Linear Systems I Lecture 13

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Nov. 10, 2015

Note: These slides only cover part of the discussions in the class. For further details, consult your in-class notes.

This lecture

- Controllability of LTI systems

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{array} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}\right.
$$

- Can we steer the system states from every point in \mathbb{R}^{n} to every other point in \mathbb{R}^{n} in finite time? ((completely-state) controllable system)
- test to evaluate controllability

Review: Completely-state controllable and reachable LTV systems

$$
\dot{x}=A(t) x+B(t) u, \quad x \in \mathbb{R}^{n}
$$

Definition ((Completely-state) reachable system)

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0}=0$,

$$
\left\{\mathrm{x}_{1} \in \mathbb{R}^{n}: \exists \mathfrak{u}(.), \mathrm{x}_{1}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{1}, \tau\right) \mathrm{B}(\tau) \mathfrak{u}(\tau) \mathrm{d} \tau\right\}=\mathbb{R}^{n}
$$

Definition ((Completely-state) controllable system)

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0} \neq 0$,

$$
\left\{x_{0} \in \mathbb{R}^{n}: \exists \mathfrak{u}(.), 0=\phi\left(\mathrm{t}_{1}, \mathrm{t}_{0}\right) \mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{1}, \tau\right) \mathrm{B}(\tau) \mathfrak{u}(\tau) \mathrm{d} \tau\right\}=\mathbb{R}^{n}
$$

or

$$
\left\{x_{0} \in \mathbb{R}^{n}: \exists v(.)=-u(.), x_{0}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{0}, \tau\right) \mathrm{B}(\tau) v(\tau) \mathrm{d} \tau\right\}=\mathbb{R}^{n}
$$

Review: controllability matrix for LTI systems

$$
\dot{x}=A x+B u, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

Definition (Reachability and controllability gramians for given $t_{1}>t_{0} \geqslant 0$)

$$
\begin{aligned}
W_{R}\left(t_{0}, t_{1}\right)= & \int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{1}, \tau\right)^{\top} d \tau=\int_{t_{0}}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} d \tau= \\
& \int_{0}^{t_{1}-t_{0}} e^{A \tau} B B^{\top} e^{A^{\top} \tau} d \tau, \\
W_{C}\left(t_{0}, t_{1}\right)= & \int_{t_{0}}^{t_{1}} \phi\left(t_{0}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{0}, \tau\right)^{\top} d \tau=\int_{t_{0}}^{t_{1}} e^{A\left(t_{0}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{0}-\tau\right)} d \tau= \\
& \int_{0}^{t_{1}-t_{0}} e^{-A \tau} B B^{\top} e^{-A^{\top} \tau} d \tau .
\end{aligned}
$$

Theorem

Let

$$
\mathcal{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]_{n \times(n p)} .
$$

For any two time $\mathrm{t}_{1}>\mathrm{t}_{0} \geqslant 0$

$$
\mathcal{R}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]=\operatorname{Im} \mathrm{W}_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\operatorname{ImC}=\operatorname{Im} \mathrm{W}_{\mathrm{C}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right] .
$$

Controllable decomposition

$$
\dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p}
$$

Theorem

$$
\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & A^{\mathrm{n}-1} B
\end{array}\right]=m<n
$$

$\exists \mathrm{T}$ invertible s.t. $\mathrm{x}=\mathrm{T} \overline{\mathrm{x}}$ transforms state equations to

$$
\bar{A}=T^{-1} A T=\left[\begin{array}{cc}
A_{c} & A_{12} \\
0 & A_{u}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]
$$

$$
A_{c} \in \mathbb{R}^{m \times m}, \quad, B_{c} \in \mathbb{R}^{m \times p}, \quad A_{u} \in \mathbb{R}^{(n-m) \times(n-m)}, \quad A_{12} \in \mathbb{R}^{m \times(n-m)} .
$$

