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Observability of LTI systems

x = Ax + Bu, ceR™, uelRP
X X+ bu, x u x(0) = xo € R™ (%)
y=Cx+Du, yeR9

Question of interest in Observability: ~ Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t;]?7 (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

t

y(t) = Ce™x(0) + CJ ARy (T)dT 4+ Du(t) < (t) = Ce™'x(0)
0

gt) =y(t) — CJ A IBu(T)dT — Du(t)

The LTI state-space equation (x) is said to be observable if for any unknown initial state
x(0), 3 finite time t; > 0 such that the knowledge of the input u and the output y over
[0, t;] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said
to be unobservable.
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Observability gramian

{X_Ax—i-Bu, x € R™, uecRP

x(0) =% € R™ (%)
y=Cx+Du, yeR9

Using input output information over [0, t] we obtain

0 ~——
— known unknown
known

JteATTCTQ(T)dT:Wo(t) x(0) ,
—

Observability gramian: W (t) = f; eATTCT Certdr

> rank(Wg(t)) = n = unique xq can be obtained: system is observable
» rank(Wp(t)) < n = xq is not unique: system is not observable
m (if xo € Ker(Wq(t)), then W (t)xg = 0): unobservable subspace Ker(Wq(t)).
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Duality Theorem

x=Ax+Bu, xeR" ueRP
{ x(0) =xo € R™ (%)

y=Cx+Du, yeR9

The pair (A, C) is observable if and only if the pair (AT, CT) is controllable.

» (A, C) is observable iff
Wo(t) = [;e* TCT Cervdr is full rank

» (AT,CT) is controllable iff
We(t) = [;erT7CT (CT)TeA ) dr = [y eA "CT CeATdt is full rank

Note that
Wo(t) = We(t)
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Tests for Observability of LTI systems

The following statements are equivalent:

@ the n-dimentional pair (A, C) is observable

@ The n X n matrix | Wo (t) = f; eATTCT Certdr|is nonsingular for all t > 0.

C
CA
Q Let O = . be the observability matrix, then rank(Q) =n
CA.nfl

ngxn

Q rank {}\I E A} = n for all complex A

@ rank {}\I E A} = n for all A eigenvalues of A

@ If in addition, all eigenvalues of A have negative real parts, then the unique solution of
ATWo +WoA =—C'C

is positive definite. The solution is called the observability Gramian and can be expressed as
o0

Wgo = J eATTCT certdr
0

Recall that for any matrix L, rank(L) = rank(L") 5/16



Review of controllable decomposition

x=Ax+Bu, x€eR"™, ueRP
y=Cx+Du, yeR9

rank[B AB ... A“‘lB] =m<n
3T invertible s.t. X = T~ 1x transforms state equations to
= A A = B.
_ 71 _ | A 12 _ 1-1p _ | Bc
A=T AT—{O Au:|’ B=T B—[O}
C=[C. Cu.], D=D,
Ac e ]RTrLXTTI.Y BC e Rmxp’ CC e qum’

T=[ & ty ot | tmi1 tmiz o ta |

s.t. all columns of

m linearly independent any way you can
columns of €

T are linearly independent

(A¢, B.) is controllable!
G(s)=G(s)=C(sI—A) "B+ D=Cq(sI—A) " 'B.+D
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Observable decomposition

x = Ax + Bu,
y =Cx+ Du,

x € R™,
y € R4

u € RP

3T invertible s.t. X = T 'x transforms state equations to

c A 0 = B
—1 . —1 . o
CA A=T AT_[A12 Aa]' B=T B_[Ba]
rank . =m<n - - _
: C=cCcT=[C, 0, D=D,
can Ao ER™X™ B, cRTXP  C, e RIX™,
T=[ & t2 e tm | tmil tmiz o0 tan ]
any way you can

s.t. all columns of

T are linearly independent

(Ao, Co) is observable.
G(s)=G(s)=C(sI—A)'B+D

=Co(sI—A,)'B, +D

n —m linearly independent
vectors spanning the
nullspace of O

u
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Detectability

x=Ax+Bu, xeR"™, uecRP
y=Cx+Du, yeR9

3T invertible s.t. X = T—'x transforms state equations to

C = ) Ao 0 Xo Bo
e =)=l Adle]e Bl
rank =_m<n: —_— _——
: A=T—1AT B=T-1B
n—1
A y=[C, 0] {"] + Du,
— X5

AaeRmxm’ BOERﬁLXp, CoeRqXﬁl,

t

X5 = AsXs + Anxo + Bsu = x5(t) =o' ‘()1\5\O\+J e (L= (A%, (T) + Bsu(t))dT
to

@ (A,,C,) is observable, i.e., x, can be reconstructed from input and output, then

@ if A; is a stability matrix, lim¢_,,e”0 (' '0)x5(0) — 0: x5 can be guessed to an error that

converges to zero exponentially fast.

