Optimization Methods Lecture 3

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Parts to consult in Ref[2]: 8.1-8.3 and 8.5.
Parts to consult in Ref[1]: pages 22-33 and Appendix C

Numerical solvers for unconstrained optimization

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)
$$

Iterative descent methods

- start from $x_{0} \in \mathbb{R}^{n}$ (initial guess)
- successively generate vectors x_{1}, χ_{2}, \cdots such that

$$
f\left(x_{k+1}\right)<f\left(x_{k}\right), \quad k=0,1,2, \cdots
$$

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

Design factors in iterative descent algorithms:

- what direction to move: descent direction
- how far move in that direction: step size

Successive descent method

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k} \text { such that } f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right)
$$

Descent direction design

$$
\left.\begin{array}{l}
\left.f\left(x_{k+1}\right)=f\left(x_{k}+\alpha_{k} d_{k}\right) \approx f\left(x_{k}\right)+\alpha \nabla f\left(x_{k}\right)^{\top} d_{k}\right\} \Rightarrow \nabla f\left(x_{k}\right)^{\top} d_{k}<0 \\
\text { Requirement: } f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right)
\end{array}\right\}
$$

Successive descent method

$x_{k+1}=x_{k}+\alpha_{k} d_{k}$ such that $f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right)$

Step-size design

$$
\left.\begin{array}{l}
\text { given } d_{k} \text { that satisfies } \nabla f\left(x_{k}\right)^{\top} d_{k}<0 \\
\text { Requirement: } f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right) \\
\text { let } g(\alpha)=f\left(x_{k}+\alpha_{k} d_{k}\right)
\end{array}\right\} \Rightarrow \alpha_{k}=\underset{\alpha>0}{\operatorname{argmin}} g(\alpha) \text {, }
$$

- There always exists $\alpha>0$ such that $f\left(x_{k}+\alpha d_{k}\right) \leqslant f\left(x_{k}\right)$ because

$$
g^{\prime}(\alpha)=\frac{\partial g(\alpha)}{\partial \alpha}=\nabla f\left(x_{k}+\alpha d_{k}\right)^{\top} \cdot d_{k} \Rightarrow g^{\prime}(0)=\nabla f\left(x_{k}\right)^{\top} \cdot d_{k}<0
$$

(Note that $g(\alpha)=f\left(x_{k}+\alpha d_{k}\right)$ and $\left.g(0)=f\left(x_{k}\right)\right)$

Successive descent method

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \text { such that } f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right)
$$

- Decent direction: $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$

General paradigm for the descent algorithms:

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k} \nabla f\left(x_{k}\right)
$$

Lemma: Consider any positive definite matrix $B \in \mathbb{R}^{n \times n}$. For any point $x \in \mathbb{R}^{n}$ with $\nabla f(x) \neq 0$, the direction of $d=-B \nabla f(x)$ is a descent direction, i.e., $\nabla \mathrm{f}(\mathrm{x})^{\top} \mathrm{d}<0$.

Proof: We have
$(\nabla f(x))^{\top}(-B \nabla f(x))=-\nabla f(x)^{\top} B \nabla f(x)<0$ by assumption that $\mathrm{B}>0$.

Common choices of descent direction

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k} \nabla f\left(x_{k}\right), \quad B_{k}>0
$$

- Steepest descent algorithm: $\mathrm{B}_{\mathrm{k}}=\mathrm{I}$

Simplest descent direction but not always the fastest

- Newtown's method: $\mathrm{B}_{\mathrm{k}}=\left(\nabla^{2} f\left(\chi_{k}\right)\right)^{-1}, \alpha_{k}=1$ (under the assumption that $\left.\nabla^{2} f(x)>0\right)$
Computationally expensive, but can have much faster convergence
- Diagonally Scaled Steepest Descent: $\mathrm{B}_{\mathrm{k}}=\left[\begin{array}{cccc}0 & \mathrm{~d}_{2, \mathrm{k}} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & d_{n, k}\end{array}\right]$, $\mathrm{d}_{\mathrm{i}, \mathrm{k}}>0$.
For example $d^{i, k}=\left(\frac{\partial^{2} f\left(x_{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$ (diagonally approximates Newton direction)
- Modified Newton directions
- $\mathrm{B}_{\mathrm{k}}=\left(\nabla^{2} \mathrm{f}\left(\mathrm{x}_{0}\right)\right)^{-1}$ (computationally cheaper)
- $\mathrm{B}_{\mathrm{k}}=\left(\nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)+\gamma_{\mathrm{k}} \mathrm{I}\right)^{-1}, \gamma_{\mathrm{k}}>\left|\lambda_{\text {min }}\left(\nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right)\right|$ (to guarantee positive definiteness)
- Quasi Newton directions: will be discussed later

