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Complementary Reading: Ch 6.1, 6.2 and 6.8 from Ref[1].

Note: These slides only cover part of the discussions in the class. For further details,
consult your in-class notes. 1 / 10



This lecture

Controllable and reachable subspaces for LTV systems of the form{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

Can we steer the system states from zero initial conditions to any place in the
space in finite time? If not for all the points, what subset of space we can
reach in finite time?
Can we steer the system states from any arbitrary point in the space to the
origin in finite time? If not for all the points, what subset of the space we can
steer to origin in finite?

Special case: controllable and reachable subspaces for LTI systems of the
form {

ẋ = Ax+ Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn
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Controllable and reachable subspaces: example

ẋ =

[
− 1
R1C1

0

0 − 1
R2C2

]
x+

[
1

R1C1
1

R2C2

]
u

x(t) =

e− t
R1C1 x1(0)

e
− t
R2C2 x2(0)

+

∫t
0

 e
− t−τ
R1C1
R1C1

e
− t−τ
R2C2
R2C2

u(τ)dτ

when R1C1 = R2C2 = 1/ω: x(t) = e−ωtx(0) +ω
∫t
0 e

−ω(t−τ)u(τ)dτ

[
1
1

]
−−−−−−−−−−−−−−−−−−−−−−−−

x(0) = 0

x(t1) = α(t)

[
1
1

]
, α(t1) :=ω

∫t1
0

e−ω(t−τ)u(τ)dτ

x1 =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 > 0.

−−−−−−−−−−−−−−−−−−−−−−−−
x(0) = x0 → x(t1) = 0

0 = e−ωtx(0) +ω
∫t1
0

e−ω(t−τ)u(τ)dτ

[
1
1

]

possible if x(0) is aligned with
[
1
1

]
:

x0 =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 > 0. 3 / 10



Controllable and reachable subspaces for LTV systems{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

x(t) = φ(t, t0)x0 +

∫ t
t0

φ(t, τ)B(τ)u(τ)dτ⇒

at t = t1 : x1 = x(t1) = φ(t1, t0)x0 +

∫ t1
t0

φ(t1, τ)B(τ)u(τ)dτ

Definition (Reachable subspace (controllable-from-the-origin))

Given two times t1 > t0 > 0, starting from x0 = 0,

R[t0, t1] :=
{
x1 ∈ Rn : ∃u(.), x1 =

∫ t1
t0

φ(t1, τ)B(τ)u(τ)dτ
}

Definition (Controllable subspace (controllable-to-the-origin))

Given two times t1 > t0 > 0, starting from x0 6= 0,

C [t0, t1] :=
{
x0 ∈ Rn : ∃u(.), 0 = φ(t1, t0)x0 +

∫ t1
t0

φ(t1, τ)B(τ)u(τ)dτ
}

C [t0, t1] :=
{
x0 ∈ Rn : ∃v(.) = −u(.), x0 =

∫ t1
t0

φ(t0, τ)B(τ)v(τ)dτ
}
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Controllable and reachable subspaces: example

ẋ =

[
− 1
R1C1

0

0 − 1
R2C2

]
x+

[
1

R1C1
1

R2C2

]
u

x(t) =

[
e−

t
R1C1 x1(0)

e−
t

R2C2 x2(0)

]
+

∫t
0

 e
− t−τ
R1C1

R1C1

e
− t−τ
R2C2

R2C2

u(τ)dτ
when R1C1 = R2C2 = 1/ω

x(t) = e−ωtx(0) +ω
∫t
0

e−ω(t−τ)u(τ)dτ

[
1
1

]
x(0) = 0

x(t) = α(t)

[
1
1

]
, α(t) :=ω

∫t
0

e−ω(t−τ)u(τ)dτ

R[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 > 0.

−−−−−−−−−−−−−−−−−−−

x(0) = x0→ x(t) = 0

0 = e−ωtx(0) +ω
∫t
0

e−ω(t−τ)u(τ)dτ

[
1
1

]
possible if x(0) is aligned with

[
1
1

]
:

C [t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 > 0.

5 / 10



Reachability gramians

Definition (Reachability gramian for given t1 > t0 > 0)

WR(t0, t1) =

∫ t1
t0

φ(t1, τ)B(τ)B(τ)
>φ(t1, τ)

>dτ,

Theorem (Reachable subspace)

Given two times t1 > t0 > 0,

R[t0, t1] = ImWR(t0, t1),

Moreover, if x1 =WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)>φ(t1, t)
>η1, t ∈ [t0, t1], minimum-energy open-loop controller

can be used to transfer the state from x(t0) = 0 to x(t1) = x1.
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Example

ẋ =

[
0 t
0 t

]
x+

[√
t√
t

]
u, t0 > 0⇒ φ(t, t0) =

1 −1+ e
t2−t20

2

0 e
t2−t20

2


Is this system reachable?

