Optimization Methods Lecture 4

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Consult: pages 29-33, 41-43, 62-67 from Ref[1]; Section 8.5 and 8.6 from Ref[2]

Common choices of the stepsize

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k} \nabla f\left(x_{k}\right), \quad B_{k}>0
$$

- Exact line search: $\alpha_{k}=\operatorname{argminf}\left(x_{k}+\alpha d_{k}\right)$

$$
\alpha \geqslant 0
$$

- A minimization problem itself, but an easier one (one dimensional).
- If f convex, the one dimensional minimization problem also convex (why?).
- Limited minimization: $\alpha_{k}=\operatorname{argminf}\left(x_{k}+\alpha d_{k}\right)$ $\alpha \in[0, s]$
(tries not to stop too far)
- Constant stepsize: $\alpha_{k}=s>0$ for all k (simple rule but may not converge if it is too large or may converge too slow because it is too small)
- Diminishing step size: $\alpha_{k} \rightarrow 0$, and $\sum_{k=1}^{\infty} \alpha_{k}=\infty$. For example $\alpha_{k}=\frac{1}{k}$
- Descent not guaranteed at each step; only later when becomes small.
- $\sum_{k=1}^{\infty} \alpha_{k}=\infty$ imposed to guarantee progress does not become too slow.
- Good theoretical guarantees, but unless the right sequence is chosen, can also be a slow method.
- Successive step size reduction: well-known examples are Armijo rule (also called Backtracking) and Goldstein rule (search but not minimization)

Stepsize selection via successive reduction: Armijo rule

- It is an inexact line search method: it does not find the exact minimum but guarantees sufficient decrease
- computationally is cheap
- Armijo parameters: $\beta \in(0,1)$ and $\sigma \in(0,1)$

Recall: $g(0)=f\left(x_{k}\right), g^{\prime}(0)=\nabla f\left(x_{k}\right)^{\top} d_{k}<0\left(d_{k}\right.$ is a descent direction)

$$
\hat{\mathrm{g}}(\alpha)=\mathrm{g}(0)+\sigma \mathrm{g}^{\prime}(0) \alpha
$$

Armijo stepsize should satisfy:

- $\mathrm{g}(\bar{\alpha}) \leqslant \hat{\mathrm{g}}(\bar{\alpha})$ (ensure sufficient decrease)
- $\mathrm{g}(\gamma \bar{\alpha}) \geqslant \hat{\mathrm{g}}(\gamma \bar{\alpha})$ (ensure stepsize is not too small)
where $\gamma=\frac{1}{\beta}$

Stepsize selection via successive reduction: Armijo rule

Armijo Line Search Algorithm :
(1) Start with $\alpha_{k}=s, 0<\beta<1$ and $0<\sigma<1$
(2) If $f\left(x_{k}\right)-f\left(x_{k}+\alpha_{k} d_{k}\right)>\sigma \alpha_{k}\left(-\nabla f\left(x_{k}\right)^{\top} d_{k}\right)$

$$
\begin{aligned}
& \text { STOP } \\
& \text { else } \\
& \quad \alpha_{k} \leftarrow \beta \alpha_{k} \text { and repeat }
\end{aligned}
$$

In practice the following choices are used

- $\beta: 1 / 2$ to $1 / 10$
- $\sigma \in\left[10^{-5}, 10^{-1}\right]$
- if no bracketing is not use $s=1$

Stepsize selection via successive reduction: Armijo rule

Recall: $g(0)=f\left(x_{k}\right), g^{\prime}(0)=\nabla f\left(x_{k}\right)^{\top} d_{k}$
Armijo: acceptable $\bar{\alpha}$ should satisfy:
$\left\{\begin{array}{l}g(\bar{\alpha}) \leqslant g(0)+\sigma g^{\prime}(0) \bar{\alpha} \\ g(\bar{\alpha} \gamma)>g(0)+\sigma g^{\prime}(0)(\gamma \bar{\alpha})\end{array} \Leftrightarrow\left\{\begin{array}{l}f\left(x_{k}+\bar{\alpha} d_{k}\right)-f\left(x_{k}\right) \leqslant \sigma \bar{\alpha} \nabla f\left(x_{k}\right)^{\top} d_{k} \\ f\left(x_{k}+\gamma \bar{\alpha} d_{k}\right)-f\left(x_{k}\right)>\sigma \gamma \bar{\alpha} \nabla f\left(x_{k}\right)^{\top} d_{k}\end{array}\right.\right.$
where $\beta \in(0,1)$ and $\sigma \in(0,1), \gamma=\frac{1}{\beta}$

Stepsize selection via successive reduction: Goldenstein rule

Goldenstein

Preliminaries (for constant step size)

Definition: a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called L-Lipschitz if and only if

$$
\|f(x)-f(y)\| \leqslant L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n} .
$$

We denote the class of L-Lipschitz functions by \mathcal{C}_{L}.

Lemma (Descent Lemma) Let $\mathrm{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Consider any $x, y \in \mathbb{R}^{n}$. Suppose that

$$
\|\nabla f(x+t y)-\nabla f(x)\| \leqslant L t\|y\|, \quad \forall t \in[0,1]
$$

where L is some scalar. Then.

$$
f(x+y) \leqslant f(x)+\nabla f(x)^{\top} y+\frac{L}{2}\|y\|^{2}
$$

or

$$
f(z) \leqslant f(x)-\nabla f(x)^{\top}(z-x)+\frac{L}{2}\|z-x\|^{2}
$$

Admissible fixed stepsize with convergence guarantees for the steepest descent algorithm

Theorem

Consider the steepest descent method $\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}-\alpha \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$ with fixed stepsize α. Let $\nabla f(x) \in C_{L}$ and $f^{\star}=\min f(x)>-\infty$. Then the gradient descent algorithm with fixed stepsize satisfying $0<\alpha<\frac{2}{L}$ will converge to a stationary point starting from any initial condition.