Convergence analysis: what can go wrong (a brief discussion)

Question:Wether each limit point of a sequence $\left\{\chi_{k}\right\}$ generated by gradient successive decent algorithms is a stationary point. ${ }^{1}$
Observation: If d_{k} asymptotically becomes orthogonal to the gradient direction, $\frac{\nabla f\left(x_{k}\right)^{\top} d_{k}}{\left\|\nabla f\left(x_{k}\right)\right\|\left\|d_{k}\right\|} \rightarrow 0$ as x_{k} approaches a non-stationary point, there is a chance that the method will get "stuck" near that point.
A measure to avoid getting stuck: Let $d_{k}=-B_{k} \nabla f\left(x_{k}\right), B_{k}>0$.
If eigenvalues of B_{k} are bounded above and bounded away from zero:
$\exists \mathrm{c}_{1}, \mathrm{c}_{2}>0$ such that $\mathrm{c}_{1}\|z\|^{2} \leqslant z^{\top} \mathrm{B}_{\mathrm{k}} z \leqslant \mathrm{c}_{2}\|z\|^{2}, \quad \forall z \in \mathbb{R}^{n}, \mathrm{k} \in \mathbb{Z}_{\geqslant 0}$
Then

$$
\begin{gathered}
\left\|\nabla f\left(x_{k}\right)^{\top} d_{k}\right\|=\left\|\nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right)\right\| \geqslant c_{1}\left\|\nabla f\left(x_{k}\right)\right\|^{2}, \\
\left\{\begin{array}{c}
\left\|d_{k}\right\|^{2}=\left\|\nabla f\left(x_{k}\right)\left(B_{k}\right)^{2} \nabla f\left(x_{k}\right)\right\| c_{2}^{2}\left\|\nabla f\left(x_{k}\right)\right\| \leqslant c_{2}^{2}\left\|\nabla f\left(X_{k}\right)\right\|^{2} \Rightarrow \\
c_{1}^{2}\left\|\nabla f\left(X_{k}\right)\right\|^{2} \leqslant\left\|d_{k}\right\|^{2} \leqslant c_{2}^{2}\left\|\nabla f\left(X_{k}\right)\right\|^{2}
\end{array}\right.
\end{gathered}
$$

As long as $\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$ does not tend to zero, d_{k} cannot become asymptotically orthogonal to $\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$.

[^0]
Convergence analysis

Theorem

Consider the sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ generated by any decent algorithm with

$$
\mathrm{d}_{\mathrm{k}}=-\mathrm{B}_{\mathrm{k}} \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right), \quad \mathrm{B}_{\mathrm{k}}>0
$$

such that $\exists \mathrm{c}_{1}, \mathrm{c}_{2}>0$ such that $\mathrm{c}_{1}\|z\|^{2} \leqslant z^{\top} \mathrm{B}_{\mathrm{k}} z \leqslant \mathrm{c}_{2}\|z\|^{2}, \quad \forall z \in \mathbb{R}^{n}, k \in \mathbb{Z} \geqslant 0$, and step size is chosen according to the minimization rule, or the limited minimization rule, (or the Armijo rule). Then, every limit point of $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ is a stationary point.

Note: A stationary point may not be a local minimum point. It may be a saddle point or even a local maximum. There is a result called the "capture theorem" (see Ref[1]), which informally states that isolated local minima tends to attract gradient methods.
Question to think about: How would you check if the point that you endup with (assuming it is stationary) is actually a local minimum?

Common choices of the stepsize

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k} \nabla f\left(x_{k}\right), \quad B_{k}>0
$$

- Exact line search: $\alpha_{k}=\operatorname{argminf}\left(x_{k}+\alpha d_{k}\right)$

$$
\alpha \geqslant 0
$$

- A minimization problem itself, but an easier one (one dimensional).
- If f convex, the one dimensional minimization problem also convex (why?).
- Limited minimization: $\alpha_{k}=\operatorname{argminf}\left(x_{k}+\alpha d_{k}\right)$ $\alpha \in[0, s]$
(tries not to stop too far)
- Constant stepsize: $\alpha_{k}=s>0$ for all k (simple rule but may not converge if it is too large or may converge too slow because it is too small)
- Diminishing step size: $\alpha_{k} \rightarrow 0$, and $\sum_{k=1}^{\infty} \alpha_{k}=\infty$. For example $\alpha_{k}=\frac{1}{k}$
- Descent not guaranteed at each step; only later when becomes small.
- $\sum_{k=1}^{\infty} \alpha_{k}=\infty$ imposed to guarantee progress does not become too slow.
- Good theoretical guarantees, but unless the right sequence is chosen, can also be a slow method.
- Successive step size reduction: well-known examples are Armijo rule (also called Backtracking) and Goldstein rule (search but not minimization)

