Linear Systems I Lecture 12

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Complementary Reading: Ch 6.1, 6.2 and 6.8 from Ref[1].

Note: These slides only cover part of the discussions in the class. For further details, consult your in-class notes. $$_{1/16}$$

• Controllable and reachable subspaces

.

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx + Du, \end{cases} \quad x(t_0) = x_0 \in \mathbb{R}^n$$

- Can we steer the system states from zero initial conditions to any place in the space in finite time? If not, what are such points?
- Can we steer the system states from any arbitrary point in the space to the origin in finite time? If not, what are such points?

Review of Controllable and reachable subspaces for LTV systems

$$\begin{cases} \dot{x} = A(t)x + B(t)u, \\ y = C(t)x + D(t)u, \end{cases} \quad x(t_0) = x_0 \in \mathbb{R}^n \\ x(t) = \varphi(t, t_0)x_0 + \int_{t_0}^t \varphi(t, \tau)B(\tau)u(\tau)d\tau \Rightarrow \\ \text{at } t = t_1: \quad x_1 = x(t_1) = \varphi(t_1, t_0)x_0 + \int_{t_0}^{t_1} \varphi(t_1, \tau)B(\tau)u(\tau)d\tau \end{cases}$$

Definition (Reachable subspace (controllable-from-the-origin))

Given two times $t_1>t_0\geqslant 0,$ starting from $x_0=0,$

1

$$\mathbb{R}[t_0, t_1] := \left\{ x_1 \in \mathbb{R}^n : \exists u(.), x_1 = \int_{t_0}^{t_1} \varphi(t_1, \tau) B(\tau) u(\tau) d\tau \right\}$$

Definition (Controllable subspace (controllable-to-the-origin))

Given two times $t_1>t_0\geqslant 0,$ starting from $x_0\neq 0,$

$$\begin{split} \mathfrak{C}[t_0,t_1] &:= \left\{ x_0 \in \mathbb{R}^n : \exists u(.), 0 = \varphi(t_1,t_0)x_0 + \int_{t_0}^{t_1} \varphi(t_1,\tau)B(\tau)u(\tau)d\tau \right\} \\ \mathfrak{C}[t_0,t_1] &:= \left\{ x_0 \in \mathbb{R}^n : \exists v(.) = -u(.), x_0 = \int_{t_0}^{t_1} \varphi(t_0,\tau)B(\tau)v(\tau)d\tau \right\} \end{split}$$

Definition (Reachability and controllability gramians for given $t_1 > t_0 \ge 0$)

$$\label{eq:Reachability gramian:} \begin{array}{ll} W_{\textbf{R}}(t_0,t_1) = \int_{t_0}^{t_1} \varphi(t_1,\tau) B(\tau) B(\tau)^\top \varphi(t_1,\tau)^\top d\tau, \end{array}$$

Theorem (Reachable subspace)

Given two times $t_1 > t_0 \ge 0$,

 $\mathfrak{R}[t_0,t_1] = \textit{ImW}_R(t_0,t_1),$

Moreover, if $x_1 = W_R(t_0, t_1)\eta_1 \in ImW_R(t_0, t_1)$, the control

 $u(t) = B(t)^{\top} \varphi(t_1, t)^{\top} \eta_1, \quad t \in [t_0, t_1], \quad \mbox{minimum-energy open-loop controller}$

can be used to transfer the state from $x(t_0) = 0$ to $x(t_1) = x_1$.

Review of Controllability gramians for LTV systems

Definition (Reachability and controllability gramians for given $t_1 > t_0 \ge 0$)

Controllability gramian:
$$W_{C}(t_{0}, t_{1}) = \int_{t_{0}}^{t_{1}} \varphi(t_{0}, \tau)B(\tau)B(\tau)^{\top} \varphi(t_{0}, \tau)^{\top} d\tau$$
,

Theorem (Controllable subspace)

Given two times $t_1 > t_0 \ge 0$,

 $\mathbb{C}[t_0, t_1] = \textit{ImW}_C(t_0, t_1),$

Moreover, if $x_0 = W_C(t_0,t_1)\eta_0 \in \textit{Im}W_C(t_0,t_1)$, the control

 $u(t) = -B(t)^{\top} \varphi(t_0, t)^{\top} \eta_0, \quad t \in [t_0, t_1], \quad \mbox{minimum-energy open-loop controller}$

can be used to transfer the state from $x(t_0) = x_0$ to $x(t_1) = 0$.

