Linear Systems I Lecture 15

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Review: stabilizability for LTI systems

(A, B) uncontrollable: $\operatorname{rank} \mathcal{C}=\operatorname{rank}\left[B A B A^{2} B \cdots A^{n-1} B\right]=m<n$

$$
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}, \quad \overline{\mathrm{~B}}=\mathrm{T}^{-1} \mathrm{~B}
$$

Definition (Stabilizable LTI system)

Def. (Stabilizable system): The pair (A, B) is stabilizable if it is algebraically equivalent to a system in the standard form for uncontrollable systems with $n=m$ (i.e, A_{u} does not exist) or with A_{u} a stability matrix.

Definition (Stabilizable LTI system (alternative definition))

The pair (A, B) is stabilizable if there exists a state feedback gain matrix K for which all the eigenvalues of $A-B K$ have strictly negative real part.

Tests to check stabilizability of LTI systems

There are various stabilizability tests. Following are some of them:

Theorem

The following statements are equivalent:

- The pair (A, B) is stabilizable;
- There exists no left eigenvector of A associated with an eigenvalue having nonnegative real part that is orthogonal to the columns of B;

$$
\left\{\begin{array}{l}
v^{\star} A=\lambda v \quad(\operatorname{Re}[\lambda(A)] \geqslant 0) \\
v^{\star} B=0
\end{array} \Longrightarrow v=0\right.
$$

- $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ for all $\operatorname{Re}[\lambda(A)] \geqslant 0$.

Review: tests to check stabilizability of LTI systems: example

$$
\dot{x}=\left[\begin{array}{cc}
-11 & 30 \\
-4 & 11
\end{array}\right] x+\left[\begin{array}{c}
10 \\
4
\end{array}\right] u
$$

Controllability text:

$$
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left[\begin{array}{ll}
B & A B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
10 & 10 \\
4 & 4
\end{array}\right]=1 \Longrightarrow(A, B) \text { is not controllable! }
$$

PBH eigenvalue test for controllability

- first find $\lambda[A]$:
$\Delta(A)=\operatorname{det}(\lambda I-A)=(\lambda+11)(\lambda-11)+120=\lambda^{2}-1=(\lambda-1)(\lambda+1)=0 \Rightarrow \lambda[A]=\{-1,1\}$
- check rank of $[\lambda I-A B]$ for $\lambda[A]=\{-1,1\}$

$$
\left.\begin{array}{c}
\lambda=-1: \operatorname{rank}\left[\begin{array}{lll}
-\mathrm{I}-\mathrm{A} & \mathrm{~B}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
10 & -30 & 10 \\
4 & -12 & 4
\end{array}\right]=1 \Rightarrow \lambda=-1 \text { is not a controllable eigenvalue } \\
\\
\lambda=1: \operatorname{rank}[\mathrm{I}-\mathrm{A} \\
\mathrm{B}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
12 & -30 & 10 \\
4 & -10 & 4
\end{array}\right]=2 \Rightarrow \lambda=1 \text { is a controllable eigenvalue }
$$

Then:

- (A, B) is not controllable
- (A, B) is stablilizable: because $\operatorname{rank}[\lambda I-A B]=n$ for the eigenvalue with positive real part $\lambda=1$.

Regulation via state-feedback control when (A,B) is controllable: pole-placement/eigenvalue placement

$\dot{x}=A x+B u, \quad u=-K x \Rightarrow \dot{x}=(A-B K) x$

- (A,B) controllable: Given any symmetric set of n complex numbers $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, there exists a full-state feedback matrix K such that the closed-loop system matrix $\left(A-B K\right.$) has eigenvalues equal to these v_{i} 's.

$$
\exists K: \operatorname{det}(\lambda I-(A-B K))=\underbrace{\left(\lambda-v_{1}\right)\left(\lambda-v_{2}\right) \cdots\left(\lambda-v_{n}\right)}_{\text {desired charac. polynomial }}
$$

