
MAE270A: Concepts of Controllable/Reachability for LTV Systems
Stabilizability and full state feedback design for LTI systems

Instructor: Solmaz Kia (solmaz@uci.edu), University of California Irvine

Problem setting. Consider the linear system:

ẋ = A(t)x(t) +B(t)u(t) (1)

Research questions. Is it possible to steer the states of the LTV system (1) from the
starting point of zero to any point in the Rn space in a finite
amount of time with the help of a control input u(t)? If not,
what points in the Rn space can be reached in a finite amount
of time from the initial condition of zero with unrestricted
control inputs u(t)? We address these questions using the
concept of Reachability.

Is it possible to steer the states of the LTV system (1) from
any starting point x(t0) ∈ Rn to zero in a finite amount of time
with the help of a control input u(t)? If not, what points in
the space can be directed to zero in a finite time period with
unrestricted control inputs u(t)?We address these questions
using the concept of Controllability.

Motivating example. Consider the LTI system

ẋ =

[
a 0
0 a

]
x+

[
b
b

]
u, x =

[
x1

x2

]
∈ R2, (2)

which is consisted of two parallel system xi = axi+bu, i ∈ 1, 2.
Starting from t0 = 0, the trajectories of this system are given

by x(t) = ea t

[
x1(0) + b

∫ t

0
e−a τu(τ)dτ

x2(0) + b
∫ t

0
e−a τu(τ)dτ

]
. The trajectories of

the system show that, at any given finite time t1 ∈ > ⊬, no
matter what control we use,

• starting from initial condition zero, the system can only
reach points that satisfy x1(t1) = x2(t1), i.e., reachable

set is R[0,t1] =

{
x ∈ R2|x = α

[
1
1

]
, α ∈ R

}
.

• only initial conditions x(0) ∈ R2 that satisfy x1(0) =
x2(0) can be steered to origin, i.e., controllable set is

C[0,t1] =

{
x ∈ R2|x = α

[
1
1

]
, α ∈ R

}
.

Take away

Even if you have unrestricted control, some systems structurally are bound to be only partially controllable
or reachable.
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Definitions

• Reachable system

• Controllable system

.

System (1) is said to be

• (fully) reachable if for any initial condition x0 = x(t0) =
0 and any finite state x1 = x(t1) ∈ Rn, there exists an
input u(t) that transfers the states to x1 in the finite
time t1 − t0.

• (fully) controllable if for any finite initial condition x0 =
x(t0) ∈ Rn there exists an input u(t) that transfers the
states to x1 = x(t1) = 0 in the finite time t1 − t0.

Research question. Our motivating example showed us that not all systems can be
steered to zero from any starting point or steered from zero to
any point in the space in a finite amount of time using control
inputs. The questions we ask are

• What systems are fully reachable? Put in another way,
how do we determine a system is fully reachable?

• What systems are fully controllable? Put in another
way, how do we determine a system is fully controllable?

• If a system is not fully reachable, what subset of the
state space is reachable for this system?

• If a system is not fully controllable, what subset of the
state space is reachable for this system?

Definitions

• Reachable set

• Controlable set

.

To address our aforementioned questions, we need to formal-
ize the definition of the reachable set and controllable set
first. Recall that the trajectories of system (1), are given by

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)b(τ)u(τ)dτ. Trajectories of a

system are the points in space that the states of the system
go through. Knowing the structural form of the trajectories
of the system, given a finite initial time t0 and finite final time
t1 > t), we can define the reachable set R[t0, t1] and control-
lable set C[t0, t1]

Reachable set (Controllable-from-the-origin):

R[t0, t1]=

{
x1 ∈ Rn

∣∣∃u(.), x1 =

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ

}
.

Controllable set (Controllable-to-the-origin):

C[t0, t1] =
{
x0 ∈ Rn

∣∣∃v(.) = −u(.),

x0 =

∫ t1

t0

Φ(t0, τ)B(τ)u(τ)dτ

}
.
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Research question. The reachable and controllable sets, as defined depend on the
control input u(.). There are infinite possibilities for control
input u(.). How can we obtain the controllable and reachable
sets in a tractable manner? We answer this question using the
reachability and controllability Gramians.

Definitions

• Reachability Gramian

• Controllability
Gramian

.