Completely-state controllable and reachable LTV systems

 $\dot{x}=A(t)x+B(t)u,\quad x\in\mathbb{R}^n$

Definition ((Completely-state) reachable system)

Given two times $t_1 > t_0 \ge 0$, starting from $x_0 = 0$,

$$\left\{x_1 \in \mathbb{R}^n: \exists u(.), x_1 = \int_{t_0}^{t_1} \varphi(t_1, \tau) B(\tau) u(\tau) d\tau\right\} = \mathbb{R}^n$$

<u>How to check</u>: rank($W_R(t_0, t_1)$) = n

Definition ((Completely-state) controllable system)

Given two times $t_1>t_0\geqslant 0,$ starting from $x_0\neq 0,$

$$\left\{x_0 \in \mathbb{R}^n : \exists \nu(.) = -u(.), x_0 = \int_{t_0}^{t_1} \varphi(t_0, \tau) B(\tau) \nu(\tau) d\tau\right\} = \mathbb{R}^n$$

<u>How to check</u>: rank($W_R(t_0, t_1)$) = n

Controllable and reachable subspaces for LTI systems

$$\begin{cases} \dot{x} = A x + B u, \\ y = C x + D u, \end{cases} \quad x(t_0) = x_0 \in \mathbb{R}^n \\ x(t) = \phi(t, t_0) x_0 + \int_{t_0}^t \phi(t, \tau) B(\tau) u(\tau) d\tau = e^{A(t-t_0)} x_0 + \int_{t_0}^t e^{A(t-\tau)} B(\tau) u(\tau) d\tau \Rightarrow \\ x_1 = x(t_1) = \phi(t_1, t_0) x_0 + \int_{t_0}^{t_1} \phi(t_1, \tau) B(\tau) u(\tau) d\tau = e^{A(t_1-t_0)} x_0 + \int_{t_0}^{t_1} e^{A(t_1-\tau)} B(\tau) u(\tau) d\tau \end{cases}$$

Definition (Reachable subspace (controllable-from-the-origin))

Given two times $t_1 > t_0 \ge 0$, starting from $x_0 = 0$,

$$\Re[t_0, t_1] := \left\{ x_1 \in \mathbb{R}^n : \exists u(.), x_1 = \int_{t_0}^{t_1} \varphi(t_1, \tau) B(\tau) u(\tau) d\tau = \int_{t_0}^{t_1} e^{A(t_1 - \tau)} B(\tau) u(\tau) d\tau \right\}$$

Definition (Controllable subspace (controllable-to-the-origin))

Given two times $t_1 > t_0 \ge 0$, starting from $x_0 \neq 0$,

$$\begin{split} \mathfrak{C}[t_0, t_1] &:= \Big\{ x_0 \in \mathbb{R}^n : \exists u(.), 0 = \varphi(t_1, t_0) x_0 + \int_{t_0}^{t_1} \varphi(t_1, \tau) B(\tau) u(\tau) d\tau \\ &= e^{A(t_1 - t_0)} x_0 + \int_{t_0}^{t_1} e^{A(t_1 - \tau)} B(\tau) u(\tau) d\tau \Big\} \\ \mathfrak{C}[t_0, t_1] &:= \Big\{ x_0 \in \mathbb{R}^n : \exists \nu(.) = -u(.), x_0 = \int_{t_0}^{t_1} e^{A(t_0 - \tau)} B(\tau) \nu(\tau) d\tau \Big\} \end{split}$$

Controllability and reachability gramians for LTI systems

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{x}(\mathbf{t_0}) = \mathbf{x_0} \in \mathbb{R}^n$$

Definition (Reachability and controllability gramians for given $t_1 > t_0 \ge 0$)

$$\begin{split} W_{R}(t_{0},t_{1}) &= \int_{t_{0}}^{t_{1}} \varphi(t_{1},\tau)B(\tau)B(\tau)^{\top}\varphi(t_{1},\tau)^{\top}d\tau = \int_{t_{0}}^{t_{1}} e^{A(t_{1}-\tau)}BB^{\top}e^{A^{\top}(t_{1}-\tau)}d\tau. \\ W_{C}(t_{0},t_{1}) &= \int_{t_{0}}^{t_{1}} \varphi(t_{0},\tau)B(\tau)B(\tau)^{\top}\varphi(t_{0},\tau)^{\top}d\tau = \int_{t_{0}}^{t_{1}} e^{A(t_{0}-\tau)}BB^{\top}e^{A^{\top}(t_{0}-\tau)}d\tau. \end{split}$$