Controllable decomposition

$$
\dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p}
$$

Theorem

$$
\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & A^{n-1} B
\end{array}\right]=\mathrm{m}<\mathrm{n}
$$

$\exists \mathrm{T}$ invertible s.t. $\mathrm{x}=\mathrm{T} \overline{\mathrm{x}}$ transforms state equations to
$\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc}\mathrm{A}_{\mathrm{c}} & \mathrm{A}_{12} \\ 0 & A_{\mathrm{u}}\end{array}\right], \quad \overline{\mathrm{B}}=\left[\begin{array}{c}\mathrm{B}_{\mathrm{c}} \\ 0\end{array}\right]$
$A_{c} \in \mathbb{R}^{m \times m}, \quad, B_{c} \in \mathbb{R}^{m \times p}, \quad A_{u} \in \mathbb{R}^{(n-m) \times(n-m)}, \quad A_{12} \in \mathbb{R}^{m \times(n-m)}$.

Corollary

- The pair $\left(A_{c}, B_{c}\right)$ is controllale, i.e., rank $\left[\begin{array}{llll}B_{c} & A_{c} B_{c} & \cdots & A_{c}^{m-1} B_{c}\end{array}\right]=m$
- The controllable subspace of (\bar{A}, \bar{B}) is $\operatorname{Im}\left[\begin{array}{c}\mathrm{I}_{\mathrm{m} \times \mathrm{m}} \\ 0_{(\mathrm{n}-\mathrm{m}) \times \mathrm{m}}\end{array}\right]$

Controllable decomposition: example

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] u \\
\mathcal{C}=\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & -3 & 7 \\
-3 & 7 & -15
\end{array}\right]
\end{gathered}
$$

\mathcal{C} has only two linearly independent columns: $A^{2} B=-2 B-3 A B$ Controllable decomposition

$$
\begin{gathered}
\mathrm{T}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -3 & 0 \\
-3 & 7 & 1
\end{array}\right], \quad \mathrm{T}^{-1}=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 0 & 0 \\
2 & 3 & 1
\end{array}\right] \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{~A} \mathrm{~T}=\left[\begin{array}{cc|c}
0 & -2 & 1 \\
1 & -3 & 0 \\
\hline 0 & 0 & -3
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{l}
1 \\
0 \\
\hline 0
\end{array}\right] \\
\mathrm{A}_{\mathrm{c}}=\left[\begin{array}{cc}
0 & -2 \\
1 & -3
\end{array}\right], \quad \mathrm{B}_{\mathrm{c}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gathered}
$$

Controllable decomposition: transfer function

Theorem

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p} \\
& y=C x+D
\end{aligned}
$$

$\exists \mathrm{T}$ invertible s.t. $\mathrm{x}=\mathrm{T} \bar{\chi}$ transforms state equations to

$$
\begin{aligned}
& \bar{A}=T^{-1} A T=\left[\begin{array}{cc}
A_{c} & A_{12} \\
0_{(n-m) \times m} & A_{u}
\end{array}\right], \quad \bar{B}=T^{-1} B=\left[\begin{array}{c}
B_{c} \\
0_{(n-m) \times p}
\end{array}\right] \\
& \overline{\mathrm{C}}=\mathrm{CT}=\left[\begin{array}{ll}
\mathrm{C}_{\mathrm{c}} & \mathrm{C}_{\mathrm{u}}
\end{array}\right], \quad \overline{\mathrm{D}}=\mathrm{D}
\end{aligned}
$$