Proof: Using the last lemma from the previous page we can write

$$
\begin{aligned}
& f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-f\left(x_{k}\right)-\nabla f(x)^{\top}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)-x_{k}\right) \leqslant \frac{L}{2}\left\|x_{k}-\alpha \nabla f\left(x_{k}\right)-x_{k}\right\|^{2} \\
& f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-f\left(x_{k}\right) \leqslant-\alpha \nabla f(x)^{\top} \nabla f\left(x_{k}\right)+\frac{L \alpha^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& f\left(x_{k+1}\right)-f\left(x_{k}\right) \leqslant-\left(\alpha-\frac{L \alpha^{2}}{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

To achieve reduction we need ($\alpha-\frac{\mathrm{L} \alpha^{2}}{2}$) >0, therefore $0<\alpha<\frac{2}{\mathrm{~L}}$. From the last inequality above we also have

$$
\begin{aligned}
& f(\bar{x})-f\left(x_{0}\right) \leqslant-\left(\frac{2 \alpha-L \alpha^{2}}{2}\right) \sum_{k=1}^{\infty}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \Rightarrow \\
& \sum_{k=0}^{\infty}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leqslant \underbrace{\frac{2}{2 \alpha-L \alpha^{2}}\left(f\left(x_{0}\right)-f\left(x_{\infty}\right)\right)}_{\text {bounded }}
\end{aligned}
$$

Therefore $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0$ therefore $x_{\infty}=x^{\star}$.

Admissible fixed stepsize with convergence guarantees for the steepest descent algorithm: special case of quadratic costs

Lemma

Consider a quadratic cost function $\mathrm{f}(\mathrm{x})=\frac{1}{2} \mathrm{x}^{\top} \mathrm{Qx}+\mathrm{b}^{\top} \mathrm{x}+\mathrm{c}$, with $\mathrm{Q}>0$, and let x^{\star} be the unique unconstrained minimizer of this cost function. Starting from any initial condition, the following assertions hold:
(a) For the steepest descent algorithm with exact line search, we have $x_{k} \rightarrow x^{\star}$ (this is called global convergence).
(b) For steepest descent algorithm with fixed stepsize, we have global convergence if and only if the stepsize α satisfies $0<\alpha<\frac{2}{\lambda_{\max }(Q)}$.

Note that

$$
\nabla f(x)=Q x+b
$$

Therefore $\|\nabla f(x)-\nabla f(y)\|=\|Q x+b-(Q y+b)\|=\|Q(x-y)\| \leqslant\|Q\|\|x-y\|$. Since $\mathrm{Q}>0$, its norm is equal to its maximum eigenvalue, i.e., $\|\mathrm{Q}\|=\lambda_{\max }(\mathrm{Q})$. Therefore, the proof of assertion (b) follows directly from the results in the previous page.

Further convergence results

Proposition:Convergence of a Constant Stepsize

Let $\left\{x_{k}\right\}$ be a sequence generated by a gradient method $x_{k+1}=x_{k}+\alpha_{k} d_{k}$, and assume that $\left\{\mathrm{d}_{\mathrm{k}}\right\}$ us gradient related. Assume that for some constant L >0, we have

$$
\|\nabla f(x)-\nabla f(y)\| \leqslant L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n}
$$

and that for all k we have $d_{k} \neq 0$ and

$$
\epsilon \leqslant \alpha_{k} \leqslant(2-\epsilon) \bar{\alpha}_{k},
$$

where

$$
\bar{\alpha}_{k}=\frac{\left|\nabla f\left(x_{k}\right)^{\top} d_{k}\right|}{L\left\|d_{k}\right\|^{2}}
$$

and ϵ is a fixed positive scalar. Then every limit point of $\left\{x_{k}\right\}$ is a stationary point of f.
For Steepest descent algorithm: $\epsilon \leqslant \alpha_{k} \leqslant \frac{2-\varepsilon}{L}$ (set $\epsilon=0$ to recover the result we have obtained earlier)

Further convergence results

Proposition:Convergence of a Diminishing Stepsize

Let $\left\{x_{k}\right\}$ be a sequence generated by a gradient method $x_{k+1}=x_{k}+\alpha_{k} d_{k}$. Assume that for some constant $\mathrm{L}>0$ we have

$$
\|\nabla f(x)-\nabla f(y)\| \leqslant L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n}
$$

and that there exists positive scalars c_{1} and c_{2} such that for all k we have

$$
c_{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leqslant-\nabla f\left(x_{k}\right)^{\top} d_{k}, \quad\left\|d_{k}\right\|^{2} \leqslant c_{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
$$

Suppose also that

$$
\alpha_{k} \rightarrow 0, \quad \sum_{k=0}^{\infty} \alpha_{k}=\infty .
$$

Then either $f\left(x_{k}\right) \rightarrow-\infty$ or else $\left\{f\left(x_{k}\right)\right\}$ converges to a finite value and $\nabla f\left(x_{k}\right) \rightarrow 0$. Furthermore, every limit point of $\left\{x_{k}\right\}$ is a stationary point of f.