- Single input systems ($u \in \mathbb{R}, B \in \mathbb{R}^{n \times 1}$): See HW 6 for a procedure for eigenvalue placement. You can also use Achermann formula.
- Multi-input systems $\left(u \in \mathbb{R}^{p}, B \in \mathbb{R}^{n \times p}\right)$: Theorem below gives a solution

Theorem: Suppose $\left(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}\right.$) is controllable. Then ($A+B F, B v$), is controllable for almost any $\mathrm{F} \in \mathbb{R}^{\mathrm{p} \times n}$ and $v \in \mathbb{R}^{\mathrm{p} \times 1}$.
State feedback for multi input systems: Example, place the eigenvalues at $\{-1,-2,-3\}$

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
4 & 5 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 0
\end{array}\right]
$$

- choose $F \in \mathbb{R}^{p \times n}$ and $v \in \mathbb{R}^{p \times 1}$ such that $(A+B F, B v)$ is controllable

$$
\mathrm{F}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad v=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \Rightarrow \bar{A}=A+B F=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 3 & 0 \\
6 & 5 & 1
\end{array}\right], \bar{B}=\mathrm{B} v=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \operatorname{rank}(\overline{\mathrm{C}})=\operatorname{rank}\left[\begin{array}{lc}
1 & 2 \\
0 & 4 \\
0 & 1 \\
2 & 8 \\
25
\end{array}\right]
$$

- place eigenvalues of (\bar{A}, \bar{B}) at your desired location $\{-1,-2,-3\}$ using the methods for single input systems: here I get $\overline{\mathrm{K}}=\left[\begin{array}{lll}28 & 80 & -8\end{array}\right]$
- the K in $A-B K$ is obtained from $A-B K=A+B F-B v \bar{K}=A-B \underbrace{(-F+v \bar{K})}_{K}$, which gives

$$
K=\left[\begin{array}{ccc}
27 & 80 & -8 \\
0 & -1 & 0
\end{array}\right]
$$

- For this example $A-B K=\left[\begin{array}{ccc}-26 & -80 & 8 \\ 1 & 3 & 0 \\ -50 & -155 & 17\end{array}\right]$, with eigenvalues at the desired location $\{-1,-2,-3\}$.

Regulation via state-feedback control when (A,B) is stabilizable: pole-placement/eigenvalue placement

$$
\dot{x}=A x+B u, \quad u=-K x \Rightarrow \dot{x}=(A-B K) x
$$

- (A,B) is not controllable: $\operatorname{rank}(\mathcal{C})=m<n\left(A \in \mathbb{R}^{n \times n}\right)$:

$$
\begin{aligned}
& \exists \text { Tinvertible }: x=T \bar{x}: \quad \dot{\bar{x}}=\left[\begin{array}{c}
\dot{x}_{c} \\
\dot{x}_{u}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{c} & A_{12} \\
0 & A_{u}
\end{array}\right]}_{\bar{A}=T-1 A T}\left[\begin{array}{c}
x_{c} \\
x_{u}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]}_{\bar{B}=T-1} u \\
& u \\
& u
\end{aligned}
$$

$\left(A_{c}, B_{c}\right)$ is controllable, we can place eigenvalues of $\left(A_{c}-B_{c} \bar{K}_{1}\right)$ in any location we want using state feedback!
We can only change the location of controllable eigenvalues using state feedback

```
We can only stabilize a system whose uncontrollable eigenvalues are stable
```

(1) Transfer (A, B) to the controllable decomposition form
(2) Recall that $\operatorname{eig}(A)=\operatorname{eig}\left(A_{c}\right) \cup \operatorname{eig}\left(A_{u}\right)$
(3) $\left(A_{c}, B_{c}\right)$ is controllable, so you can place the eigenvalues of this controllable part at your desired locations using gain \bar{k}_{1}, i.e., eigenvalues of $A_{c}-B_{c} \bar{k}_{1}$
(4) you can find the gain K placing the controllable eigenvalues in your desired places using $\mathrm{K}=\overline{\mathrm{K}} \mathrm{T}^{-1}$, with $\overline{\mathrm{K}}=\left[\begin{array}{ll}\overline{\mathrm{k}}_{1} & \overline{\mathrm{k}}_{2}\end{array}\right]$. You can set k_{2} to zero.
(5) you should arrive at eig $(A-B K)=\operatorname{eig}\left(A_{c}-B_{c} \bar{k}_{1}\right) \cup \operatorname{eig}\left(A_{u}\right)$

