Optimization Methods Lecture 6

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Reading assignment: Ch 9 of Ref[2]

Numerical solvers for unconstrained optimization

Unconstrained optimization:

$$
x^{\star}=\operatorname{argmin} f(x)
$$

$$
x \in \mathbb{R}^{n}
$$

Iterative solution method $\chi_{k+1}=x_{k}+\alpha_{k} d_{k}$
Observations:

- Steepest descent algorithm can be very slow with lots of zig-zaging
- Newton method is faster bit numerically is expensive due to information equipment associated with the evaluation, storage and inversion of Hessian.
\%pause Q: Is it possible to accelerate convergence with low numerical cost?

Conjugate direction method

- Conjugate direction methods proposed for

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2} x^{\top} \mathrm{Q} x-\mathrm{b}^{\top} x, \quad \mathrm{Q}>0
$$

- Conjugate direction methodsconverge in n steps
- Can be extended to solve other nonlinear optimization problems

Defintion:

- Two vectors $d_{1} \in \mathbb{R}^{n}$ and $d_{2} \in \mathbb{R}^{n}$ are orthogonal if and only if $d_{1}^{\top} d_{2}=0$.
- Given a symmetric matrix $Q \in \mathbb{R}^{n \times n}$, two vectors d_{1} and d_{2} are said to be Q-orthogonal or conjugate with respect to Q if $d_{1}^{\top} Q d_{2}=0$.
- A finite set of vectors $\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$ is said to be Q -orthogonal or conjugate with respect to Q, if

$$
\mathrm{d}_{\mathrm{i}}^{\top} \mathrm{Qd}_{\mathfrak{j}}=0, \quad \forall \mathfrak{i}, \mathfrak{j}, \quad \mathfrak{i} \neq \mathfrak{j} .
$$

Preliminaries

- Linearly independent vectors: A set of vectors $\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$ is linearly independent if the relation

$$
\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{k} d_{k}=0
$$

implies that $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$.

- Lemma If $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \cdots, \mathrm{~d}_{\mathrm{k}}\right\}$ is linearly independt set of vectors and $x \in \operatorname{span}\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$, the relation

$$
x=\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{k} d_{k}
$$

is unique.

- Lemma If $\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$ is a set of n linearly independent vectors in \mathbb{R}^{n}, then every $x \in \mathbb{R}^{n}$ can be written as linear combination of $\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$, i.e.,

$$
x=\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{n} d_{n}
$$

Properties of conjugate vectors

Proposition If $\mathrm{Q}>0$, and the set of non-zero vectors $\left\{\mathrm{d}_{0}, \cdots, \mathrm{~d}_{\mathrm{k}}\right\}$ are Q-orthogonal then these vectors are linearly independent.
Proof Suppose $\exists \alpha_{i}, i=0,1, \cdots, k$ such that

$$
\alpha_{0} \mathrm{~d}_{0}+\alpha_{1} \mathrm{~d}_{1}+\cdots+\alpha_{k} \mathrm{~d}_{\mathrm{k}}=0
$$

Multiply by Q and taking the scalar product with d_{i} :

$$
\alpha_{i} d_{i}^{\top} \mathrm{Qd}_{i}=0
$$

Since $\mathrm{d}_{\mathrm{i}} \neq 0$ and $\mathrm{Q}>0$, we obtain $\alpha_{\mathrm{i}}=0$. Therefore, $\left\{\mathrm{d}_{0}, \cdots, \mathrm{~d}_{\mathrm{k}}\right\}$ are linearly independent.

Conjugate gradient algorithm (preliminary version)

Given x_{0}
set $\mathrm{g}_{0} \leftarrow \mathrm{Q} \mathrm{x}_{0}-\mathrm{b}, \quad \mathrm{d}_{0} \leftarrow-\mathrm{g}_{0}, \quad \mathrm{k} \leftarrow 0$ while $g_{k} \neq 0$

$$
\begin{aligned}
\alpha_{\mathrm{k}} & \leftarrow-\frac{g_{\mathrm{k}}^{\top} \mathrm{d}_{\mathrm{k}}}{\mathrm{~d}_{\mathrm{k}}^{\top} \mathrm{Q}_{\mathrm{k}}}, \\
\mathrm{x}_{\mathrm{k}+1} & \leftarrow \mathrm{x}_{\mathrm{k}}+\alpha_{\mathrm{k}} \mathrm{~d}_{\mathrm{k}} \\
\mathrm{~g}_{\mathrm{k}+1} & \leftarrow \mathrm{Q}_{\mathrm{x}_{\mathrm{k}+1}}-\mathrm{b} \\
\beta_{\mathrm{k}+1} & \leftarrow \frac{\mathrm{~g}_{\mathrm{k}+1}^{\top} \mathrm{Q} \mathrm{~d}_{\mathrm{k}}}{\mathrm{~d}_{\mathrm{k}}^{\top} \mathrm{Qd}_{\mathrm{k}}}, \\
\mathrm{~d}_{\mathrm{k}+1} & \leftarrow-\mathrm{g}_{\mathrm{k}+1}+\beta_{\mathrm{k}+1} \mathrm{~d}_{\mathrm{k}} \\
\mathrm{k} & \leftarrow \mathrm{k}+1
\end{aligned}
$$

end(while)

Conjugate gradient algorithm

Given x_{0}
set $\mathrm{g}_{0} \leftarrow \mathrm{Q} \mathrm{x}_{0}-\mathrm{b}, \quad \mathrm{d}_{0} \leftarrow-\mathrm{g}_{0}, \quad \mathrm{k} \leftarrow 0$ while $g_{k} \neq 0$

$$
\begin{aligned}
\alpha_{\mathrm{k}} & \leftarrow \frac{g_{\mathrm{k}}^{\top} g_{\mathrm{k}}}{\mathrm{~d}_{\mathrm{k}}^{\top} \mathrm{Q}_{\mathrm{k}}}, \\
\mathrm{x}_{\mathrm{k}+1} & \leftarrow \mathrm{x}_{\mathrm{k}}+\alpha_{\mathrm{k}} \mathrm{~d}_{\mathrm{k}} \\
\mathrm{~g}_{\mathrm{k}+1} & \leftarrow g_{\mathrm{k}}+\alpha_{\mathrm{k}} \mathrm{Q} \mathrm{~d}_{\mathrm{k}} \\
\beta_{\mathrm{k}+1} & \leftarrow \frac{g_{\mathrm{k}+1}^{\top} g_{\mathrm{k}+1}}{g_{\mathrm{k}}^{\top} g_{\mathrm{k}}}, \\
\mathrm{~d}_{\mathrm{k}+1} & \leftarrow-\mathrm{g}_{\mathrm{k}+1}+\beta_{\mathrm{k}+1} \mathrm{~d}_{\mathrm{k}} \\
\mathrm{k} & \leftarrow \mathrm{k}+1
\end{aligned}
$$

end(while)

Note:
$g_{k+1}=Q x_{k+1}-b=Q\left(x_{k}+\alpha_{k} d_{k}\right)-b=Q x_{k}-b+Q \alpha_{k} d_{k}=g_{k}+\alpha_{k} Q d_{k}$.

Numerical example

Minimize Rosenbrock's function,

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

starting from $x_{0}=(-1.2,1.0)^{T}$.

Solution path of the steepest descent and conjugate gradient methods

