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Review of controllable decomposition

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
= m < n

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ac A12

0 Au

]
, B̄ = T−1B =

[
Bc

0

]
C̄ =

[
Cu Cu

]
, D̄ = D,

Ac ∈ Rm×m, Bc ∈ Rm×p, Cc ∈ Rq×m,

T =
[

t1 t2 · · · tm︸ ︷︷ ︸m linearly independent
columns of C

∣∣∣ tm+1 tm+2 · · · tn︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

]

(Ac,Bc) is controllable!

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cc(sI−Ac)
−1Bc +D
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Review of Observable decomposition

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank


C
CA

...
CAn−1

 = m̄ < n :

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ao 0
A12 Aō

]
, B̄ = T−1B =

[
Bo
Bō

]
C̄ = CT =

[
Co 0

]
, D̄ = D,

Ao ∈ Rm̄×m̄, Bo ∈ Rm̄×p, Co ∈ Rq×m̄,

T =
[

t1 t2 · · · tm̄︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

∣∣∣ tm̄+1 tm̄+2 · · · tn︸ ︷︷ ︸
n− m̄ linearly independent
vectors spanning the
nullspace of O

]

(Ao,Co) is observable.

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Co(sI−Ao)
−1Bo +D
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Review of Kalman decomposition
ẋ = Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rp,y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
= m < n

rank


C
CA

...
CAn−1

 = m̄ < n

∃T invertible s.t. x̄ = T−1x transforms state equations to

ẋcoẋcō
ẋc̄o
ẋc̄ō

 =

Aco 0 A×o 0
Ac× Acō A×× A×ō

0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō


︸ ︷︷ ︸

Ā=T−1AT

xcoxcō
xc̄o
xc̄ō

+

BcoBcō
0
0


︸ ︷︷ ︸
B̄=T−1B

u

y =
[
Cco 0 Cc̄o 0

]︸ ︷︷ ︸
C̄=CT

xcoxcō
xc̄o
xc̄ō

+Du,

T =
[
Tco Tcō Tc̄o Tc̄ō

]
columns of [Tco Tcō] span the ImC
columns of Tcō span the nullO∩ ImC
columns of [Tcō Tc̄ō] span the nullO
columns of Tc̄o along with the elements described above construct an invertible T

I (Aco,Bco,Cco) is both controllable and observable.

I (

[
Aco 0
Acx Acō

]
,

[
Bco
Bcō

]
) is controllable

I (

[
Aco Axo

0 Ac̄o

]
,
[
Cco Cc̄o

]
) is Observable

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cco(sI−Aco)
−1Bco +D
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Review of Lec 4: elementary Realization (from TF rep. to SS rep.)

Def. (Realization problem): how to compute SS representation from a given transfer
function.

Caution: Note every TF is realizable. Recall that distributed systems have impulse
response and as a result transfer function but no SS rep.

Def. (Realizable TF): A transfer function Ĝ(s) is said to be realizable if there exists a
finite dimensional SS equation

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t),

or simply {A,B,C,D} such that

Ĝ(s) = C(sI−A)−1B+D.

We call {A,B,C,D} a realization of Ĝ(s).

Note: if a transfer function is realizable it has infinitely many realization, not necessarily
of the same dimension.

−−−−−−−−−−−−−−−−−

Theorem (realizable transfer function: A transfer function Ĝ(s) can be realized by an
LTI SS equation iff Ĝ(s) is a proper rational function.
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Minimal Realization of a TF

Definition (minimum realization): A realization of Ĝ(s) is called minimal or irreducible if
there is no realization of Ĝ of smaller order.

Example: [ 4s−10
2s+1

3
s+2

1
(2s+1)(s+2)

s+1
(s+2)2

]
,

The following (A,B,C,D) are all realization of this transfer function:

A=



−4.5 0 −6 0 −2 0
0 −4.5 0 −6 0 −2

1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

 , B=



1 0
0 1

0 0
0 0

0 0
0 0



C=

[
−6 3 −24 7.5 −24 3

0 1 0.5 1.5 1 0.5

]
, D=

[
2 0
0 0

]

A=


−2.5 −1 0 0

1 0 0 0
0 0 −4 −4
0 0 1 0

 , B=


1 0
0 0
0 1
0 0



C=

[
−6 −12 3 6

0 0.5 1 1

]
, D=

[
2 0
0 0

]

A=

 −0.4198 −0.3802 −0.3654
0.642 −3.842 −3.523

−0.321 0.921 −0.2383

 , B=

 0.4 0.08889
−0.4 0.9111

0.2 0.04444


C=

[
−13.33 4.333 5.333

0.5 1 1

]
, D=

[
2 0
0 0

]
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Minimal Realization of a TF

Definition (minimum realization): A realization of Ĝ(s) is called minimal or irreducible if there
is no realization of Ĝ of smaller order.

