Linear Systems I Lecture 12

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Complementary Reading: Ch 6.1, 6.2 and 6.8 from Ref[1].
Note: These slides only cover part of the discussions in the class. For further details, consult your in-class notes.

This lecture: controllability and reachability concepts for LTI systems

- Controllable and reachable subspaces

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{array} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}\right.
$$

- Can we steer the system states from zero initial conditions to any place in the space in finite time? If not, what are such points?
- Can we steer the system states from any arbitrary point in the space to the origin in finite time? If not, what are such points?

Review of Controllable and reachable subspaces for LTV systems

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}=A(t) x+B(t) u, \\
y=C(t) x+D(t) u,
\end{array} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}\right. \\
x(t)=\phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \phi(t, \tau) B(\tau) u(\tau) d \tau \Rightarrow \\
\text { at } t=t_{1}: \quad x_{1}=x\left(t_{1}\right)=\phi\left(t_{1}, t_{0}\right) x_{0}+\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau
\end{gathered}
$$

Definition (Reachable subspace (controllable-from-the-origin))

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0}=0$,

$$
\mathcal{R}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]:=\left\{\mathrm{x}_{1} \in \mathbb{R}^{n}: \exists u(.), \mathrm{x}_{1}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{1}, \tau\right) \mathrm{B}(\tau) u(\tau) \mathrm{d} \tau\right\}
$$

Definition (Controllable subspace (controllable-to-the-origin))

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0} \neq 0$,

$$
\begin{gathered}
\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]:=\left\{\mathrm{x}_{0} \in \mathbb{R}^{n}: \exists u(.), 0=\phi\left(\mathrm{t}_{1}, \mathrm{t}_{0}\right) \mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{1}, \tau\right) \mathrm{B}(\tau) u(\tau) \mathrm{d} \tau\right\} \\
\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]:=\left\{x_{0} \in \mathbb{R}^{n}: \exists v(.)=-u(.), x_{0}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{0}, \tau\right) \mathrm{B}(\tau) v(\tau) \mathrm{d} \tau\right\}
\end{gathered}
$$

Review of Reachability gramians for LTV systems

Definition (Reachability and controllability gramians for given $t_{1}>t_{0} \geqslant 0$)

$$
\text { Reachability gramian: } \quad W_{R}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{1}, \tau\right)^{\top} d \tau
$$

Theorem (Reachable subspace)

Given two times $t_{1}>t_{0} \geqslant 0$,

$$
\mathcal{R}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]=\operatorname{Im} W_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right),
$$

Moreover, if $\mathrm{x}_{1}=\mathrm{W}_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right) \eta_{1} \in \operatorname{Im} \mathrm{~W}_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$, the control

$$
\mathrm{u}(\mathrm{t})=\mathrm{B}(\mathrm{t})^{\top} \phi\left(\mathrm{t}_{1}, \mathrm{t}\right)^{\top} \eta_{1}, \quad \mathrm{t} \in\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right], \quad \text { minimum-energy open-loop controller }
$$

can be used to transfer the state from $x\left(t_{0}\right)=0$ to $x\left(t_{1}\right)=x_{1}$.

Review of Controllability gramians for LTV systems

Definition (Reachability and controllability gramians for given $t_{1}>t_{0} \geqslant 0$)
Controllability gramian: $\quad W_{C}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \phi\left(t_{0}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{0}, \tau\right)^{\top} d \tau$,

Theorem (Controllable subspace)
Given two times $t_{1}>t_{0} \geqslant 0$,

$$
\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]=\operatorname{Im} \mathrm{W}_{\mathrm{C}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right),
$$

Moreover, if $x_{0}=W_{C}\left(t_{0}, t_{1}\right) \eta_{0} \in \operatorname{Im} W_{C}\left(t_{0}, t_{1}\right)$, the control

$$
u(t)=-\mathrm{B}(\mathrm{t})^{\top} \phi\left(\mathrm{t}_{0}, \mathrm{t}\right)^{\top} \eta_{0}, \quad \mathrm{t} \in\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right], \quad \text { minimum-energy open-loop controller }
$$

can be used to transfer the state from $x\left(\mathrm{t}_{0}\right)=\mathrm{x}_{0}$ to $x\left(\mathrm{t}_{1}\right)=0$.

