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Observability of LTI systems

{
ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq
x(0) = x0 ∈ Rn (?)

Question of interest in Observability: Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t1]? (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

y(t) = CeAtx(0) + C
∫ t

0

eA(t−τ)Bu(τ)dτ+Du(t) ⇔ ȳ(t) = CeAtx(0)

ȳ(t) = y(t) − C

∫ t
0

eA(t−τ)Bu(τ)dτ−Du(t)

− − − −−−−−−−−−−−−−−−−−−−−−−

The LTI state-space equation (?) is said to be observable if for any unknown initial state
x(0), ∃ finite time t1 > 0 such that the knowledge of the input u and the output y over
[0, t1] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said
to be unobservable.

−−−−−−−−−−−−−−−−−−−−−−−−−
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Observability gramian

{
ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq
x(0) = x0 ∈ Rn (?)

ȳ(t)︸︷︷︸
Rq

= CeAt︸ ︷︷ ︸
Rq×n

x(0)︸︷︷︸
Rn

(CeAt)>ȳ(t)︸ ︷︷ ︸
Rn

= (CeAt)> CeAt︸ ︷︷ ︸
Rn×n

x(0)︸︷︷︸
Rn

Using input output information over [0, t] we obtain∫ t
0

eA
>τC> ȳ(τ)dτ︸ ︷︷ ︸

known

=WO(t)︸ ︷︷ ︸
known

x(0)︸︷︷︸
unknown

,

Observability gramian: WO(t) =
∫t

0 e
A>τC> CeAτdτ

I rank(WO(t)) = n⇒ unique x0 can be obtained: system is observable
I rank(WO(t)) < n⇒ x0 is not unique: system is not observable

(if x0 ∈ Ker(WO(t)), then WO(t)x0 = 0): unobservable subspace Ker(WO(t)).
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Duality Theorem

{
ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq
x(0) = x0 ∈ Rn (?)

Theorem

The pair (A,C) is observable if and only if the pair (A>,C>) is controllable.

I (A,C) is observable iff

WO(t) =
∫t

0 e
A>τC> CeAτdτ is full rank

I (A>,C>) is controllable iff

WC(t) =
∫t

0 e
A>τC> (C>)>e(A>)>τdτ =

∫t
0 e
A>τC> CeAτdτ is full rank

Note that
WO(t) =WC(t)
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Tests for Observability of LTI systems

The following statements are equivalent:

1 the n-dimentional pair (A,C) is observable

2 The n×n matrix WO(t) =
∫t

0 e
A>τC>CeAτdτ is nonsingular for all t > 0.

3 Let O =


C
CA
...

CAn−1


nq×n

be the observability matrix, then rank(O) = n

4 rank

[
λI−A
C

]
= n for all complex λ

5 rank

[
λI−A
C

]
= n for all λ eigenvalues of A

6 If in addition, all eigenvalues of A have negative real parts, then the unique solution of
A>WO +WOA = −C>C

is positive definite. The solution is called the observability Gramian and can be expressed as

WO =

∫∞
0
eA
>τC>CeAτdτ

Recall that for any matrix L, rank(L) = rank(L>) 5 / 16



Review of controllable decomposition

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
=m< n

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ac A12

0 Au

]
, B̄ = T−1B =

[
Bc
0

]
C̄ =

[
Cu Cu

]
, D̄ =D,

Ac ∈ Rm×m, Bc ∈ Rm×p, Cc ∈ Rq×m,

T =
[
t1 t2 · · · tm︸ ︷︷ ︸m linearly independent

columns of C

∣∣∣ tm+1 tm+2 · · · tn︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

]

(Ac,Bc) is controllable!

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cc(sI−Ac)
−1Bc +D
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Observable decomposition

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank


C
CA

...
CAn−1

 = m̄ < n :

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ao 0
A12 Aō

]
, B̄ = T−1B =

[
Bo
Bō

]
C̄ = CT =

[
Co 0

]
, D̄ =D,

Ao ∈ Rm̄×m̄, Bo ∈ Rm̄×p, Co ∈ Rq×m̄,

T =
[

t1 t2 · · · tm̄︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

∣∣∣ tm̄+1 tm̄+2 · · · tn︸ ︷︷ ︸
n− m̄ linearly independent
vectors spanning the
nullspace of O

]

(Ao,Co) is observable.

G(s) =Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄

=Co(sI−Ao)
−1Bo +D
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Detectability

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank


C
CA

...
CAn−1

 = m̄ < n :

∃T invertible s.t. x̄ = T−1x transforms state equations to

˙̄x =

[
ẋo
ẋō

]
=

[
Ao 0
A12 Aō

]
︸ ︷︷ ︸
Ā=T−1AT

[
xo
xō

]
+

[
Bo
Bō

]
︸ ︷︷ ︸
B̄=T−1B

u

y =
[
Co 0

]︸ ︷︷ ︸
C̄=CT

[
xo
xō

]
+Du,

Ao ∈ Rm̄×m̄, Bo ∈ Rm̄×p, Co ∈ Rq×m̄,

ẋō =Aōxō +A21xo +Bōu⇒ xō(t) = eAō(t−t0)xō(0) +

∫t
t0

eAō(t−τ)(A21xo(τ) +Bōu(τ))dτ

(Ao,Co) is observable, i.e., xo can be reconstructed from input and output, then

if Aō is a stability matrix, limt→∞ eAō(t−t0)xō(0)→ 0: xō can be guessed to an error that
converges to zero exponentially fast.

