diagonal and triangular form representation.

Jordan normal form

Theorem(Jordan normal form): For every matrix $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular change of basis $\mathbf{Q} \in \mathbb{C}^{n \times n}$ that transforms A into

$$
\mathrm{J}=\mathrm{QAQ}^{-1}=\left[\begin{array}{ccccc}
\mathrm{J}_{1} & 0 & 0 & \cdots & 0 \\
0 & \mathrm{~J}_{2} & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~J}_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{~J}_{l}
\end{array}\right]=\operatorname{Diag}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \cdots, \mathrm{~J}_{\mathrm{l}}\right)
$$

where each J_{i} is a Jordan block of the form

$$
\mathrm{J}_{\mathrm{i}}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

Attention: There can be several Jordan blocks for the same eigenvalue, but in that case there must be more than one independent eigenvector for that eigenvalue.

- λ_{i} is an eigenvalue of A
- l, number of Jordan blocks: total number of linearly independent eigenvectors of A
- J is unique up to a reordering of the Jordan blocks
- J is called Jordan normal form of A

Jordan normal form

Theorem(Jordan normal form): For every matrix $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular change of basis $\mathbf{Q} \in \mathbb{C}^{n \times n}$ that transforms A into

$$
\mathrm{J}=\mathrm{QAQ}^{-1}=\left[\begin{array}{ccccc}
\mathrm{J}_{1} & 0 & 0 & \cdots & 0 \\
0 & \mathrm{~J}_{2} & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~J}_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{~J}_{l}
\end{array}\right]=\operatorname{Diag}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \cdots, \mathrm{~J}_{1}\right)
$$

where each J_{i} is a Jordan block of the form

$$
\mathrm{J}_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

- For every eigenvalue λ_{i} of A, there is at least one Jordan block associated with
- The number of Jordan block associated with each λ_{i} of \mathbf{A} is equal to the nullity of ($A-\lambda_{i} I$).
- If λ_{j} is an eigenvalue with multiplicity of $m_{j}=1$, the Jordan block associated with it is $\mathrm{J}_{\mathrm{j}}=\lambda_{\mathrm{j}}$

Matrix eigenvalues and eigenvectors: diagonalizable matrices

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \\
& \Delta(A)=\lambda(\lambda+1)(\lambda-2)=0 \\
& \lambda_{1}=-1:(A-(-1) I) p_{1}=0, \\
& \lambda_{2}=0:(A-0 I) p_{2}=0 \text {, } \\
& \lambda_{3}=2:(A-2 I) p_{3}=0, \\
& \text { linearly independent }\left\{p_{1}, p_{2}, p_{3}\right\} \\
& P=\left[\begin{array}{c|c|c}
2 & 0 & 0 \\
1 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right] \\
& A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{J \text { with } Q=P^{-1}} \mathrm{P}^{-1}
\end{aligned}
$$

- the matrix is diagonalizable
- the Jordan form is a diagonal matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
3 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& \Delta(A)=(\lambda+1)(\lambda-2)^{2}=0 \\
& \lambda_{1}=-1:(A-(-1) I) p_{1}=0 \text {, } \\
& \left\{\begin{array}{l}
\lambda_{2}=2, \text { with } m_{2}=2, \\
\text { note that nullity }(A-2 I)=2, \text { therefore }
\end{array}\right. \\
& \text { two linearly independent eigenvectors exist for } \lambda_{2} \text { : } \\
& (A-2 I) p_{2}=0, \quad(A-2 I) p_{3}=0, \\
& \text { linearly independent }\left\{p_{1}, p_{2}, p_{3}\right\} \\
& P=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 2 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{\text {J with } \mathrm{Q}=\mathrm{P}^{-1}} \mathrm{P}^{-1}
\end{aligned}
$$

Recall that

- The number of Jordan block associated with each λ_{i} of A is equal to the nullity of $\left(A-\lambda_{i} I\right)$.
if for every λ_{i} with multiplicity $m_{i} \geqslant 1$, we have nullity $(A-\lambda I)=m_{i}$
- the matrix is diagonalizable
- the Jordan form is a diagonal matrix

Diagonalizable matrix

- An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.
- In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.
- If A has only simple eigenvalues, it always has a diagonal form representation.
- If A has a repeated eigenvalues, then it may not have a diagonal form representation. However, it has a block-diagonal and triangular form representation.