State feedback design for a stabilizable system: example

$$
\dot{x}=\left[\begin{array}{cc}
-11 & 30 \\
-4 & 11
\end{array}\right] x+\left[\begin{array}{c}
10 \\
4
\end{array}\right] u
$$

Controllability text:

$$
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left[\begin{array}{ll}
B & A B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
10 & 10 \\
4 & 4
\end{array}\right]=1 \Longrightarrow(A, B) \text { is not controllable! }
$$

$\operatorname{eig}(A): \Delta(A)=\operatorname{det}(\lambda I-A)=(\lambda+11)(\lambda-11)+120=\lambda^{2}-1=(\lambda-1)(\lambda+1)=0 \Rightarrow \operatorname{eig}(A)=\{-1,1\}$
Controllable decomposition

$$
\begin{gathered}
\mathrm{T}=\left[\begin{array}{cc}
5 & 0 \\
2 & 0.2
\end{array}\right], \quad \mathrm{T}^{-1}=\left[\begin{array}{cc}
0.2 & 0 \\
-2 & 5
\end{array}\right] \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{~A} \mathrm{~T}=\left[\begin{array}{ll}
0.2 & 0 \\
-2 & 5
\end{array}\right]\left[\begin{array}{cc}
-11 & 30 \\
-4 & 11
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
2 & 0.2
\end{array}\right]=\left[\begin{array}{cc}
1 & -1.2 \\
0 & -1
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{gathered}
$$

Objective Place eigenvalues of $A-B K$ at $\{-1,-3\}$
We use $\left(A_{c}, B_{c}\right)=(1,2)$ to place eigenvalue of the controllable part at $-3: \lambda\left(A_{c}-B_{c} \bar{k}_{1}\right)=-3$

$$
\begin{gathered}
\lambda-\left(1-2 \overline{\mathrm{k}}_{1}\right)=\lambda+3 \Rightarrow \overline{\mathrm{k}}_{1}=2 . \\
u=\overline{\mathrm{K}} \overline{\mathrm{x}}=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \overline{\mathrm{x}}=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \mathrm{T}^{-1} x=\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0.2 & 0 \\
-2 & 5
\end{array}\right] x=\underbrace{\left[\begin{array}{ll}
0.4 & 0
\end{array}\right]}_{\mathrm{K}} x .
\end{gathered}
$$

State feedback design for a stabilizable system: example (alternative approach)

Consider the state feedback $u=-K x=-\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right] x$

$$
\begin{gathered}
A_{c l}=A-B K=\left[\begin{array}{cc}
-11-10 k_{1} & 30-10 k_{2} \\
-4-4 k_{1} & 11-4 k_{2}
\end{array}\right] \\
\Delta\left(A_{c l}\right)=\Delta(A-B K)=\operatorname{det}\left(\lambda I-\left[\begin{array}{cc}
-11-10 k_{1} & 30-10 k_{2} \\
-4-4 k_{1} & 11-4 k_{2}
\end{array}\right]\right)=(\lambda+1)\left(\lambda+10 k_{1}+4 k_{2}-1\right)=0 \\
\operatorname{eig}\left(A_{c l}\right)=\left\{-1,-10 k_{1}-4 k_{2}+1\right\}
\end{gathered}
$$

- Notice that we cannot change the location of uncontrollable eigenvalue but we can put the controllable eigenvalue in any new location using state feedback!
- We can pick k_{1} and k_{2} such that $A_{c l}$ has eigenvalues with strictly negative real parts and, as such, stabilize the closed-loop system using $u=-K x$.
- For example $\mathrm{k}_{1}=0$ and $\mathrm{k}_{2}=1$ results in $\lambda\left[\mathcal{A}_{\mathrm{cl}}\right]=\{-1,-3\}$.