−−−−−−−−−−−−−−−−−

Theorem Every minimal realization must be both controllable and observable.

Hint for proof: remember Kalman decomposition

−−−−−−−−−−−−−−−−−

Theorem

A realization is minimal if and only if it is both controllable and observable.

We invoke the following results in the proof

Theorem Two realizations{
ẋ = Ax+Bu

y = Cx+Du

{
˙̄x = Āx̄+ B̄u

y = C̄x̄+ D̄u

are zero-state equivalent if and only if
D = D̄, CAiB = C̄ĀiB̄,∀i > 0

For two matrices M ∈ Rr×q and N ∈ Rq× p: rank(MN) 6 min{rank(M), rank(N)}

Theorem Algebraically equivalent systems have same transfer function.

Theorem All minimal realizations of a transfer function are algebraically equivalent. 7 / 13



Order of a minimal SISO realization

Theorem

Theorem Consider ĝ(s) =
n(s)
d(s) ,where d(s) is a monic polynomial and n(s) and d(s) are

coprime.
A SISO realization

ẋ = Ax+Bu, y = Cx+Du, x ∈ Rn, u,y ∈ R

of ĝ(s) is minimal if and only if its order n is equal to the degree of ĝ(s).

In this case, the pole polynomial d(s) of ĝ(s) is equal to the characteristic polynomial of
A; i.e., d(s) = det(sI−A).

Theorem

Assuming that the SISO realization of ĝ(s) is minimal, the transfer function ĝ(s) is BIBO
stable if and only if the realization is (internally) asymptotically stable.
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Order of a minimal SISO realization (proof of the main theorem)
Theorem: A SISO realization ẋ=Ax+Bu, y=Cx+Du, x∈ Rn , u,y∈ R

of ĝ(s) =
n(s)
d(s)

, where n(s) and d(s) are coprime, is minimal if and only if its order n is equal to the degree of ĝ(s). In

this case, the pole polynomial d(s) of ĝ(s) is equal to the characteristic polynomial of A; i.e., d(s) = det(sI−A).

Since, the direct gain D of a realization does not affect its minimal realization, we can ignore it in the proof. We assume that
ĝ(s) is strictly proper and can be represented as

ĝ(s) =
n(s)

d(s)
=

β1s
n−1 +β2s

n−2 + · · ·+βn−1s+βn

sn+α1s
n−1 +α2s

n−2 + · · ·+αn−1s+αn
,

The proof needs only to show that ĝ(s) has a realization of order n that is both controllable and observable (recall that a
realization is minimal if and only if it is both controllable and observable). In earlier lectures we showed that the following is a
realization of ĝ(s). This realization is called controllable canonical form.

A=



−α1 −α2 · · · −αn−1 −αn
1 0 · · · 0 0
0 1 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · 1 0


, B=



1
0

.

.

.
0
0


, C=

[
β1 β2 · · · βn−1 βn

]
, D= d;

you have already shown in one of your HWs that (A,B) is controllable. We only need to show that (A,C) is observable too.
For this let use PBH eigenvector test for observability. Let x= [x1,x2, · · · ,xn]> 6= 0 be an eigenvector of A, i.e.,

Ax= λx ⇔



−
∑n
i=1αixi = λx1,

x1 = λx2
x2 = λx3

.

.

.
xn−1 = λxn

⇔



−
∑n
i=1αiλ

n−ixn = λnxn ,

x1 = λn−1xn

x2 = λn−2xn

.

.

.
xn−1 = λxn

⇔



d(λ)xn = 0 (?),

x1 = λn−1xn

x2 = λn−2xn

.

.

.
xn−1 = λxn

Because x= [x1,x2, · · · ,xn−1,xn]> = [λn−1xn ,λn−2x2, · · · ,λxn ,xn]> 6= 0 then xn has to be different that zero.
Then , from (?) we have that d(λ) = 0, i.e, λ is a root of d(s). On the other hand,

Cx=
∑n
i=1

βixi =
∑n
i=1

βiλ
n−ixn =n(λ)xn

Since d(s) and n(s) are coprime and λ is a root of d(s), it cannot be a root of n(s), i.e., n(λ) 6= 0. Since xn 6= 0, then

Cx 6= 0, and therefore, (A,C) must be observable. 9 / 13



Order of a minimal SISO realization: numerical example

A =

[
−1 0
a 2

]
, B =

[
1
−1

]
, C =

[
2 3

]
, D = 0.

