Optimization Methods Lecture 7

Solmaz S. Kia Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Reading: page 285-297 from Ref[2].

Unconstrained optimization:

 $\begin{aligned} x^{\star} = & \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \\ \text{Iterative solution method } x_{k+1} = x_{k} + \alpha_{k} d_{k} \\ \text{Observations:} \end{aligned}$

- Steepest descent algorithm can be very slow with lots of zig-zaging
- Newton method is faster but numerically is expensive due to information equipment associated with the evaluation, storage and inversion of Hessian.

Q: Is it possible to accelerate convergence with low numerical cost?

$$x_{k+1} = x_k - \alpha_k \, S_k \, g_k$$

where

- S_k is a symmetric $n \times n$ matrix and to guarantee that descent S_k should be positive definite
 - $S_k = (\nabla^2 f(x_k))^{-1}$: Newtown method
 - $S_k = I$: Steepest descent method
- α_k is chosen to minimize $f(x_{k+1})$.

Note: It is always a good idea to choose $S_{\rm k}$ as an approximation to the inverse of the Hessian

Rate of convergence of

$$x_{k+1} = x_k - \alpha_k \, S_k \, g_k, \text{ where } S_k > 0, \quad \alpha_k = \text{argmin} \, f(x_k - \alpha_k \, S_k \, g_k) \ \, \text{(Al-1)}$$

solving the standard quadratic unconstrained optimization problem with cost $f(x)=\frac{1}{2}x^\top Qx-b^\top x$:

Note that
$$\alpha_k = \underset{\alpha>0}{\operatorname{argminf}} (x_k - \alpha S_k g_k) = \frac{g_k^\top s_k g_k}{g_k^\top s_k Q S_k g_k}$$
, where $g_k = \nabla f(x_k) = Q x_k - b$.

Let x^* be the unique minimum point of f, and define $E(x) = \frac{1}{2}(x - x^*)^\top Q(x - x^*)$. Then for the algorithm (A1-1) there holds at every step k

$$\mathsf{E}(\mathsf{x}_{k+1}) \leqslant \left(\frac{\mathsf{B}_k - \mathfrak{b}_k}{\mathsf{B}_k + \mathfrak{b}_k}\right)^2 \mathsf{E}(\mathsf{x}_k),$$

where b_k and B_k are, respectively, the smallest and largest eigenvalues of the matrix $S_k Q.$

Note: the observation above supports the idea that S_k should be chosen close to Q^{-1} (note that in this case b_k gets close to B_k and the rate improves substantially)

Fundamental idea of Quasi Newton Methods:

- Try to construct the inverse Hessian, or an approximation of it, using information gathered as the descent process progresses.
- The current approximation H_k is then used at each stage to define the next descent direction by setting $S_k = H_k$ in the modified Newton method.

The observations below gives us the guidelines to design H_k such that as k increases, H_k approximates the Hessian $(\nabla^2 f(x_k))^{-1}$

Let

- $g_k = \nabla f(x_k)$,
- $q_k = g_{k+1} g_k$,
- $p_k = x_{k+1} x_k$

then $g(x_{k+1}) = g(x_k + p_k) \approx g(x_k) + \nabla^2 f(x_k)^\top p_k$. Therefore, $a_k \approx \nabla^2 f(x_k) p_k$

or

$$(\nabla^2 f(x_k))^{-1} q_k \approx p_k$$

• We observe that if $(\nabla^2 f(x_k))$ was constant and equal to F and also $\{p_k\}_{k=0}^{n-1}$ was a set of n linearly independent directions, then we obtain

$$F = \begin{bmatrix} q_0 & q_1 & \cdots & q_{n-1} \end{bmatrix} \begin{bmatrix} p_0 & p_1 & \cdots & p_{n-1} \end{bmatrix}^{-1}$$

This shows that for this special case, it is possible to construct the Hessian from the the information gathered as the descent process progresses!

• Consider again the case of constant Hessian $F = \nabla^2 f(x_k)$. In this case, we know $q_k \approx F p_k$ or equivalently $F^{-1} q_k \approx p_k$, for all k.

