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Regulation via state-feedback control

Consider ẋ =Ax+Bu, x(0) = x0 6= 0 ∈ Rn

Definition (Regulation problem)

Starting from nonzero initial conditions, force the state vector to zero as t→∞.

−−−−−−−−−−−−−−−−−−−−−−

Goal: We want to solve this problem using state feedback u = −Kx

ẋ =Aclx, Acl = (A−BK) ∈ Rn×n,K ∈ Rn×p,

x(0) = x0 6= 0 ∈ Rn.

−−−−−−−−−−−−−−−−−−−−−−−−−

x(t) = eAtx0 +

∫t
0

eA(t−τ)Bu(τ)dτ

A is Hurwitz, regulation can be solved using u = 0

We want some performance

how fast
certain transient response
minimum energy,
etc
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Review: any controllable LTI system can be stabilized by full state feedback

Consider ẋ = Ax+ Bu, x(0) = x0 6= 0 ∈ Rn (?)

Objective If (A,B) is controllable, then we can stabilize system (?) using full
state feedback control u = −Kx, i.e., in ẋ = Ax+ Bu = (A− BK)x = Acl x, the
closed-loop matrix Acl is Hurwitz.

I For any µ ∈ R, if (A,B) controllable, then (−A− µI,B) is also controllable.

I σ(−A− µI) = {λi − µ}
N
i=1 where {λi}

N
i=1 = σ(A)

I we can always find µ ∈ R>0 such that −A− µI is Hurwitz.

I there exists a W > 01 such that (−A− µI)W +W(−A− µI)> = −BB>

I let P =W−1 then you can write

PA+A>P − PBB>P = −2µP

I let K = 1
2B
>P, then we can write

P(A− BK) + (A− BK)>P = −2µP < 0⇒ A− BK is a stability matrix

1
W =

∫∞
0 e(−µI−A)τBB>e(−µI−A)>τdτ> 0
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Regulation via state-feedback control

−−−−−−−−−−−−−−−−−−−−−−

Goal: We want to solve this problem using state feedback u = −Kx

ẋ =Aclx, Acl = (A−BK) ∈ Rn×n,K ∈ Rn×p,

x(0) = x0 6= 0 ∈ Rn.

−−−−−−−−−−−−−−−−−−−−−−−−−

Regulation via full state feedback:

fast with rate µ > 0: place the eigenvalues such that Re(λ) 6 −µ

control over transient: place eigenvalues in certain locations

Location of eignvalues
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Regulation via state-feedback control when (A,B) is controllable

Theorem

Let (A,B) be controllable. For every α > 0, it is possible to find a state-feedback controller
u = −Kx that places all the eigenvalues of the closed-loop matrix Acl = (A−BK) on the
complex semi plain Re[λ(Acl)] 6 −α.

Design procedure to obtain K such that Re[λ(Acl)] 6 −α for a given α > 0:

1 for a given α > 0 choose µ > α such that −µI−A is a stability matrix

2 Because (−µI−A,B) is controllable the Lyapunov controllability test says that

(−µI−A)W +W(−µI−A)> = −BB>,

has a unique solution given by W =
∫∞

0 e(−µI−A)τBB>e(−µI−A)>τdτ > 0.

3 Consider the following manipulations
(−µI−A)W +W(−µI−A)> = −BB>⇔

PA+A>P−PBB>P=−2αP, (P=W−1)

Let K =
1

2
B>P, then

PA+A>P− 2PBK = −2µP⇔ P(A−BK) + (A−BK)>P = −2µP < 0
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Regulation via state-feedback control when (A,B) is controllable

Theorem

Let (A,B) be controllable. For every α > 0, it is possible to find a state-feedback controller
u = −Kx that places all the eigenvalues of the closed-loop matrix Acl = (A−BK) on the
complex semi plain Re[λ(Acl)] 6 −α.

4 For a ε > 0 write P(A−BK)+(A−BK)>P =−2µP < 0 as

P(Acl + (µ− ε)I)+(Acl + (µ− ε)I)>P = −2εP < 0,

Lyapunov stability test: Acl + (µ− ε)I is a stability matrix,

Re(λ(Acl + µI− ε)) < 0 .

ε→ 0, we have <(λ(Acl) 6 −µ

Since µ > α we can conclude that <(λ(Acl) 6 −α.