Q: For what values of a this system is a minimal realization?

rank
[
B AB

]
= rank

[
1 −1
−1 a− 2

]
= 2, unless a = 3,

rank

[
C
CA

]
= rank

[
2 3

−2 + 3a 6

]
= 2, unless a = 2,

If a = 2 or a = 3, (A,B,C,D) is not a minimal representation

ĝ(s) =
[
2 3

] [s+ 1 0
−a s− 2

]−1 [
1
−1

]
=
[
2 3

] [ 1
s+1 0
a

(s+1)(s−2)
1

s−2

][
1
−1

]
=

−(s+ 7 − 3a)

(s+ 1)(s− 2)
=

{
−(s+1)

(s+1)(s−2) = −1
(s−2) a = 2

−(s−2)
(s+1)(s−2) = −1

(s+1) a = 3
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State estimation (asymptotic observer)
ẋ(t) =Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),

The simplest state estimator is: ˙̂x=Ax̂+Bu

We want limt→∞ x̂(t)→ x(t). To study the performance, let us look at error dynamics and its evolution in time

e(t) := x̂(t)−x(t)⇒ ė=Ax̂+Bu−Ax−Bu=Ae⇒ ė=Ae.

If A is a stability matrix (all its eigenvalues have strictly negative real part), we have limt→∞ e(t)→ 0, for every input.

When A is not a stability matrix, it is still possible to construct an asymptotic correct state estimator by modifying the observer
dynamics as follows

˙̂x=Ax̂+Bu−L(ŷ−y), ŷ=Cx̂+Du, (L : output injection matrix gain).

In this case error dynamics is given by

e(t) := x̂(t)−x(t)⇒ ė=Ax̂+Bu−L(Cx̂+Du−Cx−Du)−Ax−Bu⇒ ė= (A−LC)e

Theorem: If the output injection matrix L makes A−LC a stability matrix, then limt→∞ e(t)→ 0 exponentially fast, for every
input u.

Theorem: When (A,C) is observable, it is always possible to find a matrix L such that A−LC is a stability matrix. (we will
show later that this also possible when (A,C) is detectible.)

Theorem: When (A,C) is observable, given any n symmetric set of complex numbers {ν1,ν2, · · · ,νn}, there exists a L such
that A−LC has eigenvalues equal to {ν1,ν2, · · · ,νn}.

Procedure to design output injection matrix gain

{
(A,C) observable ⇔ (A> ,C>) observable ,

eig(A−LC) = eig(A−LC)> = eig(A>−C>L>),
⇒

{
Let Ā=A> , B̄=C> , K̄= L> : eig(A−LC) = eig(Ā− B̄K̄),

use tools from state-feedback design to obtain K̄ that stabilizes (Ā− B̄K̄),
⇒ L= K̄> stabilizes (A−LC)
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Next Lecture
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Stabilization through output feedback

system:

{
ẋ(t) =Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),

observer:

{
˙̂x(t) =Ax̂(t)+Bu(t)−L(ŷ(t)−y(t)),

ŷ(t) =Cx̂(t)+Du(t),
,

control: u= −Kx̂

To study whether the closed loop of the systems above is stable, we construct a state-space model for the closed-loop system

using states x̄ :=

[
x
e

]
, where e= x̂−x. We obtain

[
ẋ
ė

]
=

[
A−BK −BK

0 A−LC

]
︸ ︷︷ ︸

Ā

[
x
e

]
.

We want Ā to be a stability matrix, i.e., all eigenvalues of Ā have strictly negative real parts

eig(Ā) = {eig(A−BK),eig(A−LC)}

Procedure to design L and K for stabilization through output feedback: design L that stabilizes A−LC, and design K that
stabilizes A−BK. These two designs are independent from one another (separation in design) and are possible if (A,B,C) is
controllable and observable (indeed the tasks can be achieved if (A,B,C) is stablilizable and detectible).

Notice :

[
x
e

]
=

[
In 0

−In In

]
︸ ︷︷ ︸

T

[
x
x̂

]
. Because T is invertible, it is a similarity transformation matrix. That is, LTI system with

states (x,e) is algebraically equivalent to LTI system with states (x, x̂).
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