Based on the observations above, we set expect that H_k that wants to approximate $(\nabla^2 f(x_k))^{-1}$ satisfy

1
$$H_{k+1}q_i = p_i, i \in \{0, 1, \dots, k\}$$

- O H_k symmetric
- $H_k > 0$

For the case of constant Hessian, after n linearly independent steps, then we have $H_n=F^{-1}.$

Quasi Newton Methods: Rank One Correction

The first quasi-Newton method is proposed as follows with $a_k \in \mathbb{R}$ and $z_k \in \mathbb{R}^n$ as design variables (<u>Rank One Correction</u>)

$$\mathsf{H}_{k+1} = \mathsf{H}_k + \mathfrak{a}_k z_k z_k^{\top}$$

Note that H_k is symmetric. a_k and z_k are designed such that $H_{k+1}q_k = p_k$, which results in

$$\mathbf{H}_{k+1} = \mathbf{H}_{k} + \frac{(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})^{\top}}{\mathbf{q}_{k}^{\top}(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})}$$

Theorem Let F be a fixed symmetric matrix and suppose that $p_0, p_1, p_2, \dots, p_k$ are given vectors. Define the vectors $q_i = Fp_i$, $i \in \{0, 1, 2, \dots, k\}$. Starting with any initial symmetric matrix H_0 let

$$H_{i+1} = H_i + \frac{(p_i - H_i q_i)(p_i - H_i q_i)^{\top}}{q_i^{\top}(p_i - H_i q_i)}$$

Then

$$p_{\mathfrak{i}}=H_{k+1}q_{\mathfrak{i}}\quad\text{for}\quad\mathfrak{i}\in\{0,1,\cdots,k\}.$$

In Rank One Correction

- H_k is symmetric
- But not necessarily positive definite (we need q[⊤]_k(p_k − H_kq_k) > 0 which is not guaranteed at all times)

Quasi Newton Methods: Rank One Correction

The first quasi-Newton method is proposed as follows with $a_k \in \mathbb{R}$ and $z_k \in \mathbb{R}^n$ as design variables (<u>Rank One Correction</u>)

$$\mathsf{H}_{k+1} = \mathsf{H}_k + \mathfrak{a}_k z_k z_k^{\top}$$

Note that H_k is symmetric. a_k and z_k are designed such that $H_{k+1}q_k = p_k$, which results in

$$\mathbf{H}_{k+1} = \mathbf{H}_{k} + \frac{(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})^{\top}}{\mathbf{q}_{k}^{\top}(\mathbf{p}_{k} - \mathbf{H}_{k} \mathbf{q}_{k})}$$

Theorem Let F be a fixed symmetric matrix and suppose that $p_0, p_1, p_2, \dots, p_k$ are given vectors. Define the vectors $q_i = Fp_i$, $i \in \{0, 1, 2, \dots, k\}$. Starting with any initial symmetric matrix H_0 let

$$H_{i+1} = H_i + \frac{(p_i - H_i q_i)(p_i - H_i q_i)^{\top}}{q_i^{\top}(p_i - H_i q_i)}$$

Then

$$p_{\mathfrak{i}}=H_{k+1}q_{\mathfrak{i}}\quad\text{for}\quad\mathfrak{i}\in\{0,1,\cdots,k\}.$$

In Rank One Correction

- H_k is symmetric
- But not necessarily positive definite (we need q[⊤]_k(p_k − H_kq_k) > 0 which is not guaranteed at all times)

Davidon-Fletcher-Powell (DFP) method: Initialization k=0: start by $x_0 \in^n$ and any $H_0>0$ Step 1. Set $d_k=-H_kg_k.$ Step 2. obtain $\alpha_k=\subset \alpha>0 \text{argminf}(x_k+\alpha d_k).$ Then obtain $x_{k+1}=x_k+\alpha d_k$ and $p_k=\alpha_kd_k,$ and $g_{k+1}.$ Step 3. Set $q_k=g_{k+1}-g_k$ and

$$\mathsf{H}_{k+1} = \mathsf{H}_{k} + \frac{\mathsf{p}_{k}\mathsf{p}_{k}^{\top}}{\mathsf{p}_{k}^{\top}\mathsf{q}_{k}} - \frac{\mathsf{H}_{k}\mathsf{q}_{k}\mathsf{q}_{k}^{\top}\mathsf{H}_{k}}{\mathsf{q}_{k}^{\top}\mathsf{H}_{k}\mathsf{q}_{k}}.$$

check the stoping condition. If not satisfied update k and return to Step 1.

- at each step the inverse Hessian is updated by sum of two symmetric rank one matrices (called often **Rank Two Procedure**)
- also referred at Variable Metric Method
- \bullet starting from a positive definite $H_0,$ the subsequently generated H_k are positive definite

Quasi Newton Methods: Davidon-Fletcher-Powell (DFP) method

Davidon-Fletcher-Powell (DFP) method for a quadratic cost function

- generates the directions of the conjugate gradient method
- while constructing the inverse Hessian

Theorem: If cost function f is quadratic with positive definite Hessian F, then for the DFP method we have

- $p_i^\top F p_j = 0$, $0 \leq i < j \leq k$
- $\bullet \ H_{k+1}F\,p_{\mathfrak{i}}=p_{\mathfrak{i}} \ \text{ for } 0\leqslant \mathfrak{i}\leqslant k.$