Optimization Methods Lecture 8

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Reading: page 285-297 from Ref[2].

Numerical solvers for unconstrained optimization

Unconstrained optimization:

$$
x^{\star}=\underset{\operatorname{argmin}}{\operatorname{argmin}}(x)
$$

Iterative solution method $x_{k+1}=x_{k}+{ }_{\alpha}^{x \in \mathbb{R}_{k}^{n}} d_{k}$
Observations:

- Steepest descent algorithm can be very slow with lots of zig-zaging
- Newton method is faster but numerically is expensive due to information equipment associated with the evaluation, storage and inversion of Hessian.

Q: Is it possible to accelerate convergence with low numerical cost?
A: Quasi-Newton methods: Consider $x_{k+1}=x_{k}-\alpha_{k} S_{k} g_{k}$

- Try to construct the inverse Hessian, or an approximation of it, using information gathered as the descent process progresses.
- The current approximation H_{k} is then used at each stage to define the next descent direction by setting $S_{k}=H_{k}$ in the modified Newton method.

Quasi Newton Methods (review from last week)

Let

- $g_{k}=\nabla f\left(x_{k}\right)$,
- $\mathrm{q}_{\mathrm{k}}=\mathrm{g}_{\mathrm{k}+1}-\mathrm{g}_{\mathrm{k}}$,
- $\mathrm{p}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}$
then $g\left(x_{k+1}\right)=g\left(x_{k}+p_{k}\right) \approx g\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right)^{\top} p_{k}$. Therefore,

$$
\mathrm{q}_{\mathrm{k}} \approx \nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \mathrm{p}_{\mathrm{k}}
$$

or

$$
\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} q_{k} \approx p_{k}
$$

We expect that H_{k} that wants to approximate $\left(\nabla^{2} f\left(\mathrm{x}_{\mathrm{k}}\right)\right)^{-1}$ should satisfy
(1) $H_{k+1} q_{i}=p_{i}, \quad i \in\{0,1, \cdots, k\}$
(2) H_{k} symmetric
(3) $\mathrm{H}_{\mathrm{k}}>0$

For the case of constant Hessian, after n linearly independent steps, then we have $\mathrm{H}_{\mathrm{n}}=\mathrm{F}^{-1}$.

Quasi Newton Methods (review from last week)

Initialization $\mathrm{k}=0$: start by $\mathrm{x}_{0} \in^{\mathrm{n}}$ and any $\mathrm{H}_{0}>0$
Step 1. Set $d_{k}=-H_{k} g_{k}$.
Step 2. obtain $\alpha_{k}=\subset \alpha>0 \operatorname{argminf}\left(x_{k}+\alpha d_{k}\right)$. Then obtain $x_{k+1}=x_{k}+\alpha d_{k}$ and $p_{k}=\alpha_{k} d_{k}$, and g_{k+1}.
Step 3. Set $q_{k}=g_{k+1}-g_{k}$ and

$$
\begin{gathered}
\text { Rank one correction: } H_{k+1}=H_{k}+\frac{\left(p_{k}-H_{k} q_{k}\right)\left(p_{k}-H_{k} q_{k}\right)^{\top}}{q_{k}^{\top}\left(p_{k}-H_{k} q_{k}\right)} \\
\text { DFP method : } H_{k+1}=H_{k}+\frac{p_{k} p_{k}^{\top}}{p_{k}^{\top} q_{k}}-\frac{H_{k} q_{k} q_{k}^{\top} H_{k}}{q_{k}^{\top} H_{k} q_{k}} .
\end{gathered}
$$

Check the stoping condition; if not satisfied update k and return to Step 1.

In Rank One Correction

- H_{k} is symmetric
- But not necessarily positive definite (we need $q_{k}^{\top}\left(p_{k}-H_{k} q_{k}\right)>0$ which is not guaranteed at all times).

DFP method generates positive definite H_{k} and has better convergence results that the Rank One Correction method.