You can confirm this by checking eigenvalues of
$A-B K=\left[\begin{array}{cc}-11 & 30 \\ -4 & 11\end{array}\right]-\left[\begin{array}{c}10 \\ 4\end{array}\right]\left[\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{cc}-11 & 20 \\ -4 & 7\end{array}\right]$.

Next Lecture

Observability of LTI systems

$$
\left\{\begin{array}{ll}
\dot{x}=A x+B u, & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{p} \\
y=C x+D u, & y \in \mathbb{R}^{q}
\end{array} \quad x(0)=x_{0} \in \mathbb{R}^{n}\right.
$$

Question of interest in Observability: Can we reconstruct $x(0)$ by knowing $y(t)$ and $u(t)$ over some finite time interval $\left[0, t_{1}\right]$? (By knowing the initial condition, we can reconstruct the entire state $\chi(\mathrm{t})$, then use it in our state feedback to control the system)

$$
y(t)=C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t)
$$

Observability of LTI systems

$$
\left\{\begin{array}{ll}
\dot{x}=A x+B u, & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{p} \\
y=C x+D u, & y \in \mathbb{R}^{q}
\end{array} \quad x(0)=x_{0} \in \mathbb{R}^{n}\right.
$$

Question of interest in Observability: Can we reconstruct $x(0)$ by knowing $y(t)$ and $u(t)$ over some finite time interval $\left[0, t_{1}\right]$? (By knowing the initial condition, we can reconstruct the entire state $\chi(\mathrm{t})$, then use it in our state feedback to control the system)

$$
\begin{gathered}
y(t)=C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t) \Leftrightarrow \bar{y}(t)=C e^{A t} x(0) \\
\bar{y}(t)=y(t)-C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau-D u(t)
\end{gathered}
$$

The LTI state-space equation (\star) is said to be observable if for any unknown initial state $x(0), \exists$ finite time $t_{1}>0$ such that the knowledge of the input u and the output y over $\left[0, t_{1}\right]$ suffices to determine uniquely the initial state $x(0)$. Otherwise, the equation is said to be unobservable.

Tests for Observability of LTI systems

The following statements are equivalent:
(1) the n-dimentional pair (A, C) is observable
(2) The $n \times n$ matrix $W_{o}(t)=\int_{0}^{t} e^{A^{\top} \tau} C^{\top} C e^{A \tau} d \tau$ is nonsingular for all $t>0$.
(3) Let $\mathcal{O}=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]_{n q \times n}$ be the observability matrix, then $\operatorname{rank}(\mathcal{O})=n$
(4) $\operatorname{rank}\left[\begin{array}{c}\lambda I-\lambda \\ C\end{array}\right]=n$ for all complex λ
(5) rank $\left[\begin{array}{c}\lambda I-\lambda \\ C\end{array}\right]=n$ for all λ eigenvalues of A
(6) If in addition, all eigenvalues of A have negative real parts, then the unique solution of

$$
A^{\top} W_{o}+W_{o} A=-C^{\top} C
$$

is positive definite. The solution is called the observability Gramian and can be expressed as

$$
W_{o}=\int_{0}^{\infty} e^{A^{\top} \tau} C^{\top} C e^{A \tau} d \tau
$$

Review of controllable decomposition

$$
\begin{array}{ll}
\dot{x}=A x+B u, & x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p} \\
y=C x+D u, & y \in \mathbb{R}^{q}
\end{array}
$$

Theorem

$$
\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & \mathrm{~A}^{\mathrm{n}-1} \mathrm{~B}
\end{array}\right]=\mathrm{m}<\mathrm{n}
$$

