- Does it converge to minimum?
- How fast?
- Practical issues: Is it easy to implement or tune?

We will see that all the methods we discussed converge to a minimum, but some of them require the function f to have additional good properties.

Remark: We say $x \in \mathbb{R}^n$ is a limit point of a sequence $\{x_k\}$, if there exists a subsequence of $\{x_k\}$ that converges to x.

Definition: Let $\{z_k\}$ converges to \overline{z} . We say the convergence of *order* $p(\ge 0)$ and with *factor* γ (> 0), if $\exists k_0$ such that $\forall k \ge k_0$ we have

$$||z_{k+1} - \overline{z}|| \leq \gamma ||z_k - \overline{z}||^p.$$

- The larger the power p the faster the convergence.
- For the same p, the smaller γ , the faster the convergence.
- If $\{z_k\}$ converges with order p and factor γ , it also converges with order \bar{p} for any $\bar{p} \leqslant p$.

Terminologies

- If p = 1, and $\gamma < 1$, we say convergence is *linear*: $\lim_{k \to \infty} \frac{\|z_{k+1} \bar{z}\|}{\|z_k \bar{z}\|} = \gamma < 1$
- If p = 1, and $\gamma = 1$, we say convergence is *sublinear*.
- If p > 1, we say that the convergence is superlinear: $\lim_{k\to\infty} \frac{\|z_{k+1}-\bar{z}\|}{\|z_k-\bar{z}\|} = 0$
- If p = 2, we say that the convergence is *quadratic*: $\lim_{k\to\infty} \frac{\|z_{k+1} \bar{z}\|}{\|z_k \bar{z}\|^2} < \infty$

Basic ingredients of our local rate of convergence analysis approach

- Focus on a sequence $\{x_k\}$ that converges to a unique limit points x^*
- Rate of convergence is evaluated using *error function* E(x):

 $E: \mathbb{R}^n \to \mathbb{R}$ such that $E(x) \ge 0 \quad \forall x \in \mathbb{R}^n$, $E(x^*) = 0$.

- Typical choices are
 - Euclidean distance: $E(x) = ||x x^*||$
 - Cost difference: $E(x) = |f(x) f(x^*)|$
- Our analysis is asymptotic, i.e., we look at the rate of convergence of the tail of the error sequence $\{E(x_k)\}$
- Convergence type
 - linear convergence : $\lim_{k\to\infty} \frac{E(x_{k+1})}{E(x_k)} = \gamma < 1$ superlinear convergence : $\lim_{k\to\infty} \frac{E_{x_{k+1}}}{E(x_k)} = 0$

 - quadratic: $\lim_{k\to\infty} \frac{E(x_{k+1})}{E(x_k)^2} < \infty$

Convergence of steepest descent algorithm for quadratic cost functions

Proposition: Consider $f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$ with Q > 0. For the steepest descent algorithm with exact line search, $\alpha_k = \operatorname{argmin} f(x_k - \alpha_k \nabla f(x_k))$, we have $x_k \to x^*$, starting from any $x_0 \in \mathbb{R}^n$ (this is called global convergence).

 $\textbf{Proof:} \ \text{let} \ \lambda_1 = \lambda_{\text{min}}(Q) \ \text{and} \ \lambda_n = \lambda_{\text{max}}(Q).$

• Note that from $\nabla f(x) = Q x - b$. Therefore $x^* = Q^{-1} b$. Because Q > 0, f(x) is a strictly convex function. Therefore $x^* = Q^{-1}b$ is the unique minimizer of f(x), i.e, $E(x) = f(x) - f(x^*) > 0$.

