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This lecture: controllability and reachability concepts for LTI systems

Controllable and reachable subspaces{
ẋ = Ax+ Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn

Can we steer the system states from zero initial conditions to any place in the
space in finite time? If not, what are such points?
Can we steer the system states from any arbitrary point in the space to the
origin in finite time? If not, what are such points?
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Review of Controllable and reachable subspaces for LTV systems{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

x(t) = φ(t, t0)x0 +

∫ t
t0

φ(t, τ)B(τ)u(τ)dτ⇒

at t = t1 : x1 = x(t1) = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

Definition (Reachable subspace (controllable-from-the-origin))

Given two times t1 > t0 > 0, starting from x0 = 0,

R[t0, t1] :=
{
x1 ∈ Rn : ∃u(.), x1 =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ
}

Definition (Controllable subspace (controllable-to-the-origin))

Given two times t1 > t0 > 0, starting from x0 6= 0,

C[t0, t1] :=
{
x0 ∈ Rn : ∃u(.), 0 = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ
}

C[t0, t1] :=
{
x0 ∈ Rn : ∃v(.) = −u(.), x0 =

∫ t1

t0

φ(t0, τ)B(τ)v(τ)dτ
}
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Review of Reachability gramians for LTV systems

Definition (Reachability and controllability gramians for given t1 > t0 > 0)

Reachability gramian: WR(t0, t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)>φ(t1, τ)>dτ,

Theorem (Reachable subspace)

Given two times t1 > t0 > 0,

R[t0, t1] = ImWR(t0, t1),

Moreover, if x1 =WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)>φ(t1, t)>η1, t ∈ [t0, t1], minimum-energy open-loop controller

can be used to transfer the state from x(t0) = 0 to x(t1) = x1.
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Review of Controllability gramians for LTV systems

Definition (Reachability and controllability gramians for given t1 > t0 > 0)

Controllability gramian: WC(t0, t1) =

∫ t1

t0

φ(t0, τ)B(τ)B(τ)>φ(t0, τ)>dτ,

Theorem (Controllable subspace)

Given two times t1 > t0 > 0,

C[t0, t1] = ImWC(t0, t1),

Moreover, if x0 =WC(t0, t1)η0 ∈ ImWC(t0, t1), the control

u(t) = −B(t)>φ(t0, t)>η0, t ∈ [t0, t1], minimum-energy open-loop controller

can be used to transfer the state from x(t0) = x0 to x(t1) = 0.
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Completely-state controllable and reachable LTV systems

ẋ = A(t)x+ B(t)u, x ∈ Rn

Definition ((Completely-state) reachable system)

Given two times t1 > t0 > 0, starting from x0 = 0,{
x1 ∈ Rn : ∃u(.), x1 =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ
}
= Rn

How to check: rank(WR(t0, t1)) = n

Definition ((Completely-state) controllable system)

Given two times t1 > t0 > 0, starting from x0 6= 0,{
x0 ∈ Rn : ∃v(.) = −u(.), x0 =

∫ t1

t0

φ(t0, τ)B(τ)v(τ)dτ
}
= Rn

How to check: rank(WR(t0, t1)) = n
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Controllable and reachable subspaces for LTI systems{
ẋ =Ax+Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn

x(t) = φ(t, t0)x0 +

∫t
t0

φ(t,τ)B(τ)u(τ)dτ = eA(t−t0)x0 +

∫t
t0

eA(t−τ)B(τ)u(τ)dτ⇒

x1 =x(t1)=φ(t1, t0)x0+

∫t1

t0

φ(t1,τ)B(τ)u(τ)dτ = eA(t1−t0)x0+

∫t1

t0

eA(t1−τ)B(τ)u(τ)dτ

Definition (Reachable subspace (controllable-from-the-origin))

Given two times t1 > t0 > 0, starting from x0 = 0,

R[t0, t1] :=
{
x1 ∈ Rn : ∃u(.),x1 =

∫t1

t0

φ(t1,τ)B(τ)u(τ)dτ =

∫t1

t0

eA(t1−τ)B(τ)u(τ)dτ
}

Definition (Controllable subspace (controllable-to-the-origin))