Def. The pair (A,C) is detectible if it is algebraically equivalent to a system in the standard form for

unobservable systems with n = m̄ (i.e., Aō nonexistent) or with Aō a stability matrix.
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Next lecture(s)
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Kalman decomposition
ẋ =Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rp,y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
=m< n

rank


C
CA

...
CAn−1

 = m̄ < n

∃T invertible s.t. x̄ = T−1x transforms state equations to

ẋcoẋcōẋc̄o
ẋc̄ō

 =

Aco 0 A×o 0
Ac× Acō A×× A×ō

0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō


︸ ︷︷ ︸

Ā=T−1AT

xcoxcōxc̄o
xc̄ō

+

BcoBcō
0
0


︸ ︷︷ ︸
B̄=T−1B

u

y =
[
Cco 0 Cc̄o 0

]︸ ︷︷ ︸
C̄=CT

xcoxcōxc̄o
xc̄ō

+Du,

T =
[
Tco Tcō Tc̄o Tc̄ō

]
columns of [Tco Tcō] span the ImC
columns of Tcō span the nullO∩ ImC
columns of [Tcō Tc̄ō] span the nullO
columns of Tc̄o along with the elements described above construct
an invertible T

I (Aco,Bco,Cco) is both controllable and observable.

I (

[
Aco 0
Ac× Acō

]
,

[
Bco
Bcō

]
) is controllable

I (

[
Aco A×o

0 Ac̄o

]
,
[
Cco Cc̄o

]
) is controllable

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cco(sI−Aco)
−1Bco +D 10 / 16



Review of Lec 4: elementary Realization (from TF rep. to SS rep.)

Def. (Realization problem): how to compute SS representation from a given transfer function.

Caution: Note every TF is realizable. Recall that distributed systems have impulse response and
as a result transfer function but no SS rep.

Def. (Realizable TF): A transfer function Ĝ(s) is said to be realizable if there exists a finite
dimensional SS equation

ẋ(t) =Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

or simply {A,B,C,D} such that

Ĝ(s) = C(sI−A)−1B+D.

We call {A,B,C,D} a realization of Ĝ(s).

Note: if a transfer function is realizable it has infinitely many realization, not necessarily of the
same dimension.

Theorem (realizable transfer function): A transfer function Ĝ(s) can be realized by an LTI SS
equation iff Ĝ(s) is a proper rational function.
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Minimal Realization of a TF

Definition (minimum realization): A realization of Ĝ(s) is called minimal or irreducible if there
is no realization of Ĝ of smaller order.

Theorem A realization is minimal if and only if it is both controllable and observable.

Theorem All minimal realizations of a transfer function are algebraically equivalent.
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Order of a minimal SISO realization
Theorem: A SISO realization ẋ=Ax+Bu, y=Cx+Du, x∈ Rn , u,y∈ R

of ĝ(s) =
n(s)
d(s)

, where n(s) and d(s) are coprime, is minimal if and only if its order n is equal to the degree of ĝ(s). In

this case, the pole polynomial d(s) of ĝ(s) is equal to the characteristic polynomial of A; i.e., d(s) = det(sI−A).

Since, the direct gain D of a realization does not affect its minimal realization, we can ignore it in the proof. We assume that
ĝ(s) is strictly proper and can be represented as

ĝ(s) =
n(s)

d(s)
=

β1s
n−1 +β2s

n−2 + · · ·+βn−1s+βn

sn+α1s
n−1 +α2s

n−2 + · · ·+αn−1s+αn
,

The proof needs only to show that ĝ(s) has a realization of order n that is both controllable and observable (recall that a
realization is minimal if and only if it is both controllable and observable). In earlier lectures we showed that the following is a
realization of ĝ(s). This realization is called controllable canonical form.

A=



−α1 −α2 · · · −αn−1 −αn
1 0 · · · 0 0
0 1 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · 1 0


, B=



1
0

.

.

.
0
0


, C=

[
β1 β2 · · · βn−1 βn

]
, D= d;

you have already shown in one of your HWs that (A,B) is controllable. We only need to show that (A,C) is observable too.
For this let use PBH eigenvector test for observability. Let x= [x1,x2, · · · ,xn]> 6= 0 be an eigenvector of A, i.e.,

Ax= λx ⇔



−
∑n
i=1αixi = λx1,

x1 = λx2
x2 = λx3

.

.

.
xn−1 = λxn

⇔



−
∑n
i=1αiλ

n−ixn = λnxn ,

x1 = λn−1xn

x2 = λn−2xn

.

.

.
xn−1 = λxn

⇔



d(λ)xn = 0 (?),

x1 = λn−1xn

x2 = λn−2xn

.

.