•
$$\alpha_k = \operatorname{argmin} f(x_k - \alpha_k \nabla f(x_k)) = \frac{\nabla f(x_k)^\top \nabla f(x_k)}{\nabla f(x_k)^\top Q \nabla f(x_k)}.$$

• we can write
$$f(x) = \underbrace{\frac{1}{2}(x - x^{\star})^{\top}Q(x - x^{\star})}_{E(x)} \underbrace{-\frac{1}{2}x^{\star}Qx^{\star}}_{f(x^{\star})}$$

• $E(x) = \frac{1}{2} ||x - x^{\star}||_Q^2 = f(x) - f(x^{\star})$

• Using $x_{k+1} = x_k - \frac{\nabla f(x_k)^\top \nabla f(x_k)}{\nabla f(x_k)^\top Q \nabla f(x_k)} \nabla f(x_k)$, we obtain

$$\mathsf{E}(\mathbf{x}_{k+1}) = \Big(1 - \frac{\nabla f(\mathbf{x}_k)^\top \nabla f(\mathbf{x}_k)}{(\nabla f(\mathbf{x}_k)^\top Q \nabla f(\mathbf{x}_k))(\nabla f(\mathbf{x}_k)^\top Q^{-1} \nabla f(\mathbf{x}_k))}\Big) \mathsf{E}(\mathbf{x}_k)$$

Convergence of steepest descent algorithm for quadratic cost functions

• Using Kantoraovich inequality

$$\mathsf{E}(x_{k+1}) \leqslant \big(1 - \frac{4\lambda_1\lambda_n}{(\lambda_1 + \lambda_n)^2}\big)\mathsf{E}(x_k) = \underbrace{(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1})^2}_{\beta} \mathsf{E}(x_k).$$

- note that $\beta < 1$.
- $E(x_{k+1}) \leq \beta E(x_k)$ or equivalently $(f(x_{k+1}) f(x^*)) \leq \beta (f(x_k) f(x^*))$: linear rate of convergence with factor β
- if β is small, the rate of convergence is good.
- Rate of convergence and condition number: $\kappa(Q) = \frac{\lambda_n}{\lambda_1}$

•
$$\beta = (\frac{\frac{\lambda_n}{\lambda_1} - 1}{\frac{\lambda_n}{\lambda_1} + 1})^2 = (\frac{\kappa(Q) - 1}{\kappa(Q) + 1})^2$$

- \bullet the problems with large κ are referred to as ill-conditioned
- Steepest descent algorithm converges slowly for ill-conditioned problems

$$\beta = (\frac{\frac{\lambda_n}{\lambda_1} - 1}{\frac{\lambda_n}{\lambda_1} + 1})^2 = (\frac{\kappa(Q) - 1}{\kappa(Q) + 1})^2$$

$$\frac{f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^*)}{f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)} \leq \left(\frac{\kappa(\boldsymbol{Q}) - 1}{\kappa(\boldsymbol{Q}) + 1}\right)^2$$

	Upper Bound on	Number of Iterations to Reduce
$\kappa(Q) = rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}}$	Convergence Constant	the Optimality Gap by 0.10
1.1	0.0023	1
3.0	0.25	2
10.0	0.67	6
100.0	0.96	58
200.0	0.98	116
400.0	0.99	231

Consider cost function $f\in {\mathbb C}^2$ with a local minimizer $x^\star.$ Let

• $\nabla^2 f(x^\star) > 0$

•
$$\lambda_n = \lambda_{\max}(\nabla^2 f(x^\star))$$

•
$$\lambda_1 = \lambda_{\min}(\nabla^2 f(x^*)).$$

If $\{x_k\}$ converges to x^\star and its is generated by steepest descent algorithm with stepsizes obtained from exact line search, then $f(x) \to f(x^\star)$, linearly with convergence ratio no greater than $\beta = (\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1})^2$.

Proposition: Stationarity of Limit Points for Gradient Methods

Let $\{x_k\}$ be a sequence generated by a gradient method $x_{k+1} = x_k + \alpha_k \, d_k$, and assume that $\{d_k\}$ us gradient related $\nabla f(x_k)^\top d_k < 0$ and α_k is chosen by minimization rule, or the limited minimization rule, the Armijo rule or Goldstein rule. Then every limit point of $\{x_k\}$ is a stationary point.

Local convergence of Newton's method

Theorem. (Newton's method). Let $f \in \mathbb{C}^3$ on \mathbb{R}^n , and assume that at the local minimum point x^* , the Hessian $\nabla^2 f(x^*)$ is positive definite. Then if started sufficiently close to x^* , the points generated by Newton's method $(x_{k+1} = x_k - (\nabla^2 f(x^*))^{-1} \nabla f(x_k))$ converge to x^* . The order of convergence is at least two.

proof see page 247 Ref[2]