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Common choices of the stepsize

xk+1 = xk − αk Bk∇f(xk), Bk > 0

Exact line search: αk = argmin
α>0

f(xk + αdk)

A minimization problem itself, but an easier one (one dimensional).
If f convex, the one dimensional minimization problem also convex (why?).

Limited minimization: αk = argmin
α∈[0,s]

f(xk + αdk)

(tries not to stop too far)
Constant stepsize: αk = s > 0 for all k
(simple rule but may not converge if it is too large or may converge too slow
because it is too small)
Diminishing step size: αk → 0, and

∑∞
k=1 αk =∞. For example αk = 1

k

Descent not guaranteed at each step; only later when becomes small.∑∞
k=1 αk =∞ imposed to guarantee progress does not become too slow.

Good theoretical guarantees, but unless the right sequence is chosen, can also
be a slow method.

Successive step size reduction: well-known examples are Armijo rule (also
called Backtracking) and Goldstein rule
(search but not minimization)
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Stepsize selection via successive reduction: Armijo rule

It is an inexact line search method: it does not find the exact minimum but
guarantees sufficient decrease
computationally is cheap
Armijo parameters: β ∈ (0, 1) and σ ∈ (0, 1)

Recall: g(0) = f(xk), g ′(0) = ∇f(xk)>dk < 0 (dk is a descent direction)

ĝ(α) = g(0) + σg ′(0)α

Armijo stepsize should satisfy:

g(ᾱ) 6 ĝ(ᾱ) (ensure sufficient decrease)
g(γᾱ) > ĝ(γᾱ) (ensure stepsize is not too small)

where γ = 1
β 3 / 11



Stepsize selection via successive reduction: Armijo rule

ĝ(α) = g(0) + σg ′(0)α

Armijo Line Search Algorithm :

1 Start with αk = s, 0 < β < 1 and 0 < σ < 1

2 If f(xk) − f(xk + αkdk) > σαk (−∇f(xk)>dk)
STOP

else
αk ← βαk and repeat

In practice the following choices are used

β: 1/2 to 1/10
σ ∈ [10−5, 10−1]

if no bracketing is not use s = 1 4 / 11



Stepsize selection via successive reduction: Armijo rule

Recall: g(0) = f(xk), g ′(0) = ∇f(xk)>dk
Armijo: acceptable ᾱ should satisfy:{
g(ᾱ) 6 g(0) + σg ′(0)ᾱ

g(ᾱγ) > g(0) + σg ′(0)(γᾱ)
⇔

{
f(xk + ᾱdk) − f(xk) 6 σᾱ∇f(xk)>dk
f(xk + γᾱdk) − f(xk) > σγᾱ∇f(xk)>dk

where β ∈ (0, 1) and σ ∈ (0, 1), γ = 1
β
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Stepsize selection via successive reduction: Goldenstein rule

Goldenstein
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Preliminaries (for constant step size)

Definition: a function f : Rn → Rn is called L-Lipschitz if and only if

‖f(x) − f(y)‖ 6 L‖x− y‖, ∀x,y ∈ Rn.

We denote the class of L-Lipschitz functions by CL.

−−−−−−−−

Lemma (Descent Lemma) Let f : Rn → R be continuously differentiable.
Consider any x,y ∈ Rn. Suppose that

‖∇f(x+ ty) −∇f(x)‖ 6 L t ‖y‖, ∀t ∈ [0, 1]

where L is some scalar. Then.

f(x+ y) 6 f(x) +∇f(x)>y+
L

2
‖y‖2.

or
f(z) 6 f(x) −∇f(x)>(z− x) + L

2
‖z− x‖2.

7 / 11



Admissible fixed stepsize with convergence guarantees for the steepest
descent algorithm

Theorem

Consider the steepest descent method xk+1 = xk −α∇f(xk) with fixed stepsize α. Let
∇f(x) ∈ CL and f? =minf(x) > −∞. Then the gradient descent algorithm with fixed
stepsize satisfying 0 < α < 2

L will converge to a stationary point starting from any initial
condition.

Proof: Using the last lemma from the previous page we can write

f(xk −α∇f(xk)) − f(xk) −∇f(x)>(xk −α∇f(xk) − xk) 6
L

2
‖xk −α∇f(xk) − xk‖2

f(xk −α∇f(xk)) − f(xk) 6 −α∇f(x)>∇f(xk) +
Lα2

2
‖∇f(xk)‖2

f(xk+1) − f(xk) 6 −(α−
Lα2

2
)‖∇f(xk)‖2

To achieve reduction we need (α− Lα2

2 ) > 0, therefore 0 < α < 2
L . From the last inequality

above we also have

f(x̄) − f(x0) 6 −(
2α− Lα2

2
)

∞∑
k=1

‖∇f(xk)‖2 ⇒

∞∑
k=0

‖∇f(xk)‖2 6
2

2α− Lα2
(f(x0) − f(x∞))︸ ︷︷ ︸
bounded

Therefore limk→∞ ‖∇f(xk)‖ = 0 therefore x∞ = x?. 8 / 11



Admissible fixed stepsize with convergence guarantees for the steepest
descent algorithm: special case of quadratic costs

Lemma

Consider a quadratic cost function f(x) = 1
2x

>Qx+ b>x+ c, with Q> 0, and let x? be the
unique unconstrained minimizer of this cost function. Starting from any initial condition, the
following assertions hold:

(a) For the steepest descent algorithm with exact line search, we have xk → x? (this is called
global convergence).

(b) For steepest descent algorithm with fixed stepsize, we have global convergence if and only
if the stepsize α satisfies 0 < α < 2

λmax(Q) .

Note that
∇f(x) =Qx+ b

Therefore ‖∇f(x) −∇f(y)‖ = ‖Qx+ b− (Qy+ b)‖ = ‖Q(x− y)‖ 6 ‖Q‖‖x− y‖.
Since Q> 0, its norm is equal to its maximum eigenvalue, i.e., ‖Q‖ = λmax(Q). Therefore,
the proof of assertion (b) follows directly from the results in the previous page.
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Further convergence results

Proposition:Convergence of a Constant Stepsize

Let {xk} be a sequence generated by a gradient method xk+1 = xk+αk dk,
and assume that {dk} us gradient related. Assume that for some constant
L > 0, we have

‖∇f(x) −∇f(y)‖ 6 L‖x− y‖, ∀x,y ∈ Rn,

and that for all k we have dk 6= 0 and

ε 6 αk 6 (2 − ε)ᾱk,

where

ᾱk =
|∇f(xk)>dk|
L‖dk‖2

and ε is a fixed positive scalar. Then every limit point of {xk} is a stationary
point of f.
For Steepest descent algorithm: ε 6 αk 6 2−ε

L
(set ε = 0 to recover the

result we have obtained earlier)
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Further convergence results

Proposition:Convergence of a Diminishing Stepsize

Let {xk} be a sequence generated by a gradient method xk+1 = xk+αk dk.
Assume that for some constant L > 0 we have

‖∇f(x) −∇f(y)‖ 6 L‖x− y‖, ∀x,y ∈ Rn,

and that there exists positive scalars c1 and c2 such that for all k we have

c2‖∇f(xk)‖2 6 −∇f(xk)>dk, ‖dk‖2 6 c2‖∇f(xk)‖2.

Suppose also that

αk → 0,
∞∑
k=0

αk =∞.

Then either f(xk) → −∞ or else {f(xk)} converges to a finite value and
∇f(xk)→ 0. Furthermore, every limit point of {xk} is a stationary point of
f.
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