Stepsize selection: limited minimization

Limited minimization: $\alpha_{k}=\operatorname{argminf}\left(\chi_{k}+\alpha d_{k}\right)$ $\alpha \in[0, s]$

- Assumption: $g(\alpha)$ is unimodal over $[0, s]$

Image credit [Bertsekas]

Figure C.2. A strictly unimodal function g over an interval $[0, s]$ is defined as a function that has a unique global minimum α^{*} in $[0, s]$ and if α_{1}, α_{2} are two points in $[0, s]$ such that $\alpha_{1}<\alpha_{2}<\alpha^{*}$ or $\alpha^{*}<\alpha_{1}<\alpha_{2}$, then

$$
g\left(\alpha_{1}\right)>g\left(\alpha_{2}\right)>g\left(\alpha^{*}\right)
$$

or

$$
g\left(\alpha^{*}\right)<g\left(\alpha_{1}\right)<g\left(\alpha_{2}\right)
$$

respectively. An example of a strictly unimodal function, is a function which is strictly convex over $[0, s]$.
minimize g over $[0, s]$ by determining at the kth iteration an interval $\left[\alpha_{k}, \bar{\alpha}_{k}\right]$ containing α^{\star}.

Solutions we explore

- Golden Section method
- Quadratic fit method

Stepsize selection via limited minimization: Golden Section method

Given $\left[\alpha_{k}, \bar{\alpha}_{k}\right]$, determine $\left[\alpha_{k+1}, \bar{\alpha}_{k+1}\right.$] such that $\alpha^{\star} \in\left[\alpha_{k+1}, \bar{\alpha}_{k+1}\right]$.

- Initialization: $\left[\alpha_{0}, \bar{\alpha}_{0}\right]=[0, s]$
- Step k :

$$
\left\{\begin{array}{l}
b_{k}=\alpha_{k}+\tau\left(\bar{\alpha}_{k}-\alpha_{k}\right), \\
\bar{b}_{k}=\alpha_{k}-\tau\left(\bar{\alpha}_{k}-\alpha_{k}\right),
\end{array}\right.
$$

- compute $g\left(b_{k}\right)$ and $g\left(\bar{b}_{k}\right)$
(1) If $g\left(b_{k}\right)<g\left(\bar{b}_{k}\right): \begin{cases}\alpha_{k+1}=\alpha_{k}, & \bar{\alpha}_{k+1}=b_{k} \\ \alpha_{k+1}=\alpha_{k}, & \text { if } g\left(\alpha_{k}\right) \leqslant g\left(b_{k}\right) \\ \bar{b}_{k} & \text { if } g\left(\alpha_{k}\right)>g\left(b_{k}\right)\end{cases}$
(2) If $g\left(b_{k}\right)>g\left(\bar{b}_{k}\right):\left\{\begin{array}{lll}\alpha_{k+1}=\bar{b}_{k}, & \bar{\alpha}_{k+1}=\bar{\alpha}_{k} & \text { if } g\left(\bar{b}_{k}\right) \geqslant g\left(\bar{\alpha}_{k}\right) \\ \alpha_{k+1}=b_{k}, & \bar{\alpha}_{k+1}=\bar{\alpha}_{k} & \text { if } g\left(\bar{b}_{k}\right)<g\left(\bar{\alpha}_{k}\right)\end{array}\right.$
(3) If $g\left(b_{k}\right)=g\left(\bar{b}_{k}\right): \quad \alpha_{k+1}=b_{k}, \quad \bar{\alpha}_{k+1}=\bar{b}_{k}$.
- Stop: If $\left(\bar{\alpha}_{k}-\alpha_{k}\right)<\epsilon$
- The intervals are obtained using $\tau=\frac{3-\sqrt{5}}{2} \approx 0.381966011250105$
- τ satisfies $\tau=(1-\tau)^{2}$ (see page 746 of $\operatorname{Ref}[1]$)
- related to Fibonacci number sequence

