How to evaluate an optimization method

- Does it converge to minimum?
- How fast?
- Practical issues: Is it easy to implement or tune?

We will see that all the methods we discussed converge to a minimum, but some of them require the function f to have additional good properties.
Remark: We say $x \in \mathbb{R}^{n}$ is a limit point of a sequence $\left\{x_{k}\right\}$, if there exists a subsequence of $\left\{x_{k}\right\}$ that converges to x.

Rate of convergence

Definition: Let $\left\{z_{k}\right\}$ converges to \bar{z}. We say the convergence of order $\mathfrak{p}(\geqslant 0)$ and with factor $\gamma(>0)$, if $\exists k_{0}$ such that $\forall k \geqslant k_{0}$ we have

$$
\left\|z_{\mathrm{k}+1}-\bar{z}\right\| \leqslant \gamma\left\|z_{\mathrm{k}}-\bar{z}\right\|^{\mathrm{p}} .
$$

- The larger the power p the faster the convergence.
- For the same p, the smaller γ, the faster the convergence.
- If $\left\{z_{k}\right\}$ converges with order p and factor γ, it also converges with order \bar{p} for any $\bar{p} \leqslant p$.

Terminologies

- If $\mathfrak{p}=1$, and $\gamma<1$, we say convergence is linear. $\lim _{k \rightarrow \infty} \frac{\left\|z_{k+1}-\bar{z}\right\|}{\left\|z_{k}-\bar{z}\right\|}=\gamma<1$
- If $p=1$, and $\gamma=1$, we say convergence is sublinear.
- If $p>1$, we say that the convergence is superlinear: $\lim _{k \rightarrow \infty} \frac{\left\|z_{k+1}-\bar{z}\right\|}{\left\|z_{k}-\bar{z}\right\|}=0$
- If $p=2$, we say that the convergence is quadratic: $\lim _{k \rightarrow \infty} \frac{\left\|z_{k+1}-\bar{z}\right\|}{\left\|z_{\mathrm{k}}-\bar{z}\right\|^{2}}<\infty$

The local convergence analysis approach

Basic ingredients of our local rate of convergence analysis approach

- Focus on a sequence $\left\{x_{k}\right\}$ that converges to a unique limit points χ^{\star}
- Rate of convergence is evaluated using error function $\mathrm{E}(\mathrm{x})$:

$$
E: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { such that } E(x) \geqslant 0 \quad \forall x \in \mathbb{R}^{n}, \quad E\left(x^{\star}\right)=0 .
$$

- Typical choices are
- Euclidean distance: $\mathrm{E}(\mathrm{x})=\left\|\mathrm{x}-\mathrm{x}^{\star}\right\|$
- Cost difference: $\mathrm{E}(\mathrm{x})=\left|\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}^{\star}\right)\right|$
- Our analysis is asymptotic, i.e., we look at the rate of convergence of the tail of the error sequence $\left\{E\left(x_{k}\right)\right\}$
- Convergence type
- linear convergence: $\lim _{k \rightarrow \infty} \frac{E\left(x_{k+1}\right)}{E\left(x_{k}\right)}=\gamma<1$
- superlinear convergence: $\lim _{k \rightarrow \infty} \frac{E_{x_{k+1}}}{E\left(x_{k}\right)}=0$
- quadratic: $\lim _{k \rightarrow \infty} \frac{E\left(x_{k+1}\right)}{E\left(x_{k}\right)^{2}}<\infty$

Convergence of steepest descent algorithm for quadratic cost functions

Proposition: Consider $f(x)=\frac{1}{2} x^{\top} Q x-b^{\top} x$ with $Q>0$. For the steepest descent algorithm with exact line search, $\alpha_{k}=\operatorname{argmin} f\left(\chi_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)$, we have $x_{k} \rightarrow x^{\star}$, starting from any $x_{0} \in \mathbb{R}^{n}$ (this is called global convergence).

Proof: let $\lambda_{1}=\lambda_{\text {min }}(Q)$ and $\lambda_{n}=\lambda_{\max }(Q)$.

- Note that from $\nabla f(x)=Q x-b$. Therefore $x^{\star}=Q^{-1} b$. Because $Q>0$, $f(x)$ is a strictly convex function. Therefore $x^{\star}=Q^{-1} b$ is the unique minimizer of $f(x)$, i.e, $E(x)=f(x)-f\left(x^{\star}\right)>0$.
- $\alpha_{k}=\operatorname{argmin} f\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)=\frac{\nabla f\left(x_{k}\right)^{\top} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{\top} Q \nabla f\left(x_{k}\right)}$.
- we can write $f(x)=\underbrace{\frac{1}{2}\left(x-x^{\star}\right)^{\top} Q\left(x-x^{\star}\right)}_{E(x)} \underbrace{-\frac{1}{2} x^{\star} Q x^{\star}}_{f\left(x^{\star}\right)}$
- $E(x)=\frac{1}{2}\left\|x-x^{\star}\right\|_{Q}^{2}=f(x)-f\left(x^{\star}\right)$
- Using $x_{k+1}=x_{k}-\frac{\nabla f\left(x_{k}\right)^{\top} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{\top} Q \nabla f\left(x_{k}\right)} \nabla f\left(x_{k}\right)$, we obtain

$$
\mathrm{E}\left(\mathrm{x}_{\mathrm{k}+1}\right)=\left(1-\frac{\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)}{\left(\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \mathrm{Q} \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right)\left(\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \mathrm{Q}^{-1} \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right)}\right) \mathrm{E}\left(\mathrm{x}_{\mathrm{k}}\right)
$$