Def. (Semisimple) A matrix is called semi-simple or diagonalizable if its Jordan normal form is diagonal.

Theorem Fo an $n \times n$ matrix A, the following statements are equivalent:

- A is semi-simple.
- A has n linearly independent eigenvectors.
- For any λ_{i} of A with multiplicity of m_{i}, we have nullity $\left(\lambda_{i} I-A\right)=m_{i}$.

Matrix eigenvalues and eigenvectors: Jordan normal form

A a 5×5 matrix with a simple eigenvalue λ_{1}, and λ_{2} with multiplicity of $m=4$
\exists invertible $\mathrm{Q}: \quad J=Q^{-1} A Q$
$\mathrm{J}=\left[\begin{array}{c|c|c|c|c}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{2} & 0 & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 0 \\ \hline 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$
nullity $\left(\lambda_{2} I-A\right)=4$
$\mathrm{J}=\left[\begin{array}{c|c|c|cc}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{2} & 0 & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$
$\operatorname{nullity}\left(\lambda_{2} I-A\right)=3$
$\mathrm{J}=\left[\begin{array}{c|cc|cc}\lambda_{1} & 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{2} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{2} & & 0 \\ \hline 0 & 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & 0 & \lambda_{2}\end{array}\right]$
$\operatorname{nullity}\left(\lambda_{2} I-A\right)=2$

One of the methods to determining the Jordan normal form

(1) Compute eigenvalues of A
(2) List all possible Jordan normal forms that are compatible with the eigenvalues of A :

- eigenvalues with multiplicity equal to 1 must always correspond to 1×1 Jordan blocks
- eigenvalues with multiplicity equal to 2 can correspond to one 2×2 block or two 1×1 blocks
- eigenvalues with multiplicity equal to 3 can correspond to one 3×3 block , one 2×2 and two 1×1 blocks, or three 1×1 blocks, etc.
(3) For each candidate Jordan normal form, check wether there exists a nonsingular matrix Q for which $\mathrm{J}=\mathrm{QAQ}^{-1}$. To find out wether this is so, you may solve the (equivalent, but simpler) linear equation

$$
J Q=Q A
$$

for the unknown matrix Q and check wether it has a nonsingular solutions.

Computation of $\mathrm{e}^{\text {At }}$ using the Jordan normal form of A

$$
\begin{aligned}
& \mathrm{J}=\mathrm{QAQ}^{-1} \quad \Longleftrightarrow \quad \mathrm{~A}=\mathrm{Q}^{-1} \mathrm{JQ}, \\
& A^{k}=\underbrace{A A A \cdots A}_{k \text { times }}=\underbrace{Q^{-1} J Q Q^{-1} J Q \cdots Q^{-1} J Q}_{k \text { times }}=Q^{-1} J^{k} Q \\
& e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}=Q^{-1} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathrm{J}^{\mathrm{k}} \mathrm{Q}=
\end{aligned}
$$

Computation of $e^{A t}$ using the Jordan normal form of A

$$
\mathrm{J}_{\mathrm{i}}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]_{n_{i} \times n_{i}}
$$

Claim: $\quad \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}=\mathrm{e}^{\lambda_{i} \mathrm{t}}\left[\begin{array}{cccccc}1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \frac{\mathrm{t}^{3}}{3!} & \cdots & \frac{\mathrm{t}^{n_{i}-1}}{\left(n_{i}-1\right)!} \\ 0 & 1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \cdots & \frac{\mathrm{t}^{n_{i}-2}}{\left(n_{i}-2\right)!} \\ 0 & 0 & 1 & \mathrm{t} & \cdots & \frac{\mathrm{t}^{n_{i}-3}}{\left(n_{i}-3\right)!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & \mathrm{t} \\ 0 & 0 & 0 & 0 & \cdots & 1\end{array}\right]$

How can we verify the claim made above?

