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Complementary Reading: Ch 6.1, 6.2 and 6.8 from Ref[1].

Note: These slides only cover part of the discussions in the class. For further details,

consult your in-class notes. L



This lecture: controllability and reachability concepts for LTI systems

@ Controllable and reachable subspaces

x = Ax + Bu,
X X+ bu x(tg) =xp € R™
y = Cx + Du,

o Can we steer the system states from zero initial conditions to any place in the
space in finite time? If not, what are such points?

o Can we steer the system states from any arbitrary point in the space to the
origin in finite time? If not, what are such points?

2/16



Review of Controllable and reachable subspaces for LTV systems

% = Alt)x+ B, j .
{y —Clt)x+ D, =R

x(t) = d(t, to)xo +J &(t, 7)B(t)u(t)dt =
att=1t;: x1 =x(t1) = p(t1, to)xo +J 1 ¢(ty, T)B(u(t)dr

to

Definition (Reachable subspace (controllable-from-the-origin))

Given two times t; > to > 0, starting from xq = 0,

“ty
Rlto, t1] == {x1 e R™: Ju(.), x1 :J (b(tl,T‘]B(T)u(T‘]dT}

to

Definition (Controllable subspace (controllable-to-the-origin))

Given two times t; > to > 0, starting from xq # 0,

t1

e[to,tl] = {Xo e R™: Hu(), 0= Cb(tl,to)Xo +J

to

d(ts, T)B(T)u(’t)d’r}

ty
Clto, t1] := {xo eR™:3Jv(.) =—u(.),xo = ’ d(to, T)B(T)Vv(T )dT}
Jtgo
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Review of Reachability gramians for LTV systems

Definition (Reachability and controllability gramians for given t; > t; > 0)

ty
Reachability gramian: WI\’(to,tl):J ¢(t:, T)B(T)B(T) " (11, T) Tdr,

to

| \

Theorem (Reachable subspace)

Given two times t; >t > 0,
g{[to, tl] = lmWR (to, tl),
Moreover, if x; = Wx(to, t1)n1 € ImWk(to, t1), the control

u(t) =B(t) " d(ty, t) 11, t€E[to,ty, minimum-energy open-loop controller

can be used to transfer the state from x(to) = 0 to x(t;) = x1.
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Review of Controllability gramians for LTV systems

Definition (Reachability and controllability gramians for given t; > t; > 0)

ty
Controllability gramian: W (to, t1) :J &(to, T)B(T)B(T) T (10, T) T dT,

to

| \

Theorem (Controllable subspace)

Given two times t; >t > 0,
Clto, t1] = ImWe(to, t1),
Moreover, if xo = Wc(to, t1)no € ImMWc(to, t1), the control
u(t) = —B(t)"d(to, t) "o, t € [to,ty], minimum-energy open-loop controller

can be used to transfer the state from x(to) = xo to x(t;) = 0.
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Completely-state controllable and reachable LTV systems

x=A(t)x +B(t)u, xeR"

Definition ((Completely-state) reachable system)

Given two times t; > to > 0, starting from xq = 0,

ty

{xl e R™: Jul(.), x; :J

to

d(t, T)B(T)u(T)dT} —R"

How to check: rank(Wg(to, t1)) =n

Definition ((Completely-state) controllable system)

Given two times t; > to > 0, starting from xo # 0,
{xo eR™: 3v(.) = —u(.), %o :J

How to check: rank(Wg(tp, t1)) =n
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Controllable and reachable subspaces for LTI systems

x = A Bu,

x x+tbu x(tg) = xg € R™
y=Cx+Du,

t t

$(t,7)B(T)u(t)dt =Mt L“‘x0+‘ AIB()u(t)dr =
Jo

AR (u(t)dT

Jto

Given two times t; > tg > 0, starting from xg = 0,

t "t
Rlto, t1] :={x1€]R“:EIu(.),x1=.[ d)(tl,T)B(T)u(T)dT:’ Alt “B[\THL(T)(IT}
to Jtg

Definition (Controllable subspace (controllable-to-the-origin))

Given two times t; > tg > 0, starting from xg # 0,
t1
Clto, t1] == {xo €R™:3u(.),0 = ¢ (t1, to)xo +J & (t1, T)B(T)u(t)dr
to

151
= eAlti—to)y +J eA(tl_T)B(T)u(T)dT}
t

0

t
Cltg, t1] := {xo ER™:3v(.) = —u(.),x0 = J eA‘TO*T‘B(T)v(T]dT}
Jtg

)
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Controllability and reachability gramians for LTI systems

x =Ax+Bu, x(ty) =xo € R"

Definition (Reachability and controllability gramians for given t; > t; > 0)

t1 rty S ;
WR(to,t1)=J & (t1, T)B(T)B(T) "d(ty, T)Tdr=| MU PBBTeM T,

to Jtg

t ty -
Wc(to,h):J 43(’50'T)B(T)B(T)Td)(tovT)TdT=I eMto—TIBB T (o=l g,

to Jig

Alternatively, we can write

Definition (Reachability and controllability gramians over any finite time interval [0, T])

T

ti—to _ =
eMBB e tdt.