For a given t1 > t0 Reachability Gramian is

WR(t, t1) =

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)⊤Φ(t1, τ)dτ.

For a given t1 > t0 Controllability Gramian is

WC(t, t1) =

∫ t1

t0

Φ(t0, τ)B(τ)B(τ)⊤Φ(t0, τ)dτ.

Practical result: Reachable
and Controllable Subspaces.

• Reachable subspace

R[t0, t1]=ImWR(t0, t1).

Moreover, if x1 = WR(t0, t1)η1∈ ImWR(t0, t1), then

u(t) = B(t)⊤Φ(t1, t)
⊤η1, t ∈ [t0, t1] (3)

can be used to transfer the state from x(t0) = 0 to
x(t1) = x1. This controller is the minimum-energy con-
troller among all the controllers that can take the system
x(t0) = 0 to x(t1) = x1. Note that controller (3) is an
open-loop controller.

• Controllable subspace

C[t0, t1]=ImWC(t0, t1).

Moreover, if x0 = WC(t0, t1)η0∈ ImWC(t0, t1), then

u(t) = −B(t)⊤Φ(t0, t)
⊤η0, t ∈ [t0, t1] (4)

can be used to transfer the state from x(t0) = x0 to
x(t1) = 0. This controller is the minimum-energy con-
troller among all the controllers that can take the system
x(t0) = x0 to x(t1) = 0. Note that controller (4) is an
open-loop controller.

Take away result: Reachable and controllable system

Given any t1 > t0, system (1) is said to be

• Reachable, i.e., R[t0, t1] = Rn if and only if ImWR(t0, t1) = Rn, or RankWR(t0, t1) = n.

• Controllable, i.e., C[t0, t1] = Rn if and only if ImWC(t0, t1) = Rn, or RankWC(t0, t1) = n.
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Example. For system

ẋ =

[
0 t
0 t

]
x+

[√
t√
t,

]
, where Φ(t, t0) =

1 −1 + e
t2−t20

2

0 e
t2−t20

2


we have

WR(t0, t1) =

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)⊤Φ(t1, τ)dτ =

1

2
(−1+et

2
1−t20)

[
1 1
1 1

]
⇒R[t0, t1]= ImWR(t0, t1)= Span

[
1
1

]
.

Therefore, this system is not fully reachable.
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Problem setting: special
case of LTI systems.

Now, we want to consider the special case of LTI systems

ẋ = Ax+Bu. (5)

For this system we have

Φ(t, τ) = eA(t−τ).

Invoking the properties of matrix exponential, we can simplify
or arrive at alternative ways to compute the controllable and
reachable subspaces and tools to check for controllability and
reachability of the system.

Main result for LTI systems. Let
C =

[
B AB · · · , An−1B

]
. (6)

For any t0 > t1 we have

R[t0, t1] = ImWR(t0, t1) = Im C = ImWC(t0, t1) = C[t0, t1].

This result states that the controllable and reachable sub-
spaces for LTI systems ate identical. Therefore, for LTI sys-
tems, most often when we talk about the concept of reachabil-
ity/controllability under the topic of controllability and define
the controllability as follows.

Because initialization does not matter for LTI systems we will
start the system from t0 = 0. For notational simplicity, for
the finite time of interest we will use t1 = T.

Definition: Controllablity
for LTI systems.

The LTI system (5) or the pair (A,B) is said to be controllable
if for any initial state x0 ∈ Rn and any final state x1 ∈ Rn,
there exists an input that transfers x0 to x1 in a finite time.
Otherwise, (A,B) is said to be uncontrollable.

Definition: Controllablity
Gramian for LTI systems.

For LTI system the controllability Gramian for any t > 0 is

WC(t) =

∫ t

0

eAτBB⊤eA
⊤τdτ. (7)

Take away result: Controllablility test for LTI systems

• The pair (A,B) is controllable if and only if for any finite t > 0, the controllability Gramian (7) is
nonsigular, i.e., RankWC(t) = n.

• Alternatively, (A,B) is controllable if and only if C is full rank, i.e.,

Rank
[
B AB · · · An−1B

]︸ ︷︷ ︸
C

= n (8)
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Minimum-energy controller
for steering LTI systems .

