Optimization Methods

Lecture 3

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Parts to consult in Ref[2]: 8.1-8.3 and 8.5.
Parts to consult in Ref[1]: pages 22-33 and Appendix C

1/12

Numerical solvers for unconstrained optimization

X* =argmin f(x)

Iterative descent methods xeR™

@ start from xg € R™ (initial guess)

@ successively generate vectors x1, X2, - - - such that
f(Xk+1) < f(Xk), k=0,1,2,---

f(X) = ¢4 [Bertsekas]

(G
X1 = Xk + o di

Design factors in iterative descent algorithms:

@ what direction to move: descent direction

@ how far move in that direction: step size
2/12

Successive descent method

Xk+1 = Xk + o die such that f(xy1) < f(xx)
Descent direction design

flxir1) = flxi + oo die) & f(xi) + aVF(xi) " di

.
Requirement : f(xy1) < f(xx) } = Vf(xk) dk <0

3/12

Successive descent method

Xk41 = X+ di such that f(Xk+1) < f(xy)

Step-size design

given dy that satisfies Vf(xy) T dx < 0
Requirement : f(xy1) < f(xx) = o = argmin g(a),
let g(o) = f(xy + o di) «>0

@ There always exists « > 0 such that f(xx + ady) < f(xk) because
gl

9'(a) = 7%(0()

(Note that g(a) = f(xx + ady) and g(0) = f(xk))

= Vi(x 4+ adi) T.dx = ¢'(0) = VF(xi) ".di <0

4/12

Successive descent method

X1 = Xk + o dy, such that f(xy1) < f(xk)

o Decent direction: Vf(xy) dy <0
General paradigm for the descent algorithms:

Xk+1 = Xk — &k B Vf(xk)

Lemma: Consider any positive definite matrix
B € R™ ™. For any point x € R™ with

Vf(x) # 0, the direction of d = —BVf(x) is a
descent direction, i.e., Vf(x)" d < 0.

Proof: We have
(Vf(x)) T (=BVf(x)) = —=Vf(x) "BVf(x) < 0 by
assumption that B > 0.

5/12

Common choices of descent direction

Xk+1 = Xk — &k B VFf(x), Bx >0
o Steepest descent algorithm: By =1
Simplest descent direction but not always the fastest

o Newtown’s method: By = (V2f(xy)) !, o = 1 (under the assumption
that V2f(x) > 0)
Computationally expensive, but can have much faster convergence

dix O
0 dox 0
o Diagonally Scaled Steepest Descent: By = 0 o |
0 N R

di,k > 0.
. 2
For example dt* = (%)_1 (diagonally approximates Newton direction)
o Modified Newton directions
o By = (V2f(x0))~! (computationally cheaper)
o By = (V(xx) + YD) 71, Yx > PAmin (V3 (xk))| (to guarantee positive
definiteness)
@ Quasi Newton directions: will be discussed later

6/12

Convergence analysis: what can go wrong (a brief discussion)

Question:Wether each limit point of a sequence {xy} generated by gradient
successive decent algorithms is a stationary point.!

Observation: If dy asymptotically becomes orthogonal to the gradient direction,
(VT
% — 0 as xx approaches a non-stationary point, there is a chance that
the method will get “stuck" near that point.
A measure to avoid getting stuck: Let dy = —By,Vf(xk), B > 0.

If eigenvalues of By are bounded above and bounded away from zero:
3 c1,c2 > 0 such that ¢1)z|]> < z"Brz < collz]|?, Vz € R™ k€ Zso

Then 1900 Tdu|| = | V(xi0) "B V(i) | > e | V() 2

i[> = [[VF0x) (Bi)*VE (i) €3] V() | < e[V(X1 =
VX2 < [ldil? < 3l V(X2

As long as V%) does not tend to zero, dx cannot become asymptotically
orthogonal to f%x

1We say x € R™ is a limit point of a sequence {xy}, if there exists a subsequence of {xy}
that converges to x.

7/12

Convergence analysis

Theorem

Consider the sequence {x\.} generated by any decent algorithm with
dy = —Bka(Xk), Bx >0

such that 3 c1,c2 > 0 such that c1||z||? < z"Bxz < c2||z]|?, Vz € R™ k € Zs,,
and step size is chosen according to the minimization rule, or the limited
minimization rule, (or the Armijo rule). Then, every limit point of {x\} is a
Stationary point.

Note: A stationary point may not be a local minimum point. It may be a saddle
point or even a local maximum. There is a result called the “capture theorem"
(see Ref[1]), which informally states that isolated local minima tends to attract
gradient methods.

Question to think about: How would you check if the point that you endup
with (assuming it is stationary) is actually a local minimum?

8/12

Common choices of the stepsize

Xk+1 = Xk — o B VF(x), Byx >0

o Exact line search: o = argminf(xx + ady)
«=>0

o A minimization problem itself, but an easier one (one dimensional).
o If f convex, the one dimensional minimization problem also convex (why?).
@ Limited minimization: oy = argminf(xy + ady)
x€l0,s]
(tries not to stop too far)

Constant stepsize: o« =s > 0 for all k
(simple rule but may not converge if it is too large or may converge too slow
because it is too small)
e Diminishing step size: ox — 0, and Y ;- ; & = co. For example oy = %
o Descent not guaranteed at each step; only later when becomes small.
e Y oy = oo imposed to guarantee progress does not become too slow.
o Good theoretical guarantees, but unless the right sequence is chosen, can also
be a slow method.
@ Successive step size reduction: well-known examples are Armijo rule (also
called Backtracking) and Goldstein rule
(search but not minimization)

9/12

Stepsize selection: limited minimization