$\exists \mathrm{T}$ invertible s.t. $\overline{\mathrm{x}}=\mathrm{T}^{-1} \chi$ transforms state equations to

$$
\begin{aligned}
& \overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc}
A_{c} & A_{12} \\
0 & A_{\mathrm{u}}
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{c}
\mathrm{B}_{\mathrm{c}} \\
0
\end{array}\right] \\
& \overline{\mathrm{C}}=\left[\begin{array}{ll}
\mathrm{C}_{\mathrm{u}} & \mathrm{C}_{u}
\end{array}\right], \quad \overline{\mathrm{D}}=\mathrm{D}, \\
& A_{\mathrm{c}} \in \mathbb{R}^{\mathrm{m} \times m}, \quad \mathrm{~B}_{\mathrm{c}} \in \mathbb{R}^{\mathrm{m} \times \mathrm{p}}, \quad \mathrm{C}_{\mathrm{c}} \in \mathbb{R}^{\mathbf{q} \times \mathrm{m}},
\end{aligned}
$$

$$
\begin{aligned}
& T=[\underbrace{t_{1}}_{\left\{\begin{array}{llll}
m \text { linearly independent } \\
\text { columns of } \mathcal{C}
\end{array}\right.} t_{2}
\end{aligned} \cdots t_{m}, \underbrace{\left.\begin{array}{llll}
t_{m+1} & t_{m+2} & \cdots & t_{n}
\end{array}\right]}_{\begin{array}{l}
\text { any way you can } \\
\text { s.t. all columns of } \\
T \text { are linearly independent }
\end{array}}
$$

$\left(A_{c}, B_{c}\right)$ is controllable!

$$
\mathrm{G}(\mathrm{~s})=\overline{\mathrm{G}}(\mathrm{~s})=\overline{\mathrm{C}}(\mathrm{sI}-\overline{\mathrm{A}})^{-1} \overline{\mathrm{~B}}+\overline{\mathrm{D}}=\mathrm{C}_{\mathrm{c}}\left(\mathrm{sI}-A_{\mathrm{c}}\right)^{-1} \mathrm{~B}_{\mathrm{c}}+\mathrm{D}
$$

Observable decomposition

$$
\begin{array}{ll}
\dot{x}=A x+B u, & x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p} \\
y=C x+D u, & y \in \mathbb{R}^{q}
\end{array}
$$

Theorem

$\exists \mathrm{T}$ invertible s.t. $\overline{\mathrm{x}}=\mathrm{T}^{-1} \mathrm{x}$ transforms state equations to

$$
\operatorname{rank}\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]=\bar{m}<n: \quad \bar{A}=T^{-1} A T=\left[\begin{array}{cc}
A_{o} & 0 \\
A_{12} & A_{\bar{o}}
\end{array}\right], \quad \bar{B}=T^{-1} B=\left[\begin{array}{l}
B_{o} \\
B_{\bar{o}}
\end{array}\right]
$$

$$
\begin{array}{rl}
\mathrm{T}= & \underbrace{\cdots}_{\underbrace{\mathrm{t}_{1}} \quad \mathrm{t}_{2}} \quad \cdots \quad \mathrm{t}_{\overline{\mathrm{m}}}
\end{array} \underbrace{\underbrace{t_{\bar{m}+2}}_{\overline{\mathrm{m}}+1} \quad \cdots \mathrm{t}_{n}}_{\begin{array}{l}
\text { any way you can } \\
\text { s.t. all columns of } \\
\mathrm{T} \text { are linearly independent }
\end{array}}]
$$

$\left(A_{o}, B_{o}\right)$ is observable.

$$
\mathrm{G}(\mathrm{~s})=\overline{\mathrm{G}}(\mathrm{~s})=\overline{\mathrm{C}}(\mathrm{sI}-\overline{\mathrm{A}})^{-1} \overline{\mathrm{~B}}+\overline{\mathrm{D}}=\mathrm{C}_{\mathrm{o}}\left(\mathrm{sI}-\mathrm{A}_{\mathrm{o}}\right)^{-1} \mathrm{~B}_{\mathrm{o}}+\mathrm{D}
$$

Kalman decomposition

$$
\dot{x}=A x+B u, \quad y=C x+D u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}
$$