For $(A, B, C, D): \hat{G}(s)=C(s I-A)^{-1} B+D$.
Transfer function of two algebraically equivalent system is the same

$$
\begin{aligned}
& \hat{G}(s)=\hat{G}(s)=\bar{C}(s I-\bar{A})^{-1} \bar{B}+D=\left[\begin{array}{ll}
C_{c} & C_{u}
\end{array}\right]\left[\begin{array}{cc}
\left(s I-A_{c}\right) & -A_{12} \\
0 & \left(s I-A_{u}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]+D \\
& =\left[\begin{array}{ll}
C_{c} & C_{u}
\end{array}\right]\left[\begin{array}{cc}
\left(s I-A_{c}\right)^{-1} & \times \\
0 & \left(s I-A_{u}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]+D=C_{c}\left(s I-A_{c}\right)^{-1} B_{c}+D . \\
& \hat{G}(s)=C_{c}\left(s I-A_{c}\right)^{-1} B_{c}+D
\end{aligned}
$$

Transfer function of an LTI system is equal to the transfer function of its controllable part.

Controllable decomposition: example

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] x \\
& \mathcal{C}=\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & -3 & 7 \\
-3 & 7 & -15
\end{array}\right]
\end{aligned}
$$

\mathcal{C} has only two linearly independent columns: $A^{2} B=-2 B-3 A B$
Controllable decomposition

$$
\begin{gathered}
\mathrm{T}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -3 & 0 \\
-3 & 7 & 1
\end{array}\right], \quad \mathrm{T}^{-1}=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 0 & 0 \\
2 & 3 & 1
\end{array}\right] \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc|c}
0 & -2 & 1 \\
1 & -3 & 0 \\
\hline 0 & 0 & -3
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \overline{\mathrm{C}}=\mathrm{CT}=\left[\begin{array}{ll}
1 & -2 \mid 0
\end{array}\right] \\
\mathrm{A}_{\mathrm{c}}=\left[\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right], \quad \mathrm{B}_{\mathrm{c}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\hat{G}(s)=C_{c}\left(s I-A_{c}\right)^{-1} \mathrm{~B}_{\mathrm{c}}+\mathrm{D}=\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{cc}
s & 2 \\
-1 & s+3
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{s-2}{(s+1)(s+2)}
\end{gathered}
$$

Popov-Belevitch-Hautus (PBH) test for controllability

Theorem (Eigenvector test)

(A, B) is controllable iff there exists no left eigenvector of A orthogonal to the columns of B., i.e.,

$$
\left\{\begin{array}{l}
v^{\star} \mathrm{A}=\lambda v^{\star}, \\
v^{\star} \mathrm{B}=0,
\end{array} \quad \Longrightarrow \quad v=0\right.
$$

or

$$
\left\{\begin{array}{l}
A^{\top} v=\lambda v, \\
\mathrm{~B}^{\top} v=0,
\end{array} \quad \Longrightarrow \quad v=0\right.
$$

Theorem (Eigenvalue test)

(A, B) is controllable iff rank $\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ for all $\lambda \in \mathbb{C}$. or
(A, B) is controllable iff rank $\left[\begin{array}{ll}\lambda-A & B\end{array}\right]=n$ for all λ eigenvalue of A.

A part of proof of eigenvector PBH test for controllability

$$
\text { (if }\left\{\begin{array}{l}
v^{\star} \mathrm{A}=\lambda v^{\star}, \\
v^{\star} \mathrm{B}=0,
\end{array} \quad \text { then } \quad v=0\right) \Longrightarrow(\mathrm{A}, \mathrm{~B}) \text { controllable }
$$

By contradiction: Let ($v^{\star} A=\lambda v^{\star}, v^{\star} B=0$) be only true for $v=0_{n \times 1}$. Assume (A, B) is not controllable, i.e., rank $\mathcal{C}<n$.

$$
\exists \mathrm{T} \text { invertible: : } \overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc}
\mathrm{A}_{\mathrm{c}} & \mathrm{~A}_{12} \\
0 & \mathrm{~A}_{\mathrm{u}}
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1}\left[\begin{array}{c}
\mathrm{B}_{\mathrm{c}} \\
0
\end{array}\right]
$$