Completely-state controllable and reachable LTV systems

$$
\dot{x}=A(t) x+B(t) u, \quad x \in \mathbb{R}^{n}
$$

Definition ((Completely-state) reachable system)

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0}=0$,

$$
\left\{\mathrm{x}_{1} \in \mathbb{R}^{n}: \exists \mathrm{u}(.), \mathrm{x}_{1}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \phi\left(\mathrm{t}_{1}, \tau\right) \mathrm{B}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau\right\}=\mathbb{R}^{n}
$$

How to check: $\operatorname{rank}\left(W_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)\right)=\mathrm{n}$

Definition ((Completely-state) controllable system)

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0} \neq 0$,

$$
\left\{x_{0} \in \mathbb{R}^{n}: \exists v(.)=-u(.), x_{0}=\int_{t_{0}}^{t_{1}} \phi\left(t_{0}, \tau\right) B(\tau) v(\tau) d \tau\right\}=\mathbb{R}^{n}
$$

How to check: $\operatorname{rank}\left(W_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)\right)=\mathrm{n}$

Controllable and reachable subspaces for LTI systems

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}=A x+B u, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n} \\
y=C x+D u,
\end{array}\right. \\
x(t)=\phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \phi(t, \tau) B(\tau) u(\tau) d \tau=e^{A\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{A(t-\tau)} B(\tau) u(\tau) d \tau \Rightarrow \\
x_{1}=x\left(t_{1}\right)=\phi\left(t_{1}, t_{0}\right) x_{0}+\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau=e^{A\left(t_{1}-t_{0}\right)} x_{0}+\int_{t_{0}}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B(\tau) u(\tau) d \tau
\end{gathered}
$$

Definition (Reachable subspace (controllable-from-the-origin))

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0}=0$,

$$
\mathcal{R}\left[t_{0}, t_{1}\right]:=\left\{x_{1} \in \mathbb{R}^{n}: \exists u(.), x_{1}=\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau=\int_{t_{0}}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B(\tau) u(\tau) d \tau\right\}
$$

Definition (Controllable subspace (controllable-to-the-origin))

Given two times $t_{1}>t_{0} \geqslant 0$, starting from $x_{0} \neq 0$,

$$
\begin{gathered}
\mathcal{C}\left[t_{0}, t_{1}\right]:=\left\{x_{0} \in \mathbb{R}^{n}: \exists u(.), 0=\phi\left(t_{1}, t_{0}\right) x_{0}+\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau\right. \\
\left.=e^{A\left(t_{1}-t_{0}\right)} x_{0}+\int_{t_{0}}^{t_{1}} e^{\mathcal{A}\left(t_{1}-\tau\right)} B(\tau) u(\tau) d \tau\right\} \\
\mathcal{C}\left[t_{0}, t_{1}\right]:=\left\{x_{0} \in \mathbb{R}^{n}: \exists v(.)=-u(.), x_{0}=\int_{t_{0}}^{t_{1}} e^{A\left(t_{0}-\tau\right)} B(\tau) v(\tau) d \tau\right\}
\end{gathered}
$$

Controllability and reachability gramians for LTI systems

$$
\dot{x}=A x+B u, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

Definition (Reachability and controllability gramians for given $t_{1}>t_{0} \geqslant 0$)

$$
\begin{aligned}
& W_{R}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{1}, \tau\right)^{\top} d \tau=\int_{t_{0}}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} d \tau . \\
& W_{C}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \phi\left(t_{0}, \tau\right) B(\tau) B(\tau)^{\top} \phi\left(t_{0}, \tau\right)^{\top} d \tau=\int_{t_{0}}^{t_{1}} e^{A\left(t_{0}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{0}-\tau\right)} d \tau .
\end{aligned}
$$