Convergence of steepest descent algorithm for quadratic cost functions

- Using Kantoraovich inequality

$$
E\left(x_{k+1}\right) \leqslant\left(1-\frac{4 \lambda_{1} \lambda_{n}}{\left(\lambda_{1}+\lambda_{n}\right)^{2}}\right) E\left(x_{k}\right)=\underbrace{\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}}_{\beta} E\left(x_{k}\right) .
$$

- note that $\beta<1$.
- $E\left(x_{k+1}\right) \leqslant \beta E\left(x_{k}\right)$ or equivalently $\left(f\left(x_{k+1}\right)-f\left(x^{\star}\right)\right) \leqslant \beta\left(f\left(x_{k}\right)-f\left(x^{\star}\right)\right)$: linear rate of convergence with factor β
- if β is small, the rate of convergence is good.
- Rate of convergence and condition number: $\kappa(Q)=\frac{\lambda_{n}}{\lambda_{1}}$
- $\beta=\left(\frac{\frac{\lambda n}{\lambda_{1}}-1}{\frac{\lambda_{n}}{\lambda_{1}}+1}\right)^{2}=\left(\frac{\kappa(\mathrm{Q})-1}{\mathrm{k}(\mathrm{Q})+1}\right)^{2}$
- the problems with large K are referred to as ill-conditioned
- Steepest descent algorithm converges slowly for ill-conditioned problems

Convergence of steepest descent algorithm for quadratic cost functions

$$
\begin{gathered}
\beta=\left(\frac{\frac{\lambda_{n}}{\lambda_{1}}-1}{\frac{\lambda_{n}}{\lambda_{1}}+1}\right)^{2}=\left(\frac{\kappa(Q)-1}{\kappa(Q)+1}\right)^{2} \\
\frac{f\left(\boldsymbol{x}^{k+1}\right)-f\left(\boldsymbol{x}^{*}\right)}{f\left(\boldsymbol{x}^{k}\right)-f\left(\boldsymbol{x}^{*}\right)} \leq\left(\frac{\kappa(\boldsymbol{Q})-1}{\kappa(\boldsymbol{Q})+1}\right)^{2}
\end{gathered}
$$

$\kappa(Q)=\frac{\lambda_{\max }}{\lambda_{\min }}$	Upper Bound on Convergence Constant $\boldsymbol{\beta}$	Number of Iterations to Reduce the Optimality Gap by 0.10
1.1	0.0023	1
3.0	0.25	2
10.0	0.67	6
100.0	0.96	58
200.0	0.98	116
400.0	0.99	231

Convergence rate of steepest descent algorithm for non-quadratic cost functions

Consider cost function $\mathrm{f} \in \mathcal{C}^{2}$ with a local minimizer x^{\star}. Let

- $\nabla^{2} f\left(x^{\star}\right)>0$
- $\lambda_{n}=\lambda_{\max }\left(\nabla^{2} f\left(x^{\star}\right)\right)$
- $\lambda_{1}=\lambda_{\text {min }}\left(\nabla^{2} f\left(\chi^{\star}\right)\right)$.

If $\left\{\chi_{k}\right\}$ converges to χ^{\star} and its is generated by steepest descent algorithm with stepsizes obtained from exact line search, then $f(x) \rightarrow f\left(x^{\star}\right)$, linearly with convergence ratio no greater than $\beta=\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}$.

Further convergence results

Proposition:Stationarity of Limit Points for Gradient Methods

Let $\left\{x_{k}\right\}$ be a sequence generated by a gradient method $x_{k+1}=x_{k}+\alpha_{k} d_{k}$, and assume that $\left\{\mathrm{d}_{\mathrm{k}}\right\}$ us gradient related $\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \mathrm{d}_{\mathrm{k}}<0$ and α_{k} is chosen by minimization rule, or the limited minimization rule, the Armijo rule or Goldstein rule. Then every limit point of $\left\{\chi_{k}\right\}$ is a stationary point.

Local convergence of Newton's method

Theorem. (Newton's method). Let $f \in \mathcal{C}^{3}$ on \mathbb{R}^{n}, and assume that at the local minimum point x^{\star}, the Hessian $\nabla^{2} f\left(x^{\star}\right)$ is positive definite. Then if started sufficiently close to x^{\star}, the points generated by Newton's method $\left(x_{k+1}=x_{k}-\left(\nabla^{2} f\left(x^{\star}\right)\right)^{-1} \nabla f\left(x_{k}\right)\right)$ converge to x^{\star}. The order of convergence is at least two.
proof see page $247 \operatorname{Ref}[2]$