Conclusion: K = 1
2B
>W−1 results in Re(λ(Acl))6−µ6−α

W−1 = 1
2B
>
( ∫∞

0 e(−µI−A)τBB>e(−µI−A)>τdτ
)−1
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Regulation via state-feedback control when (A,B) is controllable

Theorem (Eigenvalue assignment)

Let (A,B) be controllable. Given any symmetric set of n complex numbers
{ν1,ν2, · · · ,νn}, there exists a full-state feedback matrix K such that the
closed-loop system matrix (A− BK) has eigenvalues equal to these νi’s.

see HW 6 for the proof.
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Stabilizability for LTI systems

(A,B) uncontrollable: rankC = rank[B AB A2B · · · An−1B] =m< n

∃T (invertible) :

[
ẋc
ẋu

]
=

[
Ac A12

0 Au

]
︸ ︷︷ ︸

Ā

[
xc
xu

]
+

[
Bc
0

]
︸ ︷︷ ︸
B̄

u

Ā = T−1AT , B̄ = T−1B

Couple of things here:

λ[A] = λ[Ā]: because the two systems are allegorically equivalent
λ[Ā] = {λ[Ac],λ[Au]}: because Ā is block triangular
ẋu =Auxu: no controller goes to xu state equation, eigenvalues of Au cannot be changed by
stat feedback
(Ac,Bc) is controllable: we can change the eigenvalues of Ac using state feedback

Definition (Stabilizable LTI system)

Def. (Stabilizable system): The pair (A,B) is stabilizable if it is algebraically equivalent to a system in the
standard form for uncontrollable systems with n =m (i.e, Au does not exist) or with Au a stability
matrix.

Definition (Stabilizable LTI system (alternative definition))

The pair (A,B) is stabilizable if there exists a state feedback gain matrix K for which all the eigenvalues
of A−BK have strictly negative real part.
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Regulation via state-feedback control when (A,B) is controllable:
pole-placement/eigenvalue placement

ẋ =Ax+Bu, u = −Kx⇒ ẋ = (A−BK)x

(A,B) controllable: Given any symmetric set of n complex numbers {ν1,ν2, · · · ,νn}, there exists
a full-state feedback matrix K such that the closed-loop system matrix (A−BK) has eigenvalues
equal to these νi’s.

∃K : det(λI− (A−BK)) = (λ− ν1)(λ− ν2) · · · (λ− νn)︸ ︷︷ ︸
desired charac. polynomial

(A,B) is not controllable: rank(C) =m< n (A ∈ Rn×n):

∃T invertible : x = Tx̄ : ˙̄x =

[
ẋc
ẋu

]
=

[
Ac A12

0 Au

]
︸ ︷︷ ︸
Ā=T−1AT

[
xc
xu

]
+

[
Bc
0

]
︸ ︷︷ ︸

B̄=T−1B

u

u = −Kx = −KTx̄ = −K̄x̄ = −
[
K̄1 K̄2

] [xc
xu

]
˙̄x =

[
ẋc
ẋu

]
=

[
Ac −BcK̄1 A12 −BcK̄2

0 Au

]
︸ ︷︷ ︸

Ā−B̄K̄=T−1(A−BK)T

[
xc
xu

]

(Ac,Bc) is controllable, we can place eigenvalues of (Ac −BcK̄1) in any location we want using
state feedback!
We can only change the location of controllable eigenvalues using state feedback

We can only stabilize a system whose uncontrollable eigenvalues are stable

u = −K̄x̄ = −[K̄1 0]x̄ = −[K̄1 0]T−1︸ ︷︷ ︸
K

x = −Kx
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Tests to check stabilizability of LTI systems
There are various stabilizability tests. Following are some of them:

Theorem

The following statements are equivalent:

The pair (A,B) is stabilizable;

There exists no left eigenvector of A associated with an eigenvalue having nonnegative real part that is orthogonal to the
columns of B; {

v?A= λv (Re[λ(A)] > 0)

v?B= 0
=⇒ v= 0

rank[λI−A B] =n for all Re[λ(A)] > 0.