Alternatively, we can write
Definition (Reachability and controllability gramians over any finite time interval $[0, T]$)

$$
\begin{gathered}
W_{R}\left(t_{0}, t_{1}\right)=\int_{0}^{t_{1}-t_{0}} e^{A \tau} B B^{\top} e^{A^{\top}(\tau)} d \tau=\int_{0}^{T} e^{A t} B B^{\top} e^{A^{\top} t} d t \\
W_{C}\left(t_{0}, t_{1}\right)=\int_{0}^{t_{1}-t_{0}} e^{-A \tau} B B^{\top} e^{-A^{\top} \tau} d \tau=\int_{0}^{T} e^{-A t} B B^{\top} e^{-A^{\top} t} d t
\end{gathered}
$$

Controllability matrix for LTI systems

$$
\dot{x}=A x+B u, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

Definition (Reachability and controllability gramians for over any finite time interval $[0, T])$

$$
\begin{gathered}
W_{R}\left(t_{0}, t_{1}\right)=\int_{0}^{t_{1}-t_{0}} e^{A \tau} B B^{\top} e^{A^{\top}(\tau)} d \tau=\int_{0}^{T} e^{A t} B B^{\top} e^{A^{\top} t} d t . \\
W_{C}\left(t_{0}, t_{1}\right)=\int_{0}^{t_{1}-t_{0}} e^{-A \tau} B B^{\top} e^{-A^{\top} \tau} d \tau=\int_{0}^{T} e^{-A t} B B^{\top} e^{-A^{\top} t} d t .
\end{gathered}
$$

Theorem

Let

$$
\mathcal{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]_{n \times(n p)}
$$

For any two time $\mathrm{t}_{1}>\mathrm{t}_{0} \geqslant 0$

$$
\mathcal{R}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]=\operatorname{Im} \mathrm{W}_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\operatorname{Im} \mathrm{C}=\operatorname{Im} \mathrm{W}_{\mathrm{C}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right] .
$$

Controllable and reachable subspaces: example

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
-\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} & 0 \\
0 & -\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}
\end{array}\right] x+\left[\begin{array}{c}
\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} \\
\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}
\end{array}\right] u
$$

This is an LTI system, therefore the controllable and reachable subsets are equal to one and other and can be obtained from finding Image (range) of controllability matrix:

- $\omega=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}$

$$
\mathcal{C}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
\omega & -\omega^{2} \\
\omega & -\omega^{2}
\end{array}\right]
$$

\mathcal{C} has one linearly independent column. The reachable and controllable subsets are $(\alpha \in \mathbb{R})$:

$$
\operatorname{ImC}=\alpha\left[\begin{array}{l}
\omega \\
\omega
\end{array}\right]=\beta\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathcal{R}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\mathrm{C}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)
$$

- $\omega_{1}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} \neq \omega_{2}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}$

$$
\mathcal{C}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
\omega_{1} & -\omega_{1}^{2} \\
\omega_{2} & -\omega_{2}^{2}
\end{array}\right]
$$

\mathcal{C} has two linearly independent columns. The reachable and controllable subsets are $(\alpha, \beta \in \mathbb{R})$:

$$
\operatorname{ImC}=\alpha\left[\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array}\right]+\beta\left[\begin{array}{l}
\omega_{1}^{2} \\
\omega_{2}^{2}
\end{array}\right]=\mathbb{R}^{2}=\mathcal{R}\left(t_{0}, t_{1}\right)=C\left(t_{0}, t_{1}\right)
$$

In this case every point in the \mathbb{R}^{2} is reachable from the origin in finite time and every point in the \mathbb{R}^{2} can be steered to origin in finite time.

Controllable LTI systems

Definition

The state equation $\dot{x}=A x+B u$ or the pair (A, B) is said to be controllable if for any initial state $x(0)=x_{0}$ and any final state x_{1}, there exists an input that transfers x_{0} to x_{1} in a finite time. Otherwise (A, B) is said to be uncontrollable.