Quasi Newton Methods: The Broyden family

The idea in the Broyden method is to first approximate the Hessian (denote this estimate by B_{k}) and then inverse it to obtain the inverse Hessian approximation (denote this estimate by H_{k}) which will be use in the quasi-Newton method to compute the $x_{k+1}=x_{k}-\alpha_{k} H_{k} g\left(x_{k}\right)$, where $H_{k}=\left(B_{k}\right)^{-1}$. Recall

- $g_{k}=\nabla f\left(x_{k}\right), q_{k}=g_{k+1}-g_{k}$ and $p_{k}=x_{k+1}-x_{k}$
then $g\left(x_{k+1}\right)=g\left(x_{k}+p_{k}\right) \approx g\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right)^{\top} p_{k}$. Therefore, $q_{k} \approx \nabla^{2} f\left(x_{k}\right) p_{k}$. We expect that B_{k} that wants to approximate $\left(\nabla^{2} f\left(x_{k}\right)\right)$ should satisfy
(1) $\mathrm{B}_{\mathrm{k}+1} \mathrm{p}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}}, \quad \mathrm{i} \in\{0,1, \cdots, \mathrm{k}\}$
(2) B_{k} symmetric and $B_{k}>0$

For constant Hessian F, after n linearly independent steps, then we have $B_{n}=F$.
To develop the Broyden approximate to the Hessian, we follow the DFP method exactly with the only difference that q_{p} and p_{k} are replaced, replaced respectively by p_{k} and q_{k}.
DFP method: $H_{k+1}=H_{k}+\frac{p_{k} p_{k}^{\top}}{p_{k}^{\top} q_{k}}-\frac{H_{k} q_{k} q_{k}^{\top} H_{k}}{q_{k}^{\top} H_{k} q_{k}}$
Broyden-Fletcher-Godfarb-Shanno (BFGS) method: $B_{k+1}=B_{k}+\frac{q_{k} q_{k}^{\top}}{q_{k}^{\top} p_{k}}-\frac{B_{k} p_{k} p_{k}^{\top} B_{k}}{p_{k}^{\top} B_{k} p_{k}}$
Starting with a $B_{0}>0$, similar B_{k} is guaranteed to be positive definite for $k>0$.

Quasi Newton Methods: The Broyden family

$$
B_{k+1}=B_{k}+\frac{q_{k} q_{k}^{\top}}{q_{k}^{\top} p_{k}}-\frac{B_{k} p_{k} p_{k}^{\top} B_{k}}{p_{k}^{\top} B_{k} p_{k}}
$$

We are interested in $H_{k}=\left(B_{k}\right)^{-1}$. As it happens we can use the property below to compute H_{k} in a closed form.

Sherman-Morrison formula: Let $A \in \mathbb{R}^{n \times n}$ be invertible. Then, for $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{n}$ we have

$$
\left(A+a b^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} a b^{\top} A^{-1}}{1+b^{\top} A^{-1} a}
$$

$$
H_{k+1}^{\mathrm{BFGS}}=\left(B_{k+1}^{\mathrm{BFGS}}\right)^{-1}=H_{k}+\left(1+\frac{q_{k}^{\top} H_{k} q_{k}}{p_{k}^{\top} q_{k}}\right) \frac{p_{k} p_{k}^{\top}}{p_{k}^{\top} q_{k}}-\frac{H_{k} q_{k} p_{k}^{\top}+p_{k} q_{k}^{\top} H_{k}}{p_{k}^{\top} q_{k}}
$$

- Numerical experiments have repeatedly shown that BFGS has superior performance in comparison to the DFP method.

Quasi Newton Methods: The Broyden family

- Broyden family update is obtained from combining the BFGS and the DFP method

$$
\mathrm{H}^{\phi}=(1-\phi) \mathrm{H}^{\mathrm{DFP}}+\phi \mathrm{H}^{\mathrm{BFGS}}
$$

where ϕ can take any value.

