Linear Systems |

Lecture 13

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmazQ@uci.edu

Nov. 10, 2015

Note: These slides only cover part of the discussions in the class. For further details,
consult your in-class notes.
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This lecture

@ Controllability of LTI systems

x = Ax + Bu,

y=Cx+Du X(to) =x0 € R™

o Can we steer the system states from every point in R™ to every other point in
R™ in finite time? ((completely-state) controllable system)

@ test to evaluate controllability
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Review: Completely-state controllable and reachable LTV systems

x=A(t)x+B(tju, xeR"

Definition ((Completely-state) reachable system)
Given two times t; > to > 0, starting from xo = 0,

(o emr a0 = [ o, oBumar) =

to

Definition ((Completely-state) controllable system)

| \

Given two times t; > to > 0, starting from xo # 0,

151
{xo e R™: Ju(.),0 = d(t1, to)xo —|—J d)(tl,T)B(T)u(T)dT} =R"

to

{xo ER™: () = —ul), xo = r cb(to,T)B(T)v(T)dT} _R"

to
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Review: controllability matrix for LTI systems

x = Ax + By, X(to) = X0 e R™

Definition (Reachability and controllability gramians for given t; > to > 0)

tg t
Wr (to, t1) =J b (t1, T)B(T)B (1) T d(tr, 1) T dr =J ABBTAT () g —
to

Jtl_toeATBBTeATTdT
t1 t + AT
Wc(to,t1)=J d)(to,T)B(T)B(T)Tq)(to,T)TdT=J eAlto—TIBBTeA  (to—T)gr =
to

t1—tg T
J e ATBBTe A Tdr.

vy

Let

¢=[B AB A’B ... A"lB]

nx(np)’

For any two time t; > to > 0

R[to,tl] = lmWR(to, tl) =ImC = ImWC(to, tl) = e[to,tﬂ.
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Controllable decomposition

x=Ax+Bu, xe€R", ucRP

rank[B AB ... A“*IB]:m<n

3T invertible s.t. x = TX transforms state equations to
= A A = B

_ 711 _ c 12 _ c

A=T AT—[0 Au]’ B_[O]

Ac c Rmxm, ,BC c Rmxp, Au c R(n—m)x(n—m), A12 c Rmx(n—m).
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Controllable decomposition

x=Ax+Bu, xe€R", ucRP

rank[B AB ... A“*IB]:m<n

3T invertible s.t. x = TX transforms state equations to

= 1+ |Ac A = |Bc
A=T AT—[O Al B = 0

Ac c Rmxm, ,BC c Rmxp, Au c R(n—m)x(n—m), A12 c Rmx(n—m).

Corollary

@ The pair (A.,B.) is controllale, i.e., rank [BC AcBe - chnlec] —m
@ The controllable subspace of (A, B) is Im [ I xm }
O(nfm)xm
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Controllable decomposition: example
0 1 0 0
x=10 0 1|x+|1]u
-6 —11 -6 —3

0 1 -3
C:[B AB AQB]: 1 -3 7
-3 7 =15
€ has only two linearly independent columns: A2B =—2B —3AB

Controllable decomposition
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Controllable decomposition: transfer function

x = Ax + Bu,
y=Cx+D

rank[B AB AMIBl =m<n
3T invertible s.t. x = TX transforms state equations to

x €ER™, u ERP

5 A Ap] 5 _ - B

A=T'AT = ¢ : B:TIB:[ ¢ }
O(thm]xm Au:| 0(

C=CT=[C. C,, D=D

n—m)xp

For (A,B,C,D): G(s) = C(sI—A) 1B+ D.

Transfer function of two algebraically equivalent system is the same
G (SI — AC)

~Ar | [Bc
0 (sIfAu)] [o}*D
7[CC Cu] (SI—OAC)fl

X B _ -1
(sI—Au)*l} {0}+D =Cc(sI—A¢) !B, + D.
G(s) =Cc(sI—Ac) B +D

Transfer function of an LTI system is equal to the transfer function of its controllable part.

(s)=G(s)=C(sI—A)'B+D=[Cc C.] {
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Controllable decomposition: example

-3 7 =15
C has only two linearly independent columns: A°B = —2B —3AB

o 1 =3
e=[B AB A?B]=|1 -3 7

Controllable decomposition

0 1 0 3.1 0
T= 1 -3 0}, T71: 1 0 O
-3 7 1 2 3 1
0 —2| 1 1
A=T?'AT=|1 3|0 |, B=T'B=|0|, C=CT=[1 —2]|0]
0 0 |-3 0
0 -2 1
RHEISH
s 2 1N s—2
A —C.(sI— . 1 . —[1 ) :%
G(s) =Ce(sI—Ac) "B +D = }{71 s+3] M 5+ 1)(s+2)
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Popov-Belevitch-Hautus (PBH) test for controllability

Theorem (Eigenvector test)
(A, B) is controllable iff there exists no left eigenvector of A orthogonal to the
columns of B., i.e.,

— v=0

VFA = AV*,
v*B =0,

or

ATv =2y,
= — v=0
B'v=0,

| A

Theorem (Eigenvalue test)

(A, B) is controllable iff rank [7\1 —A B] =n forall\ € C.
or

(A, B) is controllable iff rank [Al— A B] =n for all A eigenvalue of A.
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A part of proof of eigenvector PBH test for controllability

*A o A *
( if {:*B _ O,V ' then v = 0) — (A, B) controllable

By contradiction: Let (VA = Av*, v*B = 0) be only true for v = 0y, 1. Assume (A, B) is not

controllable, i.e., rank C < n.