Matrix exponential of Jordan blocks

Verification: we show that $e^{J_{i}}$ is the transition matrix of $\mathrm{J}_{\mathrm{i}}\left(\mathrm{e}^{\mathrm{J}_{\mathrm{i}}}=\phi(\mathrm{t}, 0)\right)$ by showing that it satisfies $\left\{\begin{array}{l}\frac{\mathrm{d}}{\mathrm{dt}} \phi(\mathrm{t}, 0)=\mathrm{J}_{\mathrm{i}} \phi(\mathrm{t}, 0) \\ \phi(0,0)=\mathrm{I} \text {. That is }\end{array}\right.$

- $\mathrm{e}^{\mathrm{J}_{\mathrm{i}} 0}=\mathrm{I}$ (this is trivially satisfied)
- $\frac{d}{d t} \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}=\mathrm{J}_{\mathrm{i}} \mathrm{e}^{\mathrm{J}_{\mathrm{i}} \mathrm{t}}$

$$
\begin{aligned}
& \frac{d}{d t} e^{\lambda_{i} t}=\frac{d}{d t} e^{J_{i} t}\left[\begin{array}{ccccc}
1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \cdots & \frac{t^{n_{i}-1}}{\left(n_{i}-1\right)!} \\
0 & 1 & \mathrm{t} & \cdots & \frac{t^{n_{i}-2}}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n_{i}-3}}{\left(n_{i}-3\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=\lambda_{i} e^{\lambda_{i} t}\left[\begin{array}{ccccc}
1 & \mathrm{t} & \frac{\mathrm{t}^{2}}{2!} & \cdots & \frac{t^{n_{i}-1}}{\left(n_{i}-1\right)!} \\
0 & 1 & \mathrm{t} & \cdots & \frac{t^{n_{i}-2}}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n_{i}-3}}{\left(n_{i}-3\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]+ \\
& \mathrm{e}^{\lambda_{i} t}\left[\begin{array}{ccccc}
0 & 1 & \mathrm{t} & \cdots & \frac{t^{n_{i}-2}}{\left(n_{i}-2\right)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n_{i}-3}}{\left(n_{i}-3\right)!} \\
0 & 0 & 0 & \cdots & \frac{t^{n_{i}-4}}{\left(n_{i}-4\right)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]=\lambda_{i} e^{J_{i} t}+\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \mathrm{e}^{J_{i} \mathrm{t}}=\mathrm{J}_{\mathrm{i}} \mathrm{e}^{\lambda_{i} \mathrm{t}} .
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathrm{J}=\left[\begin{array}{c|c|ccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \Rightarrow \mathrm{e}^{\mathrm{Jt}}=\left[\begin{array}{c|c|ccc}
\mathrm{e}^{\lambda_{1} \mathrm{t}} & 0 & 0 & 0 & 0 \\
\hline 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & 0 & 0 & 0 \\
\hline 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}}
\end{array}\right] \\
& \mathrm{J}=\left[\begin{array}{c|cccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{2} & 1 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \Rightarrow \mathrm{e}^{\mathrm{Jt}}=\left[\begin{array}{ccccc}
\mathrm{e}^{\lambda_{1} \mathrm{t}} & 0 & 0 & 0 & 0 \\
\hline 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te} \mathrm{e}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{3}}{} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te}^{\lambda_{2} \mathrm{t}} & \frac{\mathrm{t}^{2}}{2} \mathrm{e}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}} & \mathrm{te}^{\lambda_{2} \mathrm{t}} \\
0 & 0 & 0 & 0 & \mathrm{e}^{\lambda_{2} \mathrm{t}}
\end{array}\right]
\end{aligned}
$$