Alternatively, we can write

Definition (Reachability and controllability gramians over any finite time interval [0, T])

$$W_{R}(t_{0}, t_{1}) = \int_{0}^{t_{1}-t_{0}} e^{A \tau} B B^{\top} e^{A^{\top}(\tau)} d\tau = \int_{0}^{T} e^{A t} B B^{\top} e^{A^{\top} t} dt.$$
$$W_{C}(t_{0}, t_{1}) = \int_{0}^{t_{1}-t_{0}} e^{-A \tau} B B^{\top} e^{-A^{\top} \tau} d\tau = \int_{0}^{T} e^{-A t} B B^{\top} e^{-A^{\top} t} dt.$$

Controllability matrix for LTI systems

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{x}(\mathbf{t_0}) = \mathbf{x_0} \in \mathbb{R}^n$$

Definition (Reachability and controllability gramians for over any finite time interval [0, T])

$$W_{R}(t_{0}, t_{1}) = \int_{0}^{t_{1}-t_{0}} e^{A \tau} B B^{\top} e^{A^{\top}(\tau)} d\tau = \int_{0}^{T} e^{A t} B B^{\top} e^{A^{\top} t} dt.$$
$$W_{C}(t_{0}, t_{1}) = \int_{0}^{t_{1}-t_{0}} e^{-A \tau} B B^{\top} e^{-A^{\top} \tau} d\tau = \int_{0}^{T} e^{-A t} B B^{\top} e^{-A^{\top} t} dt.$$

Theorem

Let

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}_{n \times (np)}.$$

For any two time $t_1 > t_0 \ge 0$

 $\mathfrak{R}[t_0,t_1] = \textit{Im} W_R(t_0,t_1) = \textit{Im} C = \textit{Im} W_C(t_0,t_1) = \mathfrak{C}[t_0,t_1].$

Controllable and reachable subspaces: example

$$\dot{x} = \begin{bmatrix} -\frac{1}{R_1C_1} & 0\\ 0 & -\frac{1}{R_2C_2} \end{bmatrix} x + \begin{bmatrix} \frac{1}{R_1C_1}\\ \frac{1}{R_2C_2} \end{bmatrix} u$$

This is an LTI system, therefore the controllable and reachable subsets are equal to one and other and can be obtained from finding Image (range) of controllability matrix:

•
$$\omega = \frac{1}{R_1 C_1} = \frac{1}{R_2 C_2}$$

 $\mathcal{C} = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \omega & -\omega^2 \\ \omega & -\omega^2 \end{bmatrix}$

 $\mathbb C$ has one linearly independent column. The reachable and controllable subsets are ($\alpha \in \mathbb R$):

 $\mathbb C$ has two linearly independent columns. The reachable and controllable subsets are $(\alpha, \beta \in \mathbb R)$:

$$ImC = \alpha \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} + \beta \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \end{bmatrix} = \mathbb{R}^2 = \mathcal{R}(t_0, t_1) = C(t_0, t_1)$$

In this case every point in the \mathbb{R}^2 is reachable from the origin in <u>finite time</u> and every point in the \mathbb{R}^2 can be steered to origin in <u>finite time</u>.

Controllable LTI systems

Definition

The state equation $\dot{x} = Ax + Bu$ or the pair (A, B) is said to be <u>controllable</u> if for any initial state $x(0) = x_0$ and any final state x_1 , there exists an input that transfers x_0 to x_1 in a <u>finite time</u>. Otherwise (A, B) is said to be <u>uncontrollable</u>.

Theorem

Let

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}_{n \times (np)}.$$

For any two time $t_1 > t_0 \geqslant 0$

$$\Re[t_0,t_1] = \textit{Im}W_R(t_0,t_1) = \textit{Im}\mathbb{C} = \textit{Im}W_C(t_0,t_1) = \mathbb{C}[t_0,t_1]$$

Theorem

The following statements are equivalent:

1 The pair (A, B) is controllable.

2 The matrix below is nonsingular for any t > 0

$$W_{\mathrm{C}}(\mathrm{t}) = \int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A}\,\mathrm{t}} \mathrm{B} \mathrm{B}^{\mathrm{T}} \mathrm{e}^{\mathrm{A}^{\mathrm{T}}\,\mathrm{t}} \mathrm{d} \mathrm{t}$$

3 The $n \times (np)$ controllability matrix C is full row rank

 $Rank \mathcal{C} = Rank \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}_{n \times (np)} = n.$

• Controllability of LTI systems

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx + Du, \end{cases} \quad x(t_0) = x_0 \in \mathbb{R}^n$$