. TR S _|Ac A 5 _ ——1|Bc
3T invertible: : A =T AT_{O Al B=T 0

Take any A eigenvalue of A, and its associated left eigenvector vy, i.e.,

vo #0, VAL = AV

Define v:i= T~ T

0 *
VJ #0 (Note: v = [0 v3] T~ 0).
Next, we show that v is a left eigenvector of A (recall that A = TAT1):
= A A
* ok —1y __ * —1 c 12 -1\ __
VA =V (TAT 1) =[0 3T (T{O AJT ),

0 VAT 1=[0 Avi]T1=av*
[0 viAd] [0 Av3]

vB=[0 v (T []ﬂ Y=1[0 vi] F” =0

this means that 3v # 0 such that (V*A = Av*, v*B = 0), which is a contradiction!

But
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PBH test for controllability: example (Uncontrollable eigenvalues)

0 1 -3
e=[s A AZB]:[I —3 7}
3 7 15

€ has only two linearly independent columns: A2B = —2B —3AB =

The system is not controllable

PBH eigenvector and eigen value controllability tests:

A={—1-2 -3}

Cor ding left cig
—1 —1 0 0
6 3 2 rank [—1T — A B] =rank | 0 —1 —1 1|=3
vi=1s|. va=la|. vs=1|3 6 11 5 -3
1 1 1
—2 —1 0 0
. rank[—21 —A  B] =rank| 0 —2 —1 1|=3
v B A0, v)B A0 6 11 4 -3
0 -3 1 o0 0
v;rB:[Z 3 1|1]|=0 rank [—31 — A B] =rank | 0 -3 -1 1| =2
—3 6 11 3 -3
The system is not controllable The system is not controllable
A3 = —3 is the uncontrollable cigenvalue
0 —2 1 1
A=TtAT=| 1 3] o |, B=T"1B=] 0
0 0 3 0
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The following material will be covered on next lecture.
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Lyapunov test for controllability

Theorem (Lyapunov test for controllability)

Assume that all the eigenvalues of A have negative real parts. (A, B) is controllable iff
there exists a unique W > 0 which is solves

AW+ WAT = —BB'
Moreover this solution is

W:J e "BBTeN Tdr
0
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Lyapunov stability theorem

Consider

x=Ax, x(0)=x€R"

Theorem: The following five conditions are equivalent for the LTI system above

0000

©

The system is asymptotically stable
The system is exponentially stable
All the eigenvalues of A have strictly negative real parts

For every Q > 0, 3 a unique solution P for the following Lyapunov equation
ATP+PA=-Q

Moreover P is symmetric and positive definite.

3 P > 0 for which the following Lyapunov matrix inequality holds

ATP+PA<O

For every matrix B for which (A, E) is controllable, there exists a unique solution
P > 0 to the Lyapunov -

AP +PAT =BB'
Moreover, P is symmetric and positive definite, and P = J;O ATTBB A Tdr.
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Regulation via state-feedback control

Consider
x=Ax+Bu, x(0)=xp#0€R"

Definition (Regulation problem)

Starting from nonzero initial conditions, force the state vector to zero as t — oo.

Goal: We want to solve this problem using state feedback u = —Kx
% =Acx, Ac = (A—BK)€RY™ K¢eRWP,
x(0) =xp #0 € R™.

@ A is Hurwitz, regulation can be solved using u =0
@ We want some performance

o how fast

@ certain transient response

@ minimum energy,

o etc
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Regulation via state-feedback control

Goal: We want to solve this problem using state feedback u = —Kx

%X =Aax, Ac = (A —BK)€RY™ K RY™P,
x(0) =x0 #0 € R™.

Regulation via full state feedback:

@ fast with rate i > 0: place the eigenvalues such that —Re(A) < p

@ control over transient: place eigenvalues in certain locations
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Regulation via state-feedback control when (A,B) is controllable

Theorem

Let (A, B) be controllable. For every i > 0, it is possible to find a state-feedback
controller w = —Ku that places all the eigenvalues of the closed-loop matrix
(A — BK) on the complex semi plain Re[s] < —u.

Theorem (Eigenvalue assignment)

Let (A, B) be controllable. Given any set of n complex numbers A1, Az, - -+, A,
there exists a full-state feedback matrix K such that the closed-loop system matrix
(A — BK) has eigenvalues equal to these A’s.

4
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