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Numerical solvers for unconstrained optimization

Unconstrained optimization:

x? =argmin
x∈Rn

f(x)

Iterative solution method xk+1 = xk + αk dk

Observations:

Steepest descent algorithm can be very slow with lots of zig-zaging

Newton method is faster but numerically is expensive due to information
equipment associated with the evaluation, storage and inversion of Hessian.

Q: Is it possible to accelerate convergence with low numerical cost?
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Some observations about successive descent methods

xk+1 = xk − αk Sk gk

where

Sk is a symmetric n× n matrix and to guarantee that descent Sk should be
positive definite

Sk = (∇2f(xk))
−1: Newtown method

Sk = I: Steepest descent method

αk is chosen to minimize f(xk+1).

Note: It is always a good idea to choose Sk as an approximation to the inverse of
the Hessian
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Some observations about successive descent methods

Rate of convergence of

xk+1 = xk − αk Sk gk, where Sk > 0, αk = argmin f(xk − αk Sk gk) (Al-1)

solving the standard quadratic unconstrained optimization problem with cost
f(x) = 1

2
x>Qx− b>x:

Note that αk = argmin
α>0

f(xk−αSk gk)=
g>k Skgk

g>k SkQSkgk
, where gk = ∇f(xk) = Qxk − b.

Let x? be the unique minimum point of f, and define E(x) = 1
2
(x− x?)>Q(x− x?). Then

for the algorithm (A1-1) there holds at every step k

E(xk+1) 6

(
Bk − bk
Bk + bk

)2

E(xk),

where bk and Bk are, respectively, the smallest and largest eigenvalues of the matrix
SkQ.

Note: the observation above supports the idea that Sk should be chosen close to Q−1

(note that in this case bk gets close to Bk and the rate improves substantially)
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Quasi Newton Methods

Fundamental idea of Quasi Newton Methods:

Try to construct the inverse Hessian, or an approximation of it, using
information gathered as the descent process progresses.

The current approximation Hk is then used at each stage to define the next
descent direction by setting Sk = Hk in the modified Newton method.

The observations below gives us the guidelines to design Hk such that as k
increases, Hk approximates the Hessian (∇2f(xk))

−1

Let

gk = ∇f(xk),
qk = gk+1 − gk,
pk = xk+1 − xk

then g(xk+1) = g(xk + pk) ≈ g(xk) +∇2f(xk)
>pk. Therefore,

qk ≈ ∇2f(xk)pk

or
(∇2f(xk))

−1qk ≈ pk 5 / 14



Quasi Newton Methods

We observe that if (∇2f(xk)) was constant and equal to F and also {pk}
n−1
k=0

was a set of n linearly independent directions, then we obtain

F =
[
q0 q1 · · · qn−1

] [
p0 p1 · · · pn−1

]−1

This shows that for this special case, it is possible to construct the Hessian
from the the information gathered as the descent process progresses!
Consider again the case of constant Hessian F = ∇2f(xk). In this case, we
know qk ≈ F pk or equivalently F−1 qk ≈ pk, for all k.

Based on the observations above, we set expect that Hk that wants to
approximate (∇2f(xk))

−1 satisfy

1 Hk+1qi = pi, i ∈ {0, 1, · · · ,k}
2 Hk symmetric
3 Hk > 0

For the case of constant Hessian, after n linearly independent steps, then we have
Hn = F−1.
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Quasi Newton Methods: Rank One Correction

The first quasi-Newton method is proposed as follows with ak ∈ R and zk ∈ Rn as
design variables (Rank One Correction)

Hk+1 = Hk + akzkz
>
k

Note that Hk is symmetric. ak and zk are designed such that Hk+1qk = pk, which
results in

Hk+1 = Hk +
(pk−Hk qk)(pk−Hk qk)>

q>k (pk−Hkqk)

Theorem Let F be a fixed symmetric matrix and suppose that p0,p1,p2, · · · ,pk are given
vectors. Define the vectors qi = Fpi, i ∈ {0, 1, 2, · · · ,k}. Starting with any initial
symmetric matrix H0 let

Hi+1 = Hi +
(pi −Hi qi)(pi −Hi qi)

>

q>
i (pi −Hiqi)

Then
pi = Hk+1qi for i ∈ {0, 1, · · · ,k}.

In Rank One Correction

Hk is symmetric
But not necessarily positive definite (we need q>

k (pk −Hkqk) > 0 which is not
guaranteed at all times) 7 / 14
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Quasi Newton Methods: Davidon-Fletcher-Powell (DFP) method

Davidon-Fletcher-Powell (DFP) method:
Initialization k = 0: start by x0 ∈n and any H0 > 0
Step 1. Set dk = −Hkgk.
Step 2. obtain αk =⊂ α > 0argminf(xk + αdk). Then obtain xk+1 = xk + αdk
and pk = αkdk, and gk+1.
Step 3. Set qk = gk+1 − gk and

Hk+1 = Hk +
pkp

>
k

p>k qk
−
Hkqkq

>
kHk

q>kHkqk
.

check the stoping condition. If not satisfied update k and return to Step 1.

at each step the inverse Hessian is updated by sum of two symmetric rank
one matrices (called often Rank Two Procedure)
also referred at Variable Metric Method
starting from a positive definite H0, the subsequently generated Hk are
positive definite
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Quasi Newton Methods: Davidon-Fletcher-Powell (DFP) method

Davidon-Fletcher-Powell (DFP) method for a quadratic cost function

generates the directions of the conjugate gradient method
while constructing the inverse Hessian

Theorem: If cost function f is quadratic with positive definite Hessian F, then for
the DFP method we have

p>i F pj = 0, 0 6 i < j 6 k

Hk+1F pi = pi for 0 6 i 6 k.
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