If (A,B) is controllable the minimum-energy control for steer-
ing the system from x(0) = x0 ∈ Rn to another point
x(T ) = x1 ∈ Rn in the space is

u(t) = −B⊤eA
⊤(T−t)W−1

C (T )(eATx0 − x1), t ∈ [0, T ]. (9)

Note that this controller is open-loop.

Some facts about LTI sys-
tems.

Controllability is invariant under similarity transformation

Let (A,B) and (Ā, B̄) be algebraically equivalent, i.e., ∃T
such that Ā = T−1AT and B̄ = T−1B.

(A,B) Controllable ⇔ (Ā, B̄) Controllable.

Rank
[
B AB · · · An−1B

]
= Rank

[
B̄ ĀB̄ · · · Ān−1B̄

]
.

Controllability is invariant under state-feedback

ẋ = Ax+Bu, let u = −Kx+ v ⇒ ẋ = (A−BK)︸ ︷︷ ︸
Acl

x+Bv.

Q: Is (Acl, B) is controllable? A: Yes.

(A,B) Controllable ⇔ (A−BK,B) Controllable.

Controllability is invariant under eigenvalue shift
Recall that eig(A+ αI) = eig(A) for any α ∈ R.

(A,B) Controllable ⇔ (A+ αI,B) Controllable.

Popov-Belevitch-Hautus
(PBH) test for controllabil-
ity .

PBH Eigenvalue test

• (A,B) is controllable if and only if Rank
[
A− λI B

]
=

n for any λ ∈ C.
Because Rank(A−λI) = n for any λ /∈ eig(A), the eigenvalue
test can also be stated as

• (A,B) is controllable if and only if Rank
[
A− λI B

]
=

n for any λ ∈ eig(A).

PBH Eigenvector test

• (A,B) is controllable if and only if for all the left eigen-
vector v of A we have B⊤v ̸= 0.

Recall that v ̸= 0 is a left eigenvector of A if v∗A = λv∗. Every
left eigenvector of A is the right eigenvector of A⊤. Therefore,
the eigenvector test can also be stated as

• (A,B) is controllable if and only if for all the (right)
eigenvector v of A⊤ we have B⊤v ̸= 0.
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Problem definition. Regulation Problem (Stabilization Problem)
Starting from nonzero initial condition, find a controller that
forces the states x → 0 as t → ∞.

Some observations. For the LTI system (5), starting from any initial condition
x(0) = x0 ∈ R, we know the trajectory of the system are
given by

x(t) = eA tx0 +

∫ t

0

eA(t−τ)B u(τ) dτ. (10)

When u = 0 for all t ≥ 0, the trajectory of the system is given
by x(t) = eAtx0.

• When all the eigenvalues of the system have negative
real part, then eAt → 0 as t → ∞. Therefore u = 0 for
t ≥ 0 solves the regulation problem.

We usually do not want to only drive the states of the system
to zero. We also want to enforce some performance factors on
the system

• how fast we want to converge to zero

• we want certain transient response

• minimum energy

Here we are focused on the first two performance factor.

Rate of convergence of an LTI system ẋ = Ax is no worst than
the absolute value of the real part of the rightmost eigenvalue
of A. That is, the rate of convergence of the internal dynamics
is determined by the absolute value of the real part of the right
most eigenvalue of system matrix A.

Research questions. • Why do we still want to use a controller to regulate a
Hurwitz system?

• How to design a regulator controller that can impose
performance metrics such as how fast the system con-
verges and control over transient response?
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Solving Regulation using
state feedback u = −Kx.

We want to solve the regulation problem using full state feed-
back u = −Kx. Using state feedback we obtain

ẋ = Ax+Bu ⇒ ẋ = (A−BK)︸ ︷︷ ︸
Acl

x. (11)

To impose our performance metrics we want control the tra-
jectories of the closed-loop ẋ = Aclx. The trajectories of this
system are governed by eigenvalues of Acl. So, to impose a
certain response we need to use the feedback gain K to place
the eigenvalues of Acl at the desired locations that correlate
with our performance metrics.

Research questions. • When does a regulating state feedback exists?

• Can we have full control over eigenvalue placement of
Acl using state feedback gain K?

• If the answer to the previous question is yes, how can
we obtain such K?

‘Pole-placement’ using state
feedback u = −K x

Note: the problem of
placing the eigenvalue of a
LTI system often is called
pole-placement!.