$\mathrm{e}^{\text {At }}$ for diagonalizable matrices: examples

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\Delta(A)=\lambda(\lambda+1)(\lambda-2)=0
$$

$$
\lambda_{1}=-1: \quad(A-(-1) I) p_{1}=0
$$

$$
\lambda_{2}=0: \quad(A-0 I) p_{2}=0
$$

$$
\lambda_{3}=2: \quad(A-2 I) p_{3}=0
$$

linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$

$A \underbrace{\left[\begin{array}{l|l|l}p_{1} & p_{2} & p_{3}\end{array}\right]}_{P}=\left[\begin{array}{l|l|l}p_{1} & p_{2} & p_{3}\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$ $P=\left[\begin{array}{c|c|c}2 & 0 & 0 \\ 1 & -2 & 1 \\ -1 & 1 & 1\end{array}\right], P-1=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} & \frac{2}{3}\end{array}\right]$

$$
A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{J \text { with } Q=P-1} \mathrm{P}-1
$$

$e^{A t}=\underbrace{\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & -2 & 1 \\ -1 & 1 & 1\end{array}\right]}_{P}[$ $\left[\begin{array}{c|c|c}e^{-t} & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & e^{2 t}\end{array}\right] \underbrace{\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} & \frac{2}{3}\end{array}\right]}_{P-1}$

$$
=\left[\begin{array}{ccc}
\frac{e^{2 t}}{6}-\frac{2 e^{-t}}{3}+\frac{1}{2} & \frac{2 e^{-t}}{3}+\frac{e^{2 t}}{3} & \frac{2 e^{2 t}}{3}-\frac{2 e^{-t}}{3} \\
\frac{e^{-t}}{3}+\frac{e^{2 t}}{6}-\frac{1}{2} & \frac{e^{2 t}}{3}-\frac{e^{-t}}{3} & \frac{e^{-t}}{3}+\frac{2 e^{2 t}}{3}
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
3 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
\Delta(A)=(\lambda+1)(\lambda-2)^{2}=0
$$

$\lambda_{1}=-1: \quad\left(A-(\overline{-1)} \overline{\mathrm{I}}) \overline{\mathrm{p}}_{1}=\overline{0},-\cdots-\cdots\right.$
$\left(\lambda_{2}=2\right.$, with $m_{2}=2$,
note that nullity $(A-2 I)=2$, therefore
two linearly independent eigenvectors exist for λ_{2} :
$(A-2 I) p_{2}=0, \quad(A-2 I) p_{3}=0$,
linearly independent $\left\{p_{1}, p_{2}, p_{3}\right\}$
$A \underbrace{\left[\begin{array}{l|l|l}p_{1} & p_{2} & p_{3}\end{array}\right]}_{P}=\left[\begin{array}{ll|l|l}p_{1} & p_{2} & p_{3}\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$P=\left[\begin{array}{c|c|c}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad P-1=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
A=P \underbrace{\left[\begin{array}{c|c|c}
-1 & 0 & 0 \\
\hline 0 & 2 & 0 \\
\hline 0 & 0 & 2
\end{array}\right]}_{\mathrm{J} \text { with } \mathrm{Q}=\mathrm{P}-1} \mathrm{P}-1
$$

$e^{A t}=\underbrace{\left[\begin{array}{c|c|c}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]}_{P}\left[\begin{array}{cc|c|c}e^{-t} & 0 & 0 \\ \hline 0 & e^{2 t} & 0 \\ \hline 0 & 0 & e^{2 t}\end{array}\right] \underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]}_{P-1}$

$$
=\left[\begin{array}{ccc}
e^{-t} & 0 & 0 \\
e^{2 t}-e^{-t} & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]
$$