- Can we steer the system states from every point in \mathbb{R}^n to every other point in \mathbb{R}^n in finite time? ((completely-state) controllable system)
 - test to evaluate controllability

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{x} \in \mathbb{R}^n, \quad \mathbf{u} \in \mathbb{R}^p$$

Theorem

$$\mathsf{rank} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \mathfrak{m} < \mathfrak{n}$$

 $\exists T \text{ invertible s.t. } x = T\bar{x} \text{ transforms state equations to}$

$$\begin{split} \bar{A} &= T^{-1}AT = \begin{bmatrix} A_c & A_{12} \\ 0 & A_u \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} B_c \\ 0 \end{bmatrix} \\ A_c &\in \mathbb{R}^{m \times m}, \quad , B_c \in \mathbb{R}^{m \times p}, \quad A_u \in \mathbb{R}^{(n-m) \times (n-m)}, \quad A_{12} \in \mathbb{R}^{m \times (n-m)}. \end{split}$$

Corollary

• The pair (A_c, B_c) is controllale, i.e., rank $\begin{bmatrix} B_c & A_c B_c & \cdots & A_c^{m-1} B_c \end{bmatrix} = m$

• The controllable subspace of (\bar{A}, \bar{C}) is $Im \begin{bmatrix} I_{m \times m} \\ 0_{(n-m) \times m} \end{bmatrix}$

Controllable decomposition: example

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix} \mathbf{u}$$

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 1 & -3\\ 1 & -3 & 7\\ -3 & 7 & -15 \end{bmatrix}$$

 ${\mathfrak C}$ has only two linearly independent columns: $A^2B=-2\,B-3\,AB$ Controllable decomposition

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -3 & 0 \\ -3 & 7 & 1 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$
$$\bar{A} = T^{-1}AT = \begin{bmatrix} 0 & -2 & 1 \\ 1 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$A_{c} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}, \quad B_{c} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Controllable decomposition: transfer function

Theorem

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{u} \in \mathbb{R}^{p}$$

 $\mathbf{u} = \mathbf{C}\mathbf{x} + \mathbf{D}$

 $\mathsf{rank} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = m < n$

 $\exists T \text{ invertible s.t. } x = T\bar{x} \text{ transforms state equations to}$

$$\begin{split} \bar{A} &= T^{-1}AT = \begin{bmatrix} A_c & A_{12} \\ \mathbf{0}_{(n-m)\times m} & A_u \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} B_c \\ \mathbf{0}_{(n-m)\times p} \end{bmatrix} \\ \bar{C} &= CT = \begin{bmatrix} C_c & C_u \end{bmatrix}, \quad \bar{D} = D \end{split}$$

 $\text{For (A,B,C,D): } \hat{G}(s) = C(sI-A)^{-1}B + D.$

Transfer function of two algebraically equivalent system is the same

$$\begin{split} \hat{G}(s) &= \hat{\bar{G}}(s) = \bar{C}(sI - \bar{A})^{-1}\bar{B} + D = \begin{bmatrix} C_c & C_u \end{bmatrix} \begin{bmatrix} (sI - A_c) & -A_{12} \\ 0 & (sI - A_u) \end{bmatrix}^{-1} \begin{bmatrix} B_c \\ 0 \end{bmatrix} + D \\ &= \begin{bmatrix} C_c & C_u \end{bmatrix} \begin{bmatrix} (sI - A_c)^{-1} & \times \\ 0 & (sI - A_u)^{-1} \end{bmatrix} \begin{bmatrix} B_c \\ 0 \end{bmatrix} + D = C_c (sI - A_c)^{-1} B_c + D. \\ &\hat{G}(s) = C_c (sI - A_c)^{-1} B_c + D \end{split}$$

Transfer function of an LTI system is equal to the transfer function of its controllable part.

Controllable decomposition: example

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \mathbf{x}$$

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 1 & -3\\ 1 & -3 & 7\\ -3 & 7 & -15 \end{bmatrix}$$

 ${\mathfrak C}$ has only two linearly independent columns: $A^2B=-2\,B-3\,AB$

Controllable decomposition

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -3 & 0 \\ -3 & 7 & 1 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$
$$\bar{A} = T^{-1}AT = \begin{bmatrix} 0 & -2 & 1 \\ 1 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \bar{C} = CT = \begin{bmatrix} 1 & -2 & | & 0 \end{bmatrix}$$
$$A_c = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}, \quad B_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\hat{G}(s) = C_c(sI - A_c)^{-1}B_c + D = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} s & 2 \\ -1 & s+3 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{s-2}{(s+1)(s+2)}$$