Theorem: Eigenvalue-placement to enforce a prespecified rate
of convergence
Let (A,B) be controllable. For every α > 0, there al-
ways exists a K such that places all the eigenvalues of the
closed-loop matrix Acl = A−BK on the complex semi plain
Re(λ(Acl) ≤ −α.
To find K, let µ ≥ α be such that −A−µI is Hurwitz. Then,

K =
1

2
B⊤W−1

results in Re(λ(Acl) ≤ −µ ≤ −α where

W =
1

2

∫ ∞

0

e(−µI−A)τBB⊤e(−µI−A)⊤τdτ.

Theorem: Fully Controllable Eigenvalue-placement
Let (A,B) be controllable. Given any symmetric set of n com-
plex numbers {ν1, · · · , νn}, there exists a full-state feedback
matrix K such that the closed-loop system matrix A − BK
has eigenvalues equal to the given νi’s.

Some definitions. characteristic equation of a system ẋ = Ax is

∆(A) = det(λI −A).

Given any symmetric set of n complex numbers {ν1, · · · , νn}
as the desired location for eigenvalues of A−BK, the desired
characteristic equation of the closed-loop system is

∆(A−BK) = (λ− ν1)(λ− ν2) · · · (λ− νn)
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Some definitions. Controllable Canonical form
Consider ẋ = Ax + Bu where x ∈ Rn and u ∈ Rp. We say
(A,B) is controllable canonical form when

A =



−α1Ip −α2Ip · · · −αn−1Ip −αnIp
Ip 0p×p · · · 0p×p 0p×p

0p×p Ip · · · 0p×p 0p×p

0p×p 0p×p · · · 0p×p 0p×p

0p×p Ip · · · 0p×p 0p×p

...
...

. . .
...

0p×p 0p×p · · · Ip 0p×p


, B =


Ip

0p×p

...
0p×p

0p×p


(12)

where ∆(A) = λn + α1λ
n−1 + · · ·+ αn−1λ+ αn.

Observation. Any LTI system that is represented in controllable canonical
form (12) is controllable.

Pole-placement for single in-
put LTI systems: some pre-
liminaries.

Every controllable single input LTI can be represented in con-
trollable canonical form:
Consider the single input system (A, b). If (A, b) is control-
lable, there exists a similarity transformation matrix T such
that (Ā, b̄) = (T−1AT, T−1b) is in controllable canonical form.

Such transformation matrix T is given by T = CC̄−1 where C
and C̄ are controllability matrices of (A, b) and (Ā, b̄), respec-
tively. Note that

C̄−1 =



1 α1 α2 · · · · · · αn−1

0 1 α1 α2 · · · αn−2

0 0 1 α1 · · · αn−3

...
... 0

. . . · · ·
...

...
...

...
. . .

. . . α1

0 0 0 · · · 0 1


,

where {α1, · · ·αn} are coefficients of the characteristic equa-
tion of (A, b):

∆(A)= det(λI−A)= λn+α1λ
n−1+α2λ

n−2+· · ·+αn−1λ+αn.

Recall that ∆(A) = ∆(Ā) (properties of algebraically similar
systems.)

Feedback gains that give same eigenvalues for (A− bK) and
(Ā− b̄K̄)
Let K̄ be the feedback gain that places the eigenvalues of
(Ā−b̄K̄) at desired location {ν1, · · · , νn}. The gain that places
the eigenvalues of (A− bK) at the same desired location is

K = K̄T−1.

Why? A:

{ν1, · · · , νn} = eig(Ā− b̄K̄) = eig(T−1AT︸ ︷︷ ︸
Ā

−T−1b︸ ︷︷ ︸
b̄

KT︸︷︷︸
K̄

)

= eig(T−1(A− bK)T ) = eig(A− bK).
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Pole-placement for single in-
put LTI systems: the proce-
dures.

1. Find the coefficients α1, · · · , αn of the characteristic
equation of ∆(A).

2. Form the desired characteristic equation

∆(A− bK) = (λ− ν1)(λ− ν2) · · · (λ− νn)

= λn + α̂1λ
n−1 + α̂2λ

n−2 + · · ·+ α̂n−1λ+ α̂n,

to obtain {α̂1, · · · , α̂n}. Compute the elements of the
desired state feedback gain K̄ =

[
k̄1 k̄2 · · · k̄n

]
of

the controllable canonical form from

k̄1 = α̂1 − α1, k̄2 = α̂2 − α2, · · · , k̄n = α̂n − αn

3. Find the desired feedback gain for A − bK from K =
K̄T−1, where T is the transformation matrix to obtain
the controllable canonical form of (A, b).