Theorem

Let

$$
\mathcal{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]_{n \times(n p)} .
$$

For any two time $\mathrm{t}_{1}>\mathrm{t}_{0} \geqslant 0$

$$
\mathcal{R}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right]=\operatorname{Im} \mathrm{W}_{\mathrm{R}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\operatorname{Im} \mathbb{C}=\operatorname{Im} \mathrm{W}_{\mathrm{C}}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)=\mathcal{C}\left[\mathrm{t}_{0}, \mathrm{t}_{1}\right] .
$$

Theorem

The following statements are equivalent:
(1) The pair (A, B) is controllable.
(2) The matrix below is nonsingular for any $\mathrm{t}>0$

$$
W_{C}(t)=\int_{0}^{t} e^{A t} B B^{\top} e^{A^{\top} t} d t
$$

(3) The $\mathrm{n} \times(\mathrm{np})$ controllability matrix \mathcal{C} is full row rank

$$
\operatorname{Rank} \mathrm{C}=\operatorname{Rank}\left[\begin{array}{lllll}
\mathrm{B} & \mathrm{AB} & \mathrm{~A}^{2} \mathrm{~B} & \cdots & \mathrm{~A}^{\mathrm{n}-1} \mathrm{~B}
\end{array}\right]_{\mathrm{n} \times(\mathrm{np})}=\mathrm{n} .
$$

Rest of today's lecture

- Controllability of LTI systems

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{array} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}\right.
$$

- Can we steer the system states from every point in \mathbb{R}^{n} to every other point in \mathbb{R}^{n} in finite time? ((completely-state) controllable system)
- test to evaluate controllability

Controllable decomposition

$$
\dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p}
$$

Theorem

$$
\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & A^{\mathrm{n}-1} B
\end{array}\right]=\mathrm{m}<\mathrm{n}
$$

$\exists \mathrm{T}$ invertible s.t. $\mathrm{x}=\mathrm{T} \overline{\mathrm{x}}$ transforms state equations to
$\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc}\mathrm{A}_{\mathrm{c}} & \mathrm{A}_{12} \\ 0 & A_{\mathrm{u}}\end{array}\right], \quad \overline{\mathrm{B}}=\left[\begin{array}{c}\mathrm{B}_{\mathrm{c}} \\ 0\end{array}\right]$
$A_{c} \in \mathbb{R}^{m \times m}, \quad, B_{c} \in \mathbb{R}^{m \times p}, \quad A_{u} \in \mathbb{R}^{(n-m) \times(n-m)}, \quad A_{12} \in \mathbb{R}^{m \times(n-m)}$.

Corollary

- The pair $\left(A_{c}, B_{c}\right)$ is controllale, i.e., rank $\left[\begin{array}{llll}B_{c} & A_{c} B_{c} & \cdots & A_{c}^{m-1} B_{c}\end{array}\right]=m$
- The controllable subspace of (\bar{A}, \bar{C}) is $\operatorname{lm}\left[\begin{array}{c}\mathrm{I}_{\mathrm{m} \times \mathrm{m}} \\ 0_{(\mathrm{n}-\mathrm{m}) \times \mathrm{m}}\end{array}\right]$

Controllable decomposition: example

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] u \\
\mathcal{C}=\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & -3 & 7 \\
-3 & 7 & -15
\end{array}\right]
\end{gathered}
$$

\mathcal{C} has only two linearly independent columns: $A^{2} B=-2 B-3 A B$ Controllable decomposition

$$
\begin{gathered}
\mathrm{T}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -3 & 0 \\
-3 & 7 & 1
\end{array}\right], \quad \mathrm{T}^{-1}=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 0 & 0 \\
2 & 3 & 1
\end{array}\right] \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{~A} \mathrm{~T}=\left[\begin{array}{cc|c}
0 & -2 & 1 \\
1 & -3 & 0 \\
\hline 0 & 0 & -3
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{l}
1 \\
0 \\
\hline 0
\end{array}\right] \\
\mathrm{A}_{\mathrm{c}}=\left[\begin{array}{cc}
0 & -2 \\
1 & -3
\end{array}\right], \quad \mathrm{B}_{\mathrm{c}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gathered}
$$

