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Relevant reading material: Lecture 7 of Ref[2]. Ch 3.1 to 3.4 from Ref[1]. Pages
63-70 of Ref [1] discuss the matrix exponential and its properties.
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Today’s lecture

Use of Jordan/diagonalized form to computer eAt

Note: this note only contains parts of the in-class discussions. For more details and
complete lecture overview, refer to your in-class notes.
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Matrix exponential of two algebraically equivalent matrix.

Let T be nonsingular
Let A = TĀT−1,

eAt = TeĀ tT−1

Proof

Ak = AAA · · ·A︸ ︷︷ ︸
k times

= (TĀT−1)(TĀT−1) · · · (TĀT−1)︸ ︷︷ ︸
k times

= TĀkT−1

eAt =
∞∑
k=0

tk

k!
Ak =

∞∑
k=0

tk

k!
TĀkT−1 = T(

∞∑
k=0

tk

k!
Āk)T−1 = TeĀ tT−1
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(
Review of eigenvalues and eigenvectors of a matrix

)
Consider a matrix A ∈ Rn×n,

Ap = λp,

λ ∈ C is eigenvalue iff we have p ∈ Cn×1, p 6= 0n×1

Compute λ: ∆(A) = det(λI−A) = 0; has n roots ⇒ n eigenvalues

Computing eigenvectors: q 6= 0 such that (λI−A)p = 0, i.e.,
q is in the nullspace of (λI−A),
Some of the properties of the eigenvectors

When all the eigenvalues {λ1, · · · , λn} of a n× n matrix A are distinct
(multiplicity of all eigenvalues is 1), the nullity of (λiI−A) is equal to 1.
Moreover, the corresponding eigenvector set {p1, · · · ,pn} is linearly
independent.

When λ̄ is an eigenvalue of A with multiplicity of m ∈ [2,n], then we have
1 6 nullity(λ̄I−A) 6 m.
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Diagonalizable matrix

An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.

In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.

• If A has only simple eigenvalues, it always has a diagonal form representation.

• If A has a repeated eigenvalues, then it may not have a diagonal form
representation. However, it has a block-diagonal and triangular form
representation.
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Jordan normal form

Theorem(Jordan normal form): For every matrix A ∈ Rn×n, there exists a nonsingular
change of basis Q ∈ Cn×n that transforms A into

J = QAQ−1 =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jl

 = Diag(J1, J2, J3, · · · , Jl),

where each Ji is a Jordan block of the form

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi


ni×ni

Attention: There can be several Jordan
blocks for the same eigenvalue, but in that
case there must be more than one
independent eigenvector for that eigenvalue.

λi is an eigenvalue of A
l, number of Jordan blocks: total number of linearly independent eigenvectors of A
J is unique up to a reordering of the Jordan blocks
J is called Jordan normal form of A
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Jordan normal form

Theorem(Jordan normal form): For every matrix A ∈ Rn×n, there exists a nonsingular change
of basis Q ∈ Cn×n that transforms A into

J =QAQ−1 =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jl

 = Diag(J1, J2, J3, · · · , Jl),

where each Ji is a Jordan block of the form

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi


ni×ni

For every eigenvalue λi of A, there is at least one Jordan block associated with

The number of Jordan block associated with each λi of A is equal to the nullity of
(A− λiI).

If λj is an eigenvalue with multiplicity of mj = 1, the Jordan block associated with it
is Jj = λj
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Matrix eigenvalues and eigenvectors: diagonalizable matrices

A =

0 0 0
1 0 2
0 1 1



∆(A) = λ(λ+ 1)(λ− 2) = 0

−−−−−−−−−−−−

λ1 = −1 : (A− (−1)I)p1 = 0,

λ2 = 0 : (A− 0I)p2 = 0,

λ3 = 2 : (A− 2I)p3 = 0,

linearly independent {p1,p2,p3}

P =

 2 0 0
1 −2 1
−1 1 1



A = P

 −1 0 0
0 0 0
0 0 2


︸ ︷︷ ︸
J with Q=P−1

P−1

−−−−−−−−−−−−

λ’s are district
the matrix is diagonalizable

the Jordan form is a diagonal matrix

A =

−1 0 0
3 2 0
0 0 2


∆(A) = (λ+ 1)(λ− 2)2 = 0

−−−−−−−−−−−−
λ1 = −1 : (A− (−1)I)p1 = 0,
λ2 = 2, with m2 = 2,

note that nullity(A− 2I) = 2, therefore
two linearly independent eigenvectors exist for λ2 :

(A− 2I)p2 = 0, (A− 2I)p3 = 0,

linearly independent {p1,p2,p3}

P =

 1 0 0
−1 1 0
0 0 1

 and A = P

 −1 0 0
0 2 0
0 0 2


︸ ︷︷ ︸
J with Q=P−1

P−1

−−−−−−−−−−−−

Recall that

The number of Jordan block associated with each
λi of A is equal to the nullity of (A− λiI).

if for every λi with multiplicity mi > 1, we have
nullity(A− λI) =mi

the matrix is diagonalizable

the Jordan form is a diagonal matrix 8 / 16



Diagonalizable matrix

An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.