Def. The pair (A, C) is detectible if it is algebraically equivalent to a system in the standard form for

unobservable systems with n = m (i.e., A5 nonexistent) or with A a stability matrix.
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Next lecture(s)
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Kalman decomposition

x=Ax+Bu, y=Cx+Du x€eR" uecRP yecRY

3T invertible s.t. X = T—'x transforms state equations to

rank[BL AB .- A" IB]l=m<n Xco Aco 0 Axo 0 Xco Beo
@ ’_Cca _ Acx Acs A x x Axs Xco + Bes
CA 7_‘(":0 0 0 Azo 0 Xco 0
rank —m<n Xco 0 0 Acx  Acsl Lxes 0
. A=T—1AT B=T—1B
—1
CA™ Xco

+ Du,

T= [Tco Tes Teo Téé}

columns of [T¢o Tcs) span the Im@

columns of T.s span the nullO N ImC

columns of [T¢5 Tzs] span the null©

columns of Tz, along with the elements described above construct
an invertible T

(Aco,Bco,Cco) is both controllable and observable.

Aco 0 Beol, -
([Acx Aca] , [ c6:|) is controllable

vy

A A .
> ([ 50 A:g] [Cco  Ceco]) is controllable

G(s)=G(s)=C(sI—A) B+ D =Ceo(sI—Aco)
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Review of Lec 4: elementary Realization (from TF rep. to SS rep.)

Def. (Realization problem): how to compute SS representation from a given transfer function.

Caution: Note every TF is realizable. Recall that distributed systems have impulse response and
as a result transfer function but no SS rep.

Def. (Realizable TF): A transfer function G (s) is said to be realizable if there exists a finite
dimensional SS equation

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),
or simply {A, B, C, D} such that
G(s)=C(sI—A)'B+D.
We call {A, B, C, D} a realization of G(s).

Note: if a transfer function is realizable it has infinitely many realization, not necessarily of the
same dimension.

Theorem (realizable transfer function): A transfer function G (s) can be realized by an LTI SS
equation iff G(s) is a proper rational function.
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Minimal Realization of a TF

Definition (minimum realization): A realization of G(s) is called minimal or irreducible if there
is no realization of G of smaller order.

Theorem A realization is minimal if and only if it is both controllable and observable.

Theorem All minimal realizations of a transfer function are algebraically equivalent.
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Order of a minimal SISO realization

Theorem: A SISO realization % = Ax +Bu, y=Cx+Du, x€R™, uy€eRr

of §(s) = %, where n(s) and d(s) are coprime, is minimal if and only if its order 1 is equal to the degree of §(s). In
this case, the pole polynomial d(s) of §(s) is equal to the characteristic polynomial of A;i.e., d(s) =det(sI —A).

Since, the direct gain D of a realization does not affect its minimal realization, we can ignore it in the proof. We assume that
g (s) is strictly proper and can be represented as
n(s) B1
d(s)  sMpoagsn 1 poapsM—2 4 oy _gs +an

sl 4 Bos™ 2 4. B g5 +PBn

(s) has a realization of order n that is both controllable and observable (recall that a
is both controllable and observable). In earlier lectures we showed that the following is a

The proof needs only to show that §

«q xp 1 ocn" 1]
1 0 . 0 0 0
0 1 0 o | !
A= } B = i c=[B1 B> fn-1 Bn]. D=4d;
. . . . o 0|
0 0 1 0 J OJ
you have already shown in one of your HWs that (A, B) is controllable. We only need to show that (A, C) is observable too.
For this let use PBH eigenvector test for observability. Let x = [x1, x5, ,xn] ' #0 be an eigenvector of A, i.e.,
SXT g agxg = Axg, T AT Ty = AT, A(A)xn =0 (%),
X1 = Axp xp =AM lxy xp =AM 1xp
X3 = Ax xo = AT 2x xo = ATV 2x
Ax =Ax & 2 3 o2 " {2 "
X1 Axn Xn—1=AXxn X1 =AXxn
Because x = [x1,%2, -+, Xxn_1.xn) | = (A" Ixn AT 2x5, .- Axn,xn] | #0then xn has to be different that zero.
Then , from (x) we have that d(A) =0, i.e, A is a root of d(s). On the other hand,