Take any λ eigenvalue of A_{u} and its associated left eigenvector ν_{2}, i.e.,

$$
v_{2} \neq 0, v_{2}^{\star} A_{u}=\lambda v_{2}^{\star}
$$

Define $v:=\mathrm{T}^{-\top}\left[\begin{array}{c}0 \\ v_{2}\end{array}\right] \neq 0$ (Note: $\left.v^{\star}=\left[\begin{array}{ll}0 & v_{2}^{\star}\end{array}\right] \mathrm{T}^{-1} \neq 0\right)$.
Next, we show that v is a left eigenvector of A (recall that $A=T \bar{A} T^{-1}$):

$$
\begin{gathered}
v^{\star} \mathrm{A}=v^{\star}\left(\mathrm{T} \overline{\mathrm{~A}} \mathrm{~T}^{-1}\right)=\left[\begin{array}{ll}
0 & v_{2}^{\star}
\end{array}\right] \mathrm{T}^{-1}\left(\mathrm{~T}\left[\begin{array}{cc}
\mathrm{A}_{\mathrm{c}} & \mathrm{~A}_{12} \\
0 & A_{u}
\end{array}\right] \mathrm{T}^{-1}\right)= \\
{\left[\begin{array}{ll}
0 & v_{2}^{\star} \mathrm{A}_{\mathfrak{u}}
\end{array}\right] \mathrm{T}^{-1}=\left[\begin{array}{ll}
0 & \lambda v_{2}^{\star}
\end{array}\right] \mathrm{T}^{-1}=\lambda v^{\star}}
\end{gathered}
$$

But

$$
v^{\star} \mathrm{B}=\left[\begin{array}{ll}
0 & v_{2}^{\star}
\end{array}\right] \mathrm{T}^{-1}\left(\mathrm{~T}\left[\begin{array}{c}
\mathrm{B}_{\mathrm{c}} \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & v_{2}^{\star}
\end{array}\right]\left[\begin{array}{c}
\mathrm{B}_{\mathrm{c}} \\
0
\end{array}\right]=0
$$

this means that $\exists v \neq 0$ such that $\left(v^{\star} A=\lambda v^{\star}, v^{\star} \mathrm{B}=0\right)$, which is a contradiction!

PBH test for controllability: example (Uncontrollable eigenvalues)

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] u \\
\mathcal{C}=\left[\begin{array}{lll}
B & \text { A B } & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & -3 & 7 \\
-3 & 7 & -15
\end{array}\right]
\end{gathered}
$$

\mathcal{C} has only two linearly independent columns: $A^{2} B=-2 B-3 A B \Rightarrow$

> The system is not controllable

PBH eigenvector and eigen value controllability tests:

$$
\lambda=\{-1,-2,-3\}
$$

Corresponding left eigenvectors:

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
6 \\
5 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \\
& \operatorname{rank}\left[\begin{array}{ll}
-1 \mathrm{I}-\mathrm{A} & \mathrm{~B}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
0 & -1 & -1 & 1 \\
6 & 11 & 5 & -3
\end{array}\right]=3 \\
& v_{1}^{\top} \mathrm{B} \neq 0, \quad v_{2}^{\top} \mathrm{B} \neq 0 \\
& \text { rank }[-2 I-A \\
& \text { B] }=\operatorname{rank}\left[\begin{array}{cccc}
-2 & -1 & 0 & 0 \\
0 & -2 & -1 & 1 \\
6 & 11 & 4 & -3
\end{array}\right]=3 \\
& v_{3}^{\top} \mathrm{B}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]=0 \\
& \text { rank }[-3 I-A \\
& \mathrm{B}]=\operatorname{rank}\left[\begin{array}{cccc}
-3 & -1 & 0 & 0 \\
0 & -3 & -1 & 1 \\
6 & 11 & 3 & -3
\end{array}\right]=2
\end{aligned}
$$

The system is not controllable

$$
\begin{aligned}
\lambda_{3} & =-3 \text { is the uncontrollable eigenvalue } \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{~A} \mathrm{~T} & =\left[\begin{array}{cc|c}
0 & -2 & 1 \\
1 & -3 & 0 \\
\hline 0 & 0 & -3
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{c}
1 \\
0 \\
\hline 0
\end{array}\right]
\end{aligned}
$$

The following material will be covered on next lecture.