Theorem

$$
\exists \mathrm{T} \text { invertible s.t. } \overline{\mathrm{x}}=\mathrm{T}^{-1} \mathrm{x} \text { transforms state equations to }
$$

$$
\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & \mathrm{~A}^{\mathrm{n}-1} \mathrm{~B}
\end{array}\right]=\mathrm{m}<\mathrm{n}
$$

$$
\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]=\bar{m}<n
$$

$$
\left[\begin{array}{c}
\dot{x}_{c o} \\
\dot{x}_{c \bar{o}} \\
\dot{x}_{\bar{c} o} \\
\dot{x}_{\bar{c} \bar{o}}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
A_{c o} & 0 & x_{o} & 0 \\
A_{c x} & A_{c \bar{o}} & A_{x x} & A_{x \bar{o}} \\
0 & 0 & A_{\bar{c} o} & 0 \\
0 & 0 & A_{\bar{c} \overline{ }} & A_{\bar{c} \bar{o}}
\end{array}\right]}_{\bar{A}=T^{-1} A T}\left[\begin{array}{c}
x_{c o} \\
x_{c \bar{o}} \\
x_{\bar{c} o} \\
x_{\bar{c} \bar{o}}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{c o} \\
B_{c \bar{o}} \\
0 \\
0
\end{array}\right]}_{\bar{B}=T-1 B} u
$$

$$
y=\underbrace{\left[\begin{array}{llll}
\mathrm{C}_{\mathrm{co}} & 0 & C_{\overline{\mathrm{c}} \mathrm{o}} & 0
\end{array}\right]}_{\overline{\mathrm{C}}=\mathrm{CT}}\left[\begin{array}{l}
x_{\mathrm{co}} \\
x_{\mathrm{c} \bar{o}} \\
x_{\overline{\mathrm{c}} \mathrm{o}} \\
x_{\overline{\mathrm{c}} \bar{o}}
\end{array}\right]+\mathrm{Du}
$$

$$
\mathrm{T}=\left[\begin{array}{llll}
\mathrm{T}_{\mathrm{co}} & \mathrm{~T}_{\mathrm{c} \overline{\mathrm{o}}} & \mathrm{~T}_{\overline{\mathrm{c}} \mathrm{o}} & \mathrm{~T}_{\overline{\mathrm{c}} \overline{\mathrm{o}}}
\end{array}\right]
$$

- columns of [$\mathrm{T}_{\mathrm{co}} \mathrm{T}_{\mathrm{co}}$] span the $\operatorname{lm} \mathrm{C}$
- columns of $T_{c \bar{o}}$ span the null $\mathcal{O} \cap \operatorname{ImC}$
- columns of [$\mathrm{T}_{\mathrm{c} \bar{o}} \mathrm{~T}_{\overline{\mathrm{c}} \overline{\mathrm{o}}}$] span the null(O)
- columns of $\mathrm{T}_{\overline{\mathrm{c}} \text { o }}$ along with the elements described above construct an invertible T
- $\left(A_{c o}, B_{c o}, C_{c o}\right)$ is both controllable and observable.
- $\left(\left[\begin{array}{cc}A_{c o} & 0 \\ A_{c x} & A_{c \bar{o}}\end{array}\right],\left[\begin{array}{l}B_{c o} \\ B_{c \bar{o}}\end{array}\right]\right)$ is controllable
- $\left(\left[\begin{array}{cc}A_{c o} & A_{x o} \\ 0 & A_{\bar{c} o}\end{array}\right],\left[\begin{array}{ll}C_{c o} & C_{\bar{c} o}\end{array}\right]\right)$ is controllable

$$
\mathrm{G}(\mathrm{~s})=\overline{\mathrm{G}}(\mathrm{~s})=\overline{\mathrm{C}}(\mathrm{sI}-\overline{\mathrm{A}})^{-1} \overline{\mathrm{~B}}+\overline{\mathrm{D}}=\mathrm{C}_{\mathrm{co}}\left(\mathrm{sI}-\mathrm{A}_{\mathrm{co}}\right)^{-1} \mathrm{~B}_{\mathrm{co}}+\mathrm{D}
$$