In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.

• If A has only simple eigenvalues, it always has a diagonal form representation.

• If A has a repeated eigenvalues, then it may not have a diagonal form
representation. However, it has a block-diagonal and triangular form
representation.

Def. (Semisimple) A matrix is called semi-simple or diagonalizable if its Jordan
normal form is diagonal.

−−−−−−−−−−−−−−−

Theorem Fo an n× n matrix A, the following statements are equivalent:

I A is semi-simple.
I A has n linearly independent eigenvectors.
I For any λi of A with multiplicity of mi, we have nullity(λiI−A) = mi.

−−−−−−−−−−−−−−−
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Matrix eigenvalues and eigenvectors: Jordan normal form

A a 5× 5 matrix with a simple eigenvalue λ1, and λ2 with multiplicity of m = 4

∃ invertible Q : J = Q−1AQ

J =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ2 0 0
0 0 0 λ2 0
0 0 0 0 λ2


nullity(λ2I−A) = 4

J =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ2 0 0
0 0 0 λ2 1
0 0 0 0 λ2


nullity(λ2I−A) = 3

J =


λ1 0 0 0 0
0 λ2 1 0 0
0 0 λ2 0
0 0 0 λ2 1
0 0 0 0 λ2


nullity(λ2I−A) = 2

J =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ2 1 0
0 0 0 λ2 1
0 0 0 0 λ2


nullity(λ2I−A) = 2

J =


λ1 0 0 0 0
0 λ2 1 0 0
0 0 λ2 1 0
0 0 0 λ2 1
0 0 0 0 λ2


nullity(λ2I−A) = 1
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One of the methods to determining the Jordan normal form

1 Compute eigenvalues of A

2 List all possible Jordan normal forms that are compatible with the eigenvalues
of A:

eigenvalues with multiplicity equal to 1 must always correspond to 1× 1
Jordan blocks
eigenvalues with multiplicity equal to 2 can correspond to one 2× 2 block or
two 1× 1 blocks
eigenvalues with multiplicity equal to 3 can correspond to one 3× 3 block ,
one 2× 2 and two 1× 1 blocks, or three 1× 1 blocks, etc.

3 For each candidate Jordan normal form, check wether there exists a
nonsingular matrix Q for which J = QAQ−1. To find out wether this is so,
you may solve the (equivalent, but simpler) linear equation

JQ = QA

for the unknown matrix Q and check wether it has a nonsingular solutions.
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Computation of eAt using the Jordan normal form of A

J = QAQ−1 ⇐⇒ A = Q−1JQ,

Ak = AAA · · ·A︸ ︷︷ ︸
k times

= Q−1JQQ−1JQ · · ·Q−1JQ︸ ︷︷ ︸
k times

= Q−1JkQ

eAt =
∞∑
k=0

tk

k!
Ak = Q−1

∞∑
k=0

tk

k!
JkQ =

Q−1



∑∞
k=0

tk

k!
Jk1 0 0 · · · 0

0
∑∞
k=0

tk

k!
Jk2 0 · · · 0

0 0
∑∞
k=0

tk

k!
Jk3 · · · 0

...
...

...
. . .

...
0 0 0 · · ·

∑∞
k=0

tk

k!
Jkl

Q

= Q−1


eJ1t 0 0 · · · 0

0 eJ2t 0 · · · 0
0 0 eJ3t · · · 0
...

...
...

. . .
...

0 0 0 · · · eJlt

Q
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Computation of eAt using the Jordan normal form of A

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi


ni×ni

Claim: eJit = eλit



1 t t2

2!
t3

3!
· · · tni−1

(ni−1)!

0 1 t t2

2!
· · · tni−2

(ni−2)!

0 0 1 t · · · tni−3

(ni−3)!

...
...

...
. . .

. . .
...