Lyapunov test for controllability

Theorem (Lyapunov test for controllability)

Assume that all the eigenvalues of A have negative real parts. (A, B) is controllable iff there exists a unique $\mathrm{W}>0$ which is solves

$$
\mathrm{AW}+\mathrm{WA}^{\top}=-\mathrm{BB}^{\top}
$$

Moreover this solution is

$$
W=\int_{0}^{\infty} e^{A^{\top} \tau} B^{\top} e^{A^{\top} \tau} d \tau
$$

Proof:

Lyapunov stability theorem

Consider

$$
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

Theorem: The following five conditions are equivalent for the LTI system above
(1) The system is asymptotically stable
(2) The system is exponentially stable
(3) All the eigenvalues of A have strictly negative real parts
(4) For every $\mathrm{Q}>0, \exists$ a unique solution P for the following Lyapunov equation

$$
A^{\top} P+P A=-Q
$$

Moreover P is symmetric and positive definite.
(5) $\exists \mathrm{P}>0$ for which the following Lyapunov matrix inequality holds

$$
A^{\top} P+P A<0
$$

(6) For every matrix \bar{B} for which (A, \bar{B}) is controllable, there exists a unique solution P >0 to the Lyapunov

$$
\mathrm{AP}+\mathrm{PA}^{\top}=\overline{\mathrm{B}} \overline{\mathrm{~B}}^{\top}
$$

Moreover, P is symmetric and positive definite, and $P=\int_{0}^{\infty} e^{A^{\top} \tau} \bar{B} \bar{B}^{\top} e^{A^{\top} \tau} d \tau$.

Regulation via state-feedback control

Consider

$$
\dot{x}=A x+B u, \quad x(0)=x_{0} \neq 0 \in \mathbb{R}^{n}
$$

Definition (Regulation problem)

Starting from nonzero initial conditions, force the state vector to zero as $t \rightarrow \infty$.

Goal: We want to solve this problem using state feedback $u=-K x$

$$
\begin{gathered}
\dot{x}=A_{c l} x, \quad A_{c l}=(A-B K) \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times p} \\
x(0)=x_{0} \neq 0 \in \mathbb{R}^{n} . \\
---------------------------\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
\end{gathered}
$$

- A is Hurwitz, regulation can be solved using $u=0$
- We want some performance
- how fast
- certain transient response
- minimum energy,
- etc

Regulation via state-feedback control

Goal: We want to solve this problem using state feedback $u=-K x$

$$
\begin{aligned}
& \dot{x}=A_{c l} x, \quad A_{c l}=(A-B K) \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times p}, \\
& x(0)=x_{0} \neq 0 \in \mathbb{R}^{n} .
\end{aligned}
$$

Regulation via full state feedback:

- fast with rate $\mu>0$: place the eigenvalues such that $-\operatorname{Re}(\lambda) \leqslant \mu$
- control over transient: place eigenvalues in certain locations

Regulation via state-feedback control when (A,B) is controllable

Theorem

Let (A, B) be controllable. For every $\mu>0$, it is possible to find a state-feedback controller $\mathrm{u}=-\mathrm{Ku}$ that places all the eigenvalues of the closed-loop matrix ($A-B K$) on the complex semi plain $\operatorname{Re}[s] \leqslant-\mu$.

Theorem (Eigenvalue assignment)

Let (A, B) be controllable. Given any set of n complex numbers $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, there exists a full-state feedback matrix K such that the closed-loop system matrix ($A-B K$) has eigenvalues equal to these λ_{i} 's.