- An explicit representation of Broyden family can be shown to be

$$
H_{k+1}^{\phi}=H_{k}+\frac{p_{k} p_{k}^{\top}}{p_{k}^{\top} q_{k}}-\frac{H_{k} q_{k} q_{k}^{\top} H_{k}}{q_{k}^{\top} H_{k} q_{k}}+\phi \tau_{k} v_{k} v_{k}^{\top}=H_{k+1}^{D E p}+\phi v_{k} v_{k}^{\top}
$$

where $v_{k}=\frac{p_{k}}{p_{k}^{k} q_{k}}-\frac{H_{k} q_{k}}{\tau_{k}}$ and $\tau_{k}=q_{k}^{\top} H_{k} q_{k}$

- The parameter ϕ is, in general, allowed to vary from one iteration to another
- A Broyden family is defined. by a sequence $\phi_{1}, \phi_{2}, \cdots$, of parameter values.
- A pure Broyden method is one that uses a constant ϕ
- For $\phi=0$ we recover the DFP method
- For $\phi=1$ we recover the BFGS method
- For $0 \leqslant \phi \leqslant 1, \mathrm{H}^{\phi}$ is positive definite
- For $\phi<0$ and $\phi>1$ there is possibility that H^{ϕ} may become singular
- In practice $0 \leqslant \phi \leqslant 1$ is usually imposed to avoid difficulties

Numerical example

Minimize Rosenbrock's function,

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

starting from $x_{0}=(-1.2,1.0)^{T}$.

Solution path of the steepest descent and conjugate gradient methods

Solution path of the modified Newton and BFGS methods

Comparison of convergence rates for the Rosenbrock function

Trust Region (restricted-step)methods

- Trust region, or "restricted-step" methods are a different approach to resolving the weaknesses of the pure form of Newton's method, arising from an Hessian that is not positive definite or a highly nonlinear function.
- One way to interpret these problems is to say that they arise from the fact that we are stepping outside a the region for which the quadratic approximation is reasonable. Thus we can overcome this difficulties by minimizing the quadratic function within a region around x_{k} within which we trust the quadratic model.

Consider $x_{k+1}=x_{k}+p_{k}$. The algorithm in the next slide we design p_{k} using a Trust Region method. Note that there are different variations of the Trust Region method. Here we only present one of these method.

A Trust Region algorithm

(1) Select x_{0} and a convergence parameter $\epsilon>0$ and the initial size of the trust region, h_{0}.
(2) Compute $g\left(x_{k}\right)=\nabla f\left(x_{k}\right)$. If $\left\|g\left(x_{k}\right)\right\| \leqslant \epsilon$ then stop. Otherwise, continue.
(3) Compute $\mathrm{H}\left(\mathrm{x}_{\mathrm{k}}\right)=\nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$ and solve the quadratic subproblem

$$
\begin{aligned}
p_{k}= & \underset{p \in \mathbb{R}^{n}}{\operatorname{argmin}} q(p)=f\left(x_{k}\right)+g\left(x_{k}\right)^{\top} p+\frac{1}{2} p^{\top} H\left(x_{k}\right) p, \text { s.t. } \\
& -h_{k} \leqslant p^{i} \leqslant h_{k}, i=1, \cdots, n, \quad\left(p^{i} \text { is the ith element of } p \in \mathbb{R}^{n}\right)
\end{aligned}
$$

(4) Compute the ratio that measures the accuracy of the quadratic model,

$$
r_{k}=\frac{\overbrace{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}^{\text {actual function reduction }}}{\underbrace{q(0)-q\left(p_{k}\right)}_{\text {predicted function reduction }}}=\frac{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}{f\left(x_{k}\right)-q\left(p_{k}\right)}
$$

(5) Compute the size for the new trust region as follows:

$$
h_{k+1}= \begin{cases}\frac{\left\|p_{k}\right\|}{4} & \text { if } r_{k}<0.25 \\ 2 h_{k} & \text { if } r_{k}>0.75 \text { and } h_{k}=\left\|p_{k}\right\| \\ h_{k}, & \text { otherwise }\end{cases}
$$

(6) Determine the new point: $x_{k+1}= \begin{cases}x_{k} & \text { if } r_{k} \leqslant 0, \\ x_{k}+p_{k} & \text { otherwise, }\end{cases}$
(7) Set $k=k+1$ and return to 2 .

Note: The initial value of h is usually 1 . The same stopping criteria used in other gradient-based methods are also applicable.