~ n B o n . n i, o
Cx=3 1 Bixi=) ; ;BiA xn =n(A)xn
Since d(s) and n(s) are coprime and A is a root of d(s), it cannot be a root of n(s), i.e.,, n(A) # 0. Since xn # 0, then

Cx # 0, and therefore, (A, C) must be observable. 13 /16



Order of a minimal SISO realization: numerical example

rank [B AB] = rank [51 ailz] =2, unless a =3,

C 2 3
rank [CA] = rank [_2 T 3a 6] =2, unless a = 2,

If a=2o0ra=3, (A,B,C,D) is not a minimal representation

Y 1
. s+1 0 1 ; 0 1
s)=[2 3 =2 3 s+1 ][ ]:
9(s) =1 }[*‘1 5*2] [*1] [ ]{W(s—z) St
(sl 1
—(s+7—3a) (s+1)(s—2) = (s—2)"
(s+1)(s—2)

ifa=2

—(s—2) _ -1 ) _
GG — ey fa=3
Notice that for a = 2 or a = 3 the degree of the transfer function is 1, and is not equal to the order of A
matrix, which is 2. Therefore, for a = 2 and a = 3 the given realization above is not minimal.
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State estimation (asymptotic observer)

%(t) = Ax(t) +Bu(t),
y(t) =Cx(t) +Du(t),
The simplest state estimatoris: { = AR +Bu
We want limy o % (t) — x(t). To study the performance, let us look at error dynamics and its evolution in time
e(t):=%(t) —x(t)=eé=A%8+Bu—Ax —Bu=Ae= ¢ Ae.

If A is a stability matrix (all its eigenvalues have strictly negative real part), we have limy_,, e(t) — 0, for every input.

When A is not a stability matrix, it is still possible to construct an asymptotic correct state estimator by modifying the observer
dynamics as follows

X=A%+Bu—L(J—y), U=CR+Du, (L:outputinjection matrix gain).
In this case error dynamics is given by
e(t):=%(t) —x(t)=>=é=A%+Bu—L(CX+Du—Cx—Du) —Ax —Bu= ¢ A LC)e

Theorem: If the output injection matrix L makes A — L C a stability matrix, then lim{ _,, e (t) — 0 exponentially fast, for every
input u.

Theorem: When (A, C) is observable, it is always possible to find a matrix L such that A — L C is a stability matrix. (we will
show later that this also possible when (A, C) is detectible.)

Theorem: When (A, C) is observable, given any n ric set of | b {v1.vp,- . vn}, there exists a L such
that A — LC has eigenvalues equal to {vy, vy, -, vn}.

Procedure to design output injection matrix gain

{(/\, C) observable < (AT, CT ) observable , N

eig(A —LC) =eig(A —LC)T =eig(AT —CTLT),

- = L =K stabilizes (A —LC)

Let A=AT B=CT, R=LT: eig(A—LC) =eig(A —BK),
use tools from state-feedback design to obtain K that stabilizes (A — BK),
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Stabilization through output feedback

aystem: X () = Ax(t) +Bu(t),
VSR \u (6) = Cx () + Du(t),

observer: 4 ¥(1) = AR(1) +Bu(t) —L(§(t) —y (1)), !
T 19(t) =CR(t) +Du(t), ’ (s s
control: u© = —K% + 35 1

To study whether the closed loop of the systems above is stable, we construct a state-space model for the closed-loop system

using states X : = {Z] where ¢ = & — x. We obtain

We want A to be a stability matrix, i.e., all eigenvalues of A have strictly negative real parts

eig(A) = {eig(A —BK),eig(A —LC)}

Procedure to design L and K for stabilization through output feedback: design L that stabilizes A — L C, and design K that
stabilizes A — BK. These two designs are ind. dent from one her (s tion in design) and are possible if (A, B, C) is
controllable and observable (indeed the tasks can be achieved if (A, B, C) is utabl.l.zable and detectible).

Notice : [:} = [ Ii“ IO } [;j Because T is invertible, it is a similarity transformation matrix. That is, LTI system with
—In n

¥
states (x, e) is algebraically equivalent to LTI system with states (x,%). 16/16