φ(t1,τ)B(τ) =

1 −1+ e
t21−τ

2

2

0 e
t21−τ

2

2

[√τ√
τ

]
=

√τ e t
2
1−τ

2

2

√
τ e
t21−τ

2

2



WR(t0, t1) =

∫t1
t0

φ(t1,τ)B(τ)B(τ)
>φ(t1,τ)

>dτ =

∫t1
t0

[
τ et

2
1−τ

2
τ et

2
1−τ

2

τ et
2
1−τ

2
τ et

2
1−τ

2

]
dτ =

−
1

2

[
1 1
1 1

]
+

1

2
et

2
1−t

2
0

[
1 1
1 1

]
=

1

2
(−1+ et

2
1−t

2
0)

[
1 1
1 1

]
This system is not reachable because det(WR(t0, t1)) = 0 for all t1 > t0 > 0.

The reachable set is R[t0, t1] = ImWR(t0, t1) = span
[
1
1

]
.

Find the controller to take the system from x(0) =

[
0
0

]
to x(1) =

[
2
2

]
(t1 = 1).

x1 =WR(t0, t1)η1 ∈ ImWR(t0, t1)⇒
[
2
2

]
= (

1

2
(−1+ e1)

[
1 1
1 1

]
η1 ⇒ η1 =

4

e− 1

[
1
0

]
u(t) = B(t)>φ(1, t)>η1 =

4

e− 1

[√
t e

1−t2
2

√
t e

1−t2
2

] [
1
0

]
=

4

e− 1

√
t e

1−t2
2 , t ∈ [0, 1].
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Controllability gramians

Definition (Controllability gramians for given t1 > t0 > 0)

WC(t0, t1) =

∫ t1
t0

φ(t0, τ)B(τ)B(τ)
>φ(t0, τ)

>dτ,

Theorem (Controllable subspace)

Given two times t1 > t0 > 0,

C [t0, t1] = ImWC(t0, t1),

Moreover, if x0 =WC(t0, t1)η0 ∈ ImWC(t0, t1), the control

u(t) = −B(t)>φ(t0, t)
>η0, t ∈ [t0, t1], minimum-energy open-loop controller

can be used to transfer the state from x(t0) = x0 to x(t1) = 0.
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Controllability matrix for LTI systems

ẋ = Ax+ Bu, x(t0) = x0 ∈ Rn

Definition (Reachability and controllability gramians for given t1 > t0 > 0)

WR(t0, t1) =

∫t1
t0

φ(t1,τ)B(τ)B(τ)
>φ(t1,τ)

>dτ =

∫t1
t0

eA(t1−τ)BB>eA
>(t1−τ)dτ,

WC(t0, t1) =

∫t1
t0

φ(t0,τ)B(τ)B(τ)
>φ(t0,τ)

>dτ =

∫t1
t0

eA(t0−τ)BB>eA
>(t0−τ)dτ,

Theorem

Let
C =

[
B AB A2B · · · An−1B

]
n×(np) .

For any two time t1 > t0 > 0

R[t0, t1] = ImWR(t0, t1) = ImC = ImWC(t0, t1) = C [t0, t1].

The controllable and reachable subspaces are the same for continuous-time LTI systems.
Because of this for continuous-time LTI systems one simply studies controllability and
neglects reachability.
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Controllable and reachable subspaces: example

ẋ =

[
− 1
R1C1

0

0 − 1
R2C2

]
x+

[
1

R1C1
1

R2C2

]
u

This is an LTI system, therefore the controllable and reachable subsets are equal to one and other and can
be obtained from finding Image (range) of controllability matrix:

−−−−−−−−−−−−−−−−−−−−−−
ω = 1

R1C1
= 1
R2C2

C =
[
B AB

]
=

[
ω −ω2

ω −ω2

]
C has one linearly independent column. The reachable and controllable subsets are (α ∈ R):

ImC = α

[
ω
ω

]
= β

[
1
1

]
= R(t0, t1) = C (t0, t1)

−−−−−−−−−−−−−−−−−−−−−−

ω1 = 1
R1C1

6=ω2 = 1
R2C2

C =
[
B AB

]
=

[
ω1 −ω2

1

ω2 −ω2
2

]
C has two linearly independent columns. The reachable and controllable subsets are (α,β ∈ R):

ImC = α

[
ω1

ω2

]
+β

[
ω2

1

ω2
2

]
= R2 = R(t0, t1) = C (t0, t1)

In this case every point in the R2 is reachable from the origin in finite time and every point in the
R2 can be steered to origin in finite time.

−−−−−−−−−−−−−−−−−−−−−−
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