We have an uncontrollable system (A,B) with λ(A) = {−2, 3, 0}. (notice that A ∈ R3×3)

Q1: Can you find a state feedback gain K such that the eigenvalues of Acl = (A−BK) are
{−1,−2 + 3i,−2 − 3i}? A: The answer is no. Here, we want to change the location of all eigenvalues.
Because the system is uncontrollable, at least one of the eigenvalues is not controllable, i.e., its location
cannot be changed

Q2: When is it feasible to design a state feedback to place the eigenvalues of Acl at
{3,−2 + 3i,−2 − 3i}. A: Here, we have changed the location of eigenvalues {−2, 0}. This can only be
possible if these eigenvalues are controllable, that is, for example

rank([−2I−A B] = 3, rank([0I−A B] = 3

Q3: Can you find a state feedback gain K which results in A−BK being stable matrix?. A: Because the
system is uncontrollable, at least one of the eigenvalues is not controllable, i.e., its location cannot be
changed. We can find a state feedback to asymptotically stabilize the system if the only uncontrollable
eigenvalue of A is −2. In other words, we should have

rank([3I−A B] = 3, rank([0I−A B] = 3 10 / 14



A sample numerical example
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Tests to check stabilizability of LTI systems: example

ẋ =

[
−11 30
−4 11

]
x+

[
10
4

]
u

Controllability text:

rankC = rank[B AB] = rank

[
10 10
4 4

]
= 1 =⇒ (A,B) is not controllable!

PBH eigenvalue test for controllability

first find λ[A]:
∆(A) = det(λI−A) = (λ+ 11)(λ− 11) + 120 = λ2 − 1 = (λ− 1)(λ+ 1) = 0⇒ λ[A] = {−1, 1}

check rank of [λI−A B] for λ[A] = {−1, 1}

λ = −1 : rank[−I−A B] = rank

[
10 −30 10
4 −12 4

]
= 1⇒ λ = −1 is not a controllable eigenvalue

λ = 1 : rank[I−A B] = rank

[
12 −30 10
4 −10 4

]
= 2⇒ λ = 1 is a controllable eigenvalue

Then:

(A,B) is not controllable
(A,B) is stablilizable: because rank[λI−A B] = n for the eigenvalue with
positive real part λ = 1.
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Feedback controller design for stabilizable LTI systems: example

Objective Place eigenvalues of A−BK at {−1,−3}

Consider the state feedback u = −Kx = −[k1 k2]x

Acl =A−BK =

[
−11 − 10k1 30 − 10k2

−4 − 4k1 11 − 4k2

]

∆(Acl) = ∆(A−BK) = det
(
λI−

[
−11 − 10k1 30 − 10k2

−4 − 4k1 11 − 4k2

])
= (λ+ 1)(λ+ 10k1 + 4k2 − 1) = 0

λ[Acl] = {−1,−10k1 − 4k2 + 1}

Notice that we cannot change the location of uncontrollable eigenvalue but we can put the controllable
eigenvalue in any new location using state feedback!

We can pick k1 and k2 such that Acl has eigenvalues with strictly negative real parts and, as such,
stabilize the closed-loop system using u = −Kx.

For example k1 = 0 and k2 = 1 results in λ[Acl] = {−1,−3}.

You can confirm this by checking eigenvalues of A−BK =

[
−11 30
−4 11

]
−

[
10
4

]
[0 1] =

[
−11 20
−4 7

]
.

−−−−−−−−−−−−−

See the next slide for an alternative design approach:

Note: state feedback gain that places the eigenvalues in certain locations is not necessarily
unique
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Feedback controller design for stabilizable LTI systems: example

ẋ =

[
−11 30
−4 11

]
x+

[
10
4

]
u

λ[A]: ∆(A) = det(λI−A) = (λ+ 11)(λ− 11) + 120 = λ2 − 1 = (λ− 1)(λ+ 1) = 0⇒ λ[A] = {−1, 1}

Objective Place eigenvalues of A−BK at {−1,−3}

Controllability text:

rankC = rank[B AB] = rank

[
10 10
4 4

]
= 1 =⇒ (A,B) is not controllable!

Controllable decomposition

T =

[
5 0
2 0.2

]
, T−1 =

[
0.2 0
−2 5

]
Ā = T−1AT =

[
0.2 0
−2 5

] [
−11 30
−4 11

] [
5 0
2 0.2

]
=

[
1 −1.2
0 −1

]
, B̄ = T−1B =

[
2
0

]

We use (Ac,Bc) = (1, 2) to place eigenvalue of the controllable part at −3: λ(Ac −Bck̄1) = −3

λ− (1 − 2k̄1) = λ+ 3 ⇒ k̄1 = 2.

u = K̄x̄ = −
[
2 0

]
x̄ = −

[
2 0

]
T−1x = −

[
2 0

] [0.2 0
−2 5

]
x = −

[
0.4 0

]︸ ︷︷ ︸
K

x.

You can confirm this by checking eigenvalues of A−BK =

[
−11 30
−4 11

]
−

[
10
4

]
[0.4 0] =

[
−15 30
−5.6 11

]
.
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