Wk (to, t1) = J ATBB A (Wt =
0

JO
T ! T
e ""BBTe " Tde[ e M'BBTe 'dt.
JO

ti—to

We(to, t1) =L
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Controllability matrix for LTI systems

x = Ax + Bu, X(to) = X0 e R™

Definition (Reachability and controllability gramians for over any finite time interval

[0, T])
ti—to - I -
Wr(to, t1) =J e?"BBTer (Vdr = [ eAMBB e tdt.
0 0
ti—to . T
We (to, t1) :J e A"BBTe A Tdr=| e A'BBTe M tdt
0 Jo
Let
C= [B AB A’B ... A“’IB} .
nx(np)
For any two time t; >t > 0
:R[to, tl] = ImWR(to, tl): ImC :Ich (to, J[1) = e[to, tl].
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Controllable and reachable subspaces: example

__1 0 _1
k:[ Récl 1 }er{Rllcl}u

T RG Ry Cy

This is an LTI system, therefore the controllable and reachable subsets are equal to one and other and can
be obtained from finding Image (range) of controllability matrix:

_ 1 _ 1
ow_R1C1_R2C2

e=[B AB]= [‘“ ’“’T

w 7&)2

€ has one linearly independent column. The reachable and controllable subsets are (o« € R):

ImC = [z] = H — R(to,t1) = Clto, t1)

(2
e=[B AB|= [i; c“’ué]

€ has two linearly independent columns. The reachable and controllable subsets are (x, 3 € R):

2
ImC = [ij +B {i%] =R’ =R(to, t1) = C(to, 1)

In this case every point in the R? is reachable from the origin in finite time and every point in the
R? can be steered to origin in finite time.
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Controllable LTI systems

Definition

The state equation x = Ax + Bu or the pair (A, B) is said to be controllable if for any initial
state x(0) = xo and any final state xi, there exists an input that transfers xg to x1 in a
finite time. Otherwise (A, B) is said to be uncontrollable.

Theorem

Let
€=[B AB A?B ... A"!B]

nx(np) -
For any two time t; > tg > 0

R[to, t1] = ImWg(to, t1) = ImC = ImW(c (to, t1) = Clto, t1].

Theorem

| A\

The following statements are equivalent:
@ The pair (A, B) is controllable.

@ The matrix below is nonsingular for any t > 0

t

We(t) :J ABBTeA tat
0

© Then x (np) controllability matrix € is full row rank

= n.

Rank€ = Rank[B AB A?B ... A" !B]

nx(np)

TT7T6



Rest of today’s lecture

@ Controllability of LTI systems

x = Ax + Bu,

y=Cx+Du X(to) =x0 € R™

o Can we steer the system states from every point in R™ to every other point in
R™ in finite time? ((completely-state) controllable system)

@ test to evaluate controllability
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Controllable decomposition

x=Ax+Bu, xe€R", ucRP

rank [B AB - A“*IB] =m<n
3T invertible s.t. x = TX transforms state equations to
= A A = B
_1-1a1_ |fc 12 _ |Bec
A=T AT—[O Au]' B_[O]
Ac c Rmxm, ,BC c Rmxp, Au c R(n—m)x(n—m), A12 c Rmx(n—m).

Corollary

@ The pair (A.,B.) is controllale, i.e., rank [Bc AcB:. .- A’C“*lBC] =m
Ime :|

O(nfm]xm

@ The controllable subspace of (A, C) is Im [
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Controllable decomposition: example

0 1 0 0
x=10 0 1{x+|1]fu
-6 —-11 -6 -3

o 1 -3
c=[B AB A%B]=|1 -3 7
-3 7 15

€ has only two linearly independent columns: A2B =—2B —3AB

Controllable decomposition

0 1 0 310
T=|1 -3 0|, T!'=|1 0 0
-3 7 1 2 3 1
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Controllable decomposition: transfer function

x = Ax + Bu,
y=Cx+D

rank[B AB AMIBl =m<n
3T invertible s.t. x = TX transforms state equations to

x €ER™, u ERP

5 A Ap] 5 _ - B

A=T'AT = ¢ : B:TIB:[ ¢ }
O(thm]xm Au:| 0(

C=CT=[C. C,, D=D

n—m)xp

For (A,B,C,D): G(s) = C(sI—A) 1B+ D.

Transfer function of two algebraically equivalent system is the same
G (SI — AC)

~Ar | [Bc
0 (sIfAu)] [o}*D
7[CC Cu] (SI—OAC)fl

X B _ -1
(sI—Au)*l} {0}+D =Cc(sI—A¢) !B, + D.
G(s) =Cc(sI—Ac) B +D

Transfer function of an LTI system is equal to the transfer function of its controllable part.

(s)=G(s)=C(sI—A)'B+D=[Cc C.] {
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Controllable decomposition: example

-3 7 —15
€ has only two linearly independent columns: A°B = —2B —3AB

o 1 -3
e=[B AB A?B]=|1 -3 7

Controllable decomposition

0o 1 o0 310
T= 1 -3 0}, T71: 1 0 O
-3 7 1 2 3 1
. 0 -2 1 ) 1 _
A=TIAT=|1 3|0 |, B=T'B=|0 |, C=CT=[1 -2]0]
0 0 | -3

A . s 2 17N s—2
G(s) =Cc(sI—A) 'Bc+D=[1 -2 {71 } {O]:m
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