Pole-placement for multi-
input LTI system.

Main Theorem
Suppose the multi-input system (A,B) is controllable; B ∈
Rn×p. Then (A − BF,Bv) is controllable for almost all F ∈
Rp×n and v ∈ Rp×1.

Some observations

• Notice that Bv ∈ Rn×1. Therefore, (A − BF,Bv) can
be regarded as a model of a fictitious single input LTI
system.

• The aforementioned theorem is guaranteeing that ex-
cept for some singular cases, most often if your original
system (A,B) is controllable, the fictitious system

(A−BF,Bv)

we construct will be controllable as well.

Design procedure

1. Let the desired location of eigenvalues of A − BK be
eig(A−BK) = {ν1, · · · , νn}.

2. Choose F ∈ Rp×n and v ∈ Rp×1 to form the fictitious
system (Af , bf ) where Af = A−BF and bf = Bv

3. Using the method you learned for pole-placement for
single input systems, design K̄ ∈ R1×p such that

eig(Af , bf ) = {ν1, · · · , νn}.

4. Noting that

Af−bf K̄ = A−BF−BvK̄ = A−B (F + vK̄)︸ ︷︷ ︸
K

= A−BK,

the desired gain to place the eigenvalues of (A,B) is
K = F + vK̄.
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Research question: uncontrollable systems

What if the system is not controllable? Can we still stabilize this system using state feedback?

The case of uncontrollable
LTI systems.

The LTI system (A,B) is uncontrollable when

Rank
[
B AB · · · An−1B

]︸ ︷︷ ︸
C

= m < n.

Our focus and the results derived next are to pave the way for
finding addressing

Can we design a state feedback u = −Kx to stabilize the
system?

If yes, how can we design such controller?

Controllable decomposition. Suppose Rank C = m < n for system (A,B). Then there
exists a similarity transformation matrix T which results in
Ā = T−1AT and B̄ = T−1B with the following structure

Ā =

[
Ac A12

0 Au

]
, B̄ =

[
Bc

0

]
, (13)

where Ac ∈ Rm×m, A12 ∈ Rm×(n−m), Au ∈ R(n−m)×(n−m),
Bc ∈ Rm×p.

The transformation matrix for controllable decomposition is

T =

[
t1, . . . , tm︸ ︷︷ ︸
basis of Im C

| tm+1, . . . , tn︸ ︷︷ ︸
make T invertible

]
. (14)

You can obtain the basis of Im C are m linearly independent
columns of C.
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Take aways from Control-
lable decomposition.

Consider the controllable decomposition of (A,B). The pair
(Ac, Bc) is controllable.

Recall that eigenvalues of two allegorically similar system ma-
trix are the same. Therefore,

eig(A) = eig(Ā) = eig(Ac) ∪ eig(Au). (15)

Next note that if we use K̄ to place the eigenvalues of Ā at
some desired location {ν1, · · · , νn} the gain

K = K̄T−1 (16)

is the gain places the eigenvalues of A−BK at that location:

{ν1, · · · , νn} = eig(Ā− B̄K̄) = eig(T−1AT︸ ︷︷ ︸
Ā

−T−1B︸ ︷︷ ︸
B̄

TK︸︷︷︸
K̄

)

= eig(T−1(A−BK)T ) = eig(A−BK).

Using the state feedback u = −
[
K̄c K̄u

]︸ ︷︷ ︸
K̄

x̄, the closed-loop

system in the transformed space is

Ācl = Ā− B̄K̄ =

[
Ac −BcK̄c A12 −BcKu

0 Au

]
. (17)

The eigenvalue of this closed-loop system are

eig(Ācl) = eig(Ac −BcK̄c) ∪ eig(Au). (18)

Take aways from Control-
lable decomposition.

From (18) we can see that the state-feedback cannot move
the eigenvalue of Au. On the other hand, since (Ac, Bc) is
controllable, we can use state feedback gain K̄c to move the
eigenvalues of Ac to wherever we want. As such, given (15).