0 0 0 0
. . . t

0 0 0 0 · · · 1


How can we verify the claim made above?
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Matrix exponential of Jordan blocks

Verification: we show that eJi is the transition matrix of Ji (eJi = φ(t, 0)) by showing

that it satisfies

{
d
dtφ(t, 0) = Jiφ(t, 0)

φ(0, 0) = I. That is

eJi 0 = I (this is trivially satisfied)
d
dt
eJit = JieJit

d

dt
eλit =

d

dt
eJit



1 t t2

2!
· · · tni−1

(ni−1)!

0 1 t · · · tni−2

(ni−2)!

0 0 1 · · · tni−3

(ni−3)!

...
...

...
. . .

...
0 0 0 · · · 1


= λieλit



1 t t2

2!
· · · tni−1

(ni−1)!

0 1 t · · · tni−2

(ni−2)!

0 0 1 · · · tni−3

(ni−3)!

...
...

...
. . .

...
0 0 0 · · · 1


+

eλit



0 1 t · · · tni−2

(ni−2)!

0 0 1 · · · tni−3

(ni−3)!

0 0 0 · · · tni−4

(ni−4)!

...
...

...
. . .

...
0 0 0 · · · 0


=λieJit+


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 eJit= Jieλit.
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Examples

J =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ2 1 0
0 0 0 λ2 1
0 0 0 0 λ2

⇒ eJt =


eλ1t 0 0 0 0

0 eλ2t 0 0 0

0 0 eλ2t teλ2t t2

2 e
λ2t

0 0 0 eλ2t teλ2t

0 0 0 0 eλ2t



J =


λ1 0 0 0 0
0 λ2 1 0 0
0 0 λ2 1 0
0 0 0 λ2 1
0 0 0 0 λ2

⇒ eJt =


eλ1t 0 0 0 0

0 eλ2t teλ2t t2

2 e
λ2t t3

6 e
λ2t

0 0 eλ2t teλ2t t2

2 e
λ2t

0 0 0 eλ2t teλ2t

0 0 0 0 eλ2t


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eAt for diagonalizable matrices: examples

A=

0 0 0
1 0 2
0 1 1


∆(A) = λ(λ+ 1)(λ− 2) = 0

−−−−−−−−−−−−

λ1 = −1 : (A−(−1)I)p1 = 0,

λ2 = 0 : (A− 0I)p2 = 0,

λ3 = 2 : (A− 2I)p3 = 0,

linearly independent {p1,p2,p3}

A
[
p1 p2 p3

]︸ ︷︷ ︸
P

=
[
p1 p2 p3

] −1 0 0
0 0 0
0 0 2



P=

 2 0 0
1 −2 1

−1 1 1

 ,P−1 =


1
2 0 0
1
3 − 1

3
1
3

1
6

1
3

2
3



A= P

 −1 0 0

0 0 0

0 0 2


︸ ︷︷ ︸
J with Q=P−1

P−1

eAt=

 2 0 0
1 −2 1

−1 1 1


︸ ︷︷ ︸

P

 e−t 0 0

0 1 0

0 0 e2t




1
2 0 0
1
3 − 1

3
1
3

1
6

1
3

2
3


︸ ︷︷ ︸

P−1

=


1 0 0

e2t
6 − 2e−t

3 + 1
2

2e−t
3 + e

2t
3

2e2t
3 − 2e−t

3
e−t

3 + e
2t
6 − 1

2
e2t

3 − e
−t
3

e−t
3 + 2e2t

3



A=

−1 0 0
3 2 0
0 0 2


∆(A) = (λ+ 1)(λ− 2)2 = 0

−−−−−−−−−−−−
λ1 = −1 : (A−(−1)I)p1 = 0,
λ2 = 2, with m2 = 2,

note that nullity(A− 2I) = 2, therefore
two linearly independent eigenvectors exist for λ2 :

(A− 2I)p2 = 0, (A− 2I)p3 = 0,

linearly independent {p1,p2,p3}

A
[
p1 p2 p3

]︸ ︷︷ ︸
P

=
[
p1 p2 p3

] −1 0 0
0 2 0
0 0 2



P=

 1 0 0
−1 1 0

0 0 1

 , P−1 =

 1 0 0
1 1 0
0 0 1



A= P

 −1 0 0

0 2 0

0 0 2


︸ ︷︷ ︸
J with Q=P−1

P−1

eAt=

 1 0 0
−1 1 0

0 0 1


︸ ︷︷ ︸

P

 e−t 0 0

0 e2t 0

0 0 e2t


 1 0 0

1 1 0
0 0 1


︸ ︷︷ ︸

P−1

=

 e−t 0 0

e2t−e−t e2t 0

0 0 e2t


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