.
xn−1 = λxn

Because x= [x1,x2, · · · ,xn−1,xn]> = [λn−1xn ,λn−2x2, · · · ,λxn ,xn]> 6= 0 then xn has to be different that zero.
Then , from (?) we have that d(λ) = 0, i.e, λ is a root of d(s). On the other hand,

Cx=
∑n
i=1

βixi =
∑n
i=1

βiλ
n−ixn =n(λ)xn

Since d(s) and n(s) are coprime and λ is a root of d(s), it cannot be a root of n(s), i.e., n(λ) 6= 0. Since xn 6= 0, then

Cx 6= 0, and therefore, (A,C) must be observable. 13 / 16



Order of a minimal SISO realization: numerical example

A =

[
−1 0
a 2

]
, B =

[
1
−1

]
, C =

[
2 3

]
, D = 0.

rank
[
B AB

]
= rank

[
1 −1
−1 a− 2

]
= 2, unless a = 3,

rank

[
C
CA

]
= rank

[
2 3

−2 + 3a 6

]
= 2, unless a = 2,

If a = 2 or a = 3, (A,B,C,D) is not a minimal representation

ĝ(s) =
[
2 3

] [s+ 1 0
−a s− 2

]−1 [
1
−1

]
=
[
2 3

] [ 1
s+1 0
a

(s+1)(s−2)
1
s−2

] [
1
−1

]
=

−(s+ 7 − 3a)

(s+ 1)(s− 2)
=


−(s+1)

(s+1)(s−2) = −1
(s−2) , if a = 2

−(s−2)
(s+1)(s−2) = −1

(s+1) , if a = 3

Notice that for a = 2 or a = 3 the degree of the transfer function is 1, and is not equal to the order of A

matrix, which is 2. Therefore, for a = 2 and a = 3 the given realization above is not minimal.
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State estimation (asymptotic observer)
ẋ(t) =Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),

The simplest state estimator is: ˙̂x=Ax̂+Bu

We want limt→∞ x̂(t)→ x(t). To study the performance, let us look at error dynamics and its evolution in time

e(t) := x̂(t)−x(t)⇒ ė=Ax̂+Bu−Ax−Bu=Ae⇒ ė=Ae.

If A is a stability matrix (all its eigenvalues have strictly negative real part), we have limt→∞ e(t)→ 0, for every input.

When A is not a stability matrix, it is still possible to construct an asymptotic correct state estimator by modifying the observer
dynamics as follows

˙̂x=Ax̂+Bu−L(ŷ−y), ŷ=Cx̂+Du, (L : output injection matrix gain).

In this case error dynamics is given by

e(t) := x̂(t)−x(t)⇒ ė=Ax̂+Bu−L(Cx̂+Du−Cx−Du)−Ax−Bu⇒ ė= (A−LC)e

Theorem: If the output injection matrix L makes A−LC a stability matrix, then limt→∞ e(t)→ 0 exponentially fast, for every
input u.

Theorem: When (A,C) is observable, it is always possible to find a matrix L such that A−LC is a stability matrix. (we will
show later that this also possible when (A,C) is detectible.)

Theorem: When (A,C) is observable, given any n symmetric set of complex numbers {ν1,ν2, · · · ,νn}, there exists a L such
that A−LC has eigenvalues equal to {ν1,ν2, · · · ,νn}.

Procedure to design output injection matrix gain

{
(A,C) observable ⇔ (A> ,C>) observable ,

eig(A−LC) = eig(A−LC)> = eig(A>−C>L>),
⇒

{
Let Ā=A> , B̄=C> , K̄= L> : eig(A−LC) = eig(Ā− B̄K̄),

use tools from state-feedback design to obtain K̄ that stabilizes (Ā− B̄K̄),
⇒ L= K̄> stabilizes (A−LC)
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Stabilization through output feedback

system:

{
ẋ(t) =Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),

observer:

{
˙̂x(t) =Ax̂(t)+Bu(t)−L(ŷ(t)−y(t)),

ŷ(t) =Cx̂(t)+Du(t),
,

control: u= −Kx̂

To study whether the closed loop of the systems above is stable, we construct a state-space model for the closed-loop system

using states x̄ :=

[
x
e

]
, where e= x̂−x. We obtain

[
ẋ
ė

]
=

[
A−BK −BK

0 A−LC

]
︸ ︷︷ ︸

Ā

[
x
e

]
.

We want Ā to be a stability matrix, i.e., all eigenvalues of Ā have strictly negative real parts

eig(Ā) = {eig(A−BK),eig(A−LC)}

Procedure to design L and K for stabilization through output feedback: design L that stabilizes A−LC, and design K that
stabilizes A−BK. These two designs are independent from one another (separation in design) and are possible if (A,B,C) is
controllable and observable (indeed the tasks can be achieved if (A,B,C) is stablilizable and detectible).

Notice :

[
x
e

]
=

[
In 0

−In In

]
︸ ︷︷ ︸

T

[
x
x̂

]
. Because T is invertible, it is a similarity transformation matrix. That is, LTI system with

states (x,e) is algebraically equivalent to LTI system with states (x, x̂). 16 / 16