Controllable decomposition: transfer function

Theorem

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p} \\
& y=C x+D
\end{aligned}
$$

$\exists \mathrm{T}$ invertible s.t. $\mathrm{x}=\mathrm{T} \bar{\chi}$ transforms state equations to

$$
\begin{aligned}
& \bar{A}=T^{-1} A T=\left[\begin{array}{cc}
A_{c} & A_{12} \\
0_{(n-m) \times m} & A_{u}
\end{array}\right], \quad \bar{B}=T^{-1} B=\left[\begin{array}{c}
B_{c} \\
0_{(n-m) \times p}
\end{array}\right] \\
& \overline{\mathrm{C}}=\mathrm{CT}=\left[\begin{array}{ll}
\mathrm{C}_{\mathrm{c}} & \mathrm{C}_{\mathrm{u}}
\end{array}\right], \quad \overline{\mathrm{D}}=\mathrm{D}
\end{aligned}
$$

For $(A, B, C, D): \hat{G}(s)=C(s I-A)^{-1} B+D$.
Transfer function of two algebraically equivalent system is the same

$$
\begin{aligned}
& \hat{G}(s)=\hat{G}(s)=\bar{C}(s I-\bar{A})^{-1} \bar{B}+D=\left[\begin{array}{ll}
C_{c} & C_{u}
\end{array}\right]\left[\begin{array}{cc}
\left(s I-A_{c}\right) & -A_{12} \\
0 & \left(s I-A_{u}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]+D \\
& =\left[\begin{array}{ll}
C_{c} & C_{u}
\end{array}\right]\left[\begin{array}{cc}
\left(s I-A_{c}\right)^{-1} & \times \\
0 & \left(s I-A_{u}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]+D=C_{c}\left(s I-A_{c}\right)^{-1} B_{c}+D . \\
& \hat{G}(s)=C_{c}\left(s I-A_{c}\right)^{-1} B_{c}+D
\end{aligned}
$$

Transfer function of an LTI system is equal to the transfer function of its controllable part.

Controllable decomposition: example

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] x \\
& \mathcal{C}=\left[\begin{array}{lll}
\mathrm{B} & \mathrm{AB} & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & -3 & 7 \\
-3 & 7 & -15
\end{array}\right]
\end{aligned}
$$

\mathcal{C} has only two linearly independent columns: $A^{2} B=-2 B-3 A B$
Controllable decomposition

$$
\begin{gathered}
\mathrm{T}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -3 & 0 \\
-3 & 7 & 1
\end{array}\right], \quad \mathrm{T}^{-1}=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 0 & 0 \\
2 & 3 & 1
\end{array}\right] \\
\overline{\mathrm{A}}=\mathrm{T}^{-1} \mathrm{AT}=\left[\begin{array}{cc|c}
0 & -2 & 1 \\
1 & -3 & 0 \\
\hline 0 & 0 & -3
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{T}^{-1} \mathrm{~B}=\left[\begin{array}{l}
1 \\
0 \\
\hline 0
\end{array}\right], \overline{\mathrm{C}}=\mathrm{CT}=\left[\begin{array}{ll}
1 & -2 \mid 0
\end{array}\right] \\
\mathrm{A}_{\mathrm{c}}=\left[\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right], \quad \mathrm{B}_{\mathrm{c}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\hat{\mathrm{G}}(\mathrm{~s})=\mathrm{C}_{\mathrm{c}}\left(\mathrm{sI}-\mathrm{A}_{\mathrm{c}}\right)^{-1} \mathrm{~B}_{\mathrm{c}}+\mathrm{D}=\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{cc}
\mathrm{s} & 2 \\
-1 & \mathrm{~s}+3
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{s-2}{(\mathrm{~s}+1)(s+2)}
\end{gathered}
$$