• Eigenvalues of Au are ‘uncontrollable’ eigenvalues of A

• Eigenvalues of Ac are ‘controllable eigenvalues of A.

Number of uncontrollable
eigenvalues.

When (A,B) is not controllable some of the eigenvalues of A
are uncontrollable. The number of uncontrollable eigenvalues
of A are equal to the m = Rank C.

Research question. From the observation above we can see when the system (A,B)
is not controllable, we can still change the location of the
eigenvalues but not all of them. We can change the location
of the ‘controllable’ eigenvalues but we cannot change the lo-
cation of the ’uncontrollable’ eigenvalues. The question is how
to identify the controllable and uncontrollable eigenvalues?
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Identifying uncontrollable
eigenvalues.

The m uncontrollable eigenvalues of uncontrollable system
(A,B) can be obtained from

• constructing the controllable decomposition of the sys-
tem to identify Au. The uncontrollable eigenvalues are
the eigenvalues of Au.

• Use the PBH test. Any eigenvalue that fails the PBH
eigenvalue test is an uncontrollable eigenvalue. You can
also use the PBH eigenvector test. Any eigenvalue whose
corresponding eigenvector fails the PBH test is an un-
controllable eigenvalue.

Pole-placement for stabiliz-
able systems.

When (A,B) is not controllable but it is stabilizable, you
can assign controllable eigenvalues to any other location us-
ing state feedback. The uncontrollable eigenvalues, no matter
what state feedback gain you use, do not change their location,
i.e., eig(Au) ⊂ eig(A−BK) for any K.

Suppose Rank C = m < n for (A,B), which means A
has n − m uncontrollable eigenvalues. Denote the eigen-
values of A with eig(A) = {λ1, λ2, · · · , λm, λm+1, · · · , λn},
where {λ1, λ2, · · · , λm} are controllable eigenvalues and
{λm+1, · · · , λn} are uncontrollable eigenvalues. Considering
the controllable decomposition of the system, this means that
eig(Ac) = {λ1, λ2, · · · , λm} and eig(Au) = {λm+1, · · · , λn}.
Suppose that all the uncontrollable eigenvalues have nega-
tive real parts (Au is Hurwitz), which means that the sys-
tem is stabilizable. Then, for this system, we can reassign
{λ1, λ2, · · · , λm} to any other desirable location using state
feedback but we cannot move {λm+1, · · · , λn}.

To place eigenvalues {λ1, λ2, · · · , λm} at desired locations
{ν1, · · · , νm} we use the controllable decomposition (13) repre-
sentation of the system. Recall (17). Because (Ac, Bc) is con-
trollable, we can use K̄c to place eigenvalues of Ac −BcK̄c at
the desired locations {ν1, · · · , νm} using techniques we learned
to place eigenvalue of controllable systems. Because K̄u does
not play any role in stabilizing the system, we can set K̄u = 0,
i.e., K̄ =

[
K̄c K̄u

]
=

[
K̄c 0

]
. The gain that places eigen-

values of A − BK at {ν1, · · · , νm} ∪ {λm+1, · · · , λn} then is
obtained from K = KT−1 (recall (16)), where T is defined
in (14).

Stablizable LTI system

• An LTI system (A,B) is stabilizable if it has no uncontrollable eigenvalue (fully controllable) or all
its uncontrollable eigenvalues have negative real part (Au is Hurwitz).

• If an uncontrollable (A,B) is stablilizable, we can always find a K such that all the eigenvalues of
A− BK has negative real part. The controllable eigenvalues of A can be assigned to other places,
but the uncontrollable eigenvalue of A cannot be moved.

• When an LTI system is controllable we can always find a controller to drive the states of the system
to zero from any initial conditions in finite time. This controller is not a state feedback (recall the
open-loop minimum energy controller (9)).

• When an uncontrollable LTI system is stabilizable, then its states can be driven to zero using a
control input in infinite time. In this case, no control input goes to the uncontrollable part of the
system, so the system converges to zero with the rate of convergence of ẋu = Auxu.

Solmaz Kia, UCI 13



References. • Joao P. Hespanha. Linear Systems Theory, 2009

• C. T. Chen. Linear System Theory and Design, 4th
edition.

• Franklin and Powell. Feedback Control

Solmaz Kia, UCI 14