Strictly unimodal $\mathrm{g}:$ the interval $\left[\alpha_{k}, \bar{\alpha}_{k}\right]$ contains α^{\star} and $\left(\bar{\alpha}_{k}-\alpha_{k}\right) \rightarrow 0$

Stepsize selection via limited minimization: quadratic fit

Quadratic fit: start with $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right.$] that brackets the minimum
Step 1:fit a quadratic curve to $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$:

$$
q(\alpha)=g\left(\alpha_{1}\right) \frac{\left(\alpha-\alpha_{2}\right)\left(\alpha-\alpha_{3}\right)}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)}+g\left(\alpha_{2}\right) \frac{\left(\alpha-\alpha_{1}\right)\left(\alpha-\alpha_{3}\right)}{\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)}+g\left(\alpha_{3}\right) \frac{\left(\alpha-\alpha_{1}\right)\left(\alpha-\alpha_{2}\right)}{\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)}
$$

Step 2: Find the minimum point of this quadratic curve, which is

$$
\alpha_{4}=\frac{1}{2} \frac{b_{23} g\left(\alpha_{1}\right)+b_{31} g\left(\alpha_{2}\right)+b_{12} g\left(\alpha_{3}\right)}{a_{23} g\left(\alpha_{1}\right)+a_{31} g\left(\alpha_{2}\right)+a_{12} g\left(\alpha_{3}\right)}, \quad a_{i j}=\alpha_{i}-\alpha_{j}, \quad b_{i j}=\alpha_{i}^{2}-\alpha_{j}^{2}
$$

Step 3: $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]_{\text {new }}=\left\{\begin{array}{lll}{\left[\alpha_{1}, \alpha_{2}, \alpha_{4}\right]} & \text { if } \alpha_{4}>\alpha_{2} \text { and } g\left(\alpha_{4}\right) \geqslant g\left(\alpha_{2}\right), \\ {\left[\alpha_{2}, \alpha_{4}, \alpha_{3}\right]} & \text { if } \alpha_{4}>\alpha_{2} \text { and } g\left(\alpha_{4}\right)<g\left(\alpha_{2}\right), \\ {\left[\alpha_{4}, \alpha_{2}, \alpha_{3}\right]} & \text { if } \alpha_{4}<\alpha_{2} \text { and } g\left(\alpha_{4}\right) \geqslant g\left(\alpha_{2}\right), \\ {\left[\alpha_{1}, \alpha_{4}, \alpha_{2}\right]} & \text { if } \alpha_{4}<\alpha_{2} \text { and } g\left(\alpha_{4}\right)<g\left(\alpha_{2}\right),\end{array}\right.$
Step 4: Check if $\left|\alpha_{3}-\alpha_{1}\right|<\epsilon$ if satisfied stop and take α_{2} as minimum point otherwise go to step 1 and repeat the process.

Quadratic fit has a super-linear convergence (order of $p=1.2$) and converges faster than Golden-section method.

Safeguarding the process: the point α_{4} must not be too close to any of the three existing points else the subsequence fit will be ill-conditioned. This is especially needed when the polynomial fit algorithm is embedded in a n-variable routine (searching for stepsize in optimization algorithms). This is taken care of by defining a measure δ and moving or bumping the point away from the existing point by this amount. For example you can use the following routine:

$$
\left\{\begin{array}{lll}
\text { if }\left|\alpha_{4}-\alpha_{1}\right|<\delta, & \text { then set } & \alpha_{4}=\alpha_{1}+\delta \\
\text { if }\left|\alpha_{4}-\alpha_{3}\right|<\delta, & \text { then set } & \alpha_{4}=\alpha_{3}-\delta \\
\text { if }\left|\alpha_{4}-\alpha_{2}\right|<\delta, \text { and } \alpha_{2}>0.5\left(\alpha_{1}+\alpha_{3}\right) & \text { then set } & \alpha_{4}=\alpha_{2}-\delta \\
\text { if }\left|\alpha_{4}-\alpha_{2}\right|<\delta, \text { and } \alpha_{2} \leqslant 0.5\left(\alpha_{1}+\alpha_{3}\right) & \text { then set } & \alpha_{4}=\alpha_{2}+\delta
\end{array}\right.
$$

[^0]: ${ }^{1}$ We say $x \in \mathbb{R}^{n}$ is a limit point of a sequence $\left\{x_{k}\right\}$, if there exists a subsequence of $\left\{x_{k}\right\}$ that converges to x.