Given two times t1 > t0 > 0, starting from x0 6= 0,

C[t0, t1] :=
{
x0 ∈ Rn : ∃u(.), 0 = φ(t1, t0)x0 +

∫t1

t0

φ(t1,τ)B(τ)u(τ)dτ

= eA(t1−t0)x0 +

∫t1

t0

eA(t1−τ)B(τ)u(τ)dτ
}

C[t0, t1] :=
{
x0 ∈ Rn : ∃v(.) = −u(.),x0 =

∫t1

t0

eA(t0−τ)B(τ)v(τ)dτ
}
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Controllability and reachability gramians for LTI systems

ẋ = Ax+ Bu, x(t0) = x0 ∈ Rn

Definition (Reachability and controllability gramians for given t1 > t0 > 0)

WR(t0, t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)>φ(t1, τ)>dτ =

∫ t1

t0

eA(t1−τ)BB>eA
>(t1−τ)dτ.

WC(t0, t1) =

∫ t1

t0

φ(t0, τ)B(τ)B(τ)>φ(t0, τ)>dτ =

∫ t1

t0

eA(t0−τ)BB>eA
>(t0−τ)dτ.

Alternatively, we can write

Definition (Reachability and controllability gramians over any finite time interval [0, T ])

WR(t0, t1) =

∫ t1−t0

0

eAτBB>eA
>(τ)dτ =

∫T
0

eAtBB>eA
> tdt.

WC(t0, t1) =

∫ t1−t0

0

e−AτBB>e−A
> τdτ =

∫T
0

e−AtBB>e−A
> tdt.
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Controllability matrix for LTI systems

ẋ = Ax+ Bu, x(t0) = x0 ∈ Rn

Definition (Reachability and controllability gramians for over any finite time interval
[0, T ])

WR(t0, t1) =

∫ t1−t0

0

eAτBB>eA
>(τ)dτ =

∫T
0

eAtBB>eA
> tdt.

WC(t0, t1) =

∫ t1−t0

0

e−AτBB>e−A
> τdτ =

∫T
0

e−AtBB>e−A
> tdt.

Theorem

Let
C =

[
B AB A2B · · · An−1B

]
n×(np) .

For any two time t1 > t0 > 0

R[t0, t1] = ImWR(t0, t1)= ImC =ImWC(t0, t1) = C[t0, t1].
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Controllable and reachable subspaces: example

ẋ =

[
− 1

R1C1
0

0 − 1
R2C2

]
x+

[
1

R1C1
1

R2C2

]
u

This is an LTI system, therefore the controllable and reachable subsets are equal to one and other and can
be obtained from finding Image (range) of controllability matrix:

−−−−−−−−−−−−−−−−−−−−−−
ω = 1

R1C1
= 1

R2C2

C =
[
B AB

]
=

[
ω −ω2

ω −ω2

]
C has one linearly independent column. The reachable and controllable subsets are (α ∈ R):

ImC = α

[
ω
ω

]
= β

[
1
1

]
= R(t0, t1) = C(t0, t1)

−−−−−−−−−−−−−−−−−−−−−−

ω1 = 1
R1C1

6=ω2 = 1
R2C2

C =
[
B AB

]
=

[
ω1 −ω2

1

ω2 −ω2
2

]
C has two linearly independent columns. The reachable and controllable subsets are (α,β ∈ R):

ImC = α

[
ω1

ω2

]
+β

[
ω2

1

ω2
2

]
= R2 = R(t0, t1) = C(t0, t1)

In this case every point in the R2 is reachable from the origin in finite time and every point in the
R2 can be steered to origin in finite time.

−−−−−−−−−−−−−−−−−−−−−−
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Controllable LTI systems

Definition

The state equation ẋ =Ax+Bu or the pair (A,B) is said to be controllable if for any initial
state x(0) = x0 and any final state x1, there exists an input that transfers x0 to x1 in a
finite time. Otherwise (A,B) is said to be uncontrollable.

Theorem

Let
C =

[
B AB A2B · · · An−1B

]
n×(np) .

For any two time t1 > t0 > 0

R[t0, t1] = ImWR(t0, t1) = ImC = ImWC(t0, t1) = C[t0, t1].

Theorem

The following statements are equivalent:
1 The pair (A,B) is controllable.

2 The matrix below is nonsingular for any t > 0

WC(t) =

∫t
0

eAtBB>eA
> tdt

3 The n× (np) controllability matrix C is full row rank

RankC = Rank
[
B AB A2B · · · An−1B

]
n×(np) = n.
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Rest of today’s lecture

Controllability of LTI systems{
ẋ = Ax+ Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn

Can we steer the system states from every point in Rn to every other point in
Rn in finite time? ((completely-state) controllable system)

test to evaluate controllability
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Controllable decomposition

ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

Theorem

rank
[
B AB · · · An−1B

]
= m < n

∃ T invertible s.t. x = Tx̄ transforms state equations to

Ā = T−1AT =

[
Ac A12

0 Au

]
, B̄ =

[
Bc
0

]
Ac ∈ Rm×m, ,Bc ∈ Rm×p, Au ∈ R(n−m)×(n−m), A12 ∈ Rm×(n−m).

Corollary

The pair (Ac,Bc) is controllale, i.e., rank
[
Bc AcBc · · · Am−1

c Bc
]
= m

The controllable subspace of (Ā, C̄) is Im
[
Im×m

0(n−m)×m

]
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Controllable decomposition: example

ẋ =

 0 1 0
0 0 1
−6 −11 −6

 x+
 0

1
−3

u

C =
[
B AB A2B

]
=

 0 1 −3
1 −3 7
−3 7 −15


C has only two linearly independent columns: A2B = −2B− 3AB

Controllable decomposition

T =

 0 1 0
1 −3 0
−3 7 1

 , T−1 =

3 1 0
1 0 0
2 3 1



Ā = T−1AT =

 0 −2 1
1 −3 0

0 0 −3

 , B̄ = T−1B =

 1
0

0


Ac =

[
0 −2
1 −3

]
, Bc =

[
1
0

]
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Controllable decomposition: transfer function

Theorem

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+D

rank
[
B AB · · · An−1B

]
=m< n

∃T invertible s.t. x = Tx̄ transforms state equations to

Ā = T−1AT =

[
Ac A12

0(n−m)×m Au

]
, B̄ = T−1B =

[
Bc

0(n−m)×p

]
C̄ = CT =

[
Cc Cu

]
, D̄ =D

For (A,B,C,D): Ĝ(s) = C(sI−A)−1B+D.

Transfer function of two algebraically equivalent system is the same

Ĝ(s) = ˆ̄G(s) = C̄(sI− Ā)−1B̄+D =
[
Cc Cu

] [(sI−Ac) −A12

0 (sI−Au)

]−1 [
Bc
0

]
+D

=
[
Cc Cu

] [(sI−Ac)−1 ×
0 (sI−Au)

−1

] [
Bc
0

]
+D = Cc(sI−Ac)

−1Bc +D.

Ĝ(s) = Cc(sI−Ac)
−1Bc +D

Transfer function of an LTI system is equal to the transfer function of its controllable part.
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Controllable decomposition: example

ẋ =

 0 1 0
0 0 1
−6 −11 −6

x+

 0
1
−3

u
y =

[
1 1 0

]
x

C =
[
B AB A2B

]
=

 0 1 −3
1 −3 7
−3 7 −15


C has only two linearly independent columns: A2B = −2B− 3AB

Controllable decomposition

T =

 0 1 0
1 −3 0
−3 7 1

 , T−1 =

3 1 0
1 0 0
2 3 1


Ā = T−1AT =

 0 −2 1
1 −3 0
0 0 −3

 , B̄ = T−1B =

 1
0
0

 , C̄ = CT =
[

1 −2 0
]

Ac =

[
0 −2
1 −3

]
, Bc =

[
1
0

]

Ĝ(s) =Cc(sI−Ac)
−1Bc +D =

[
1 −2

] [ s 2
−1 s+ 3

]−1 [
1
0

]
=

s− 2

(s+ 1)(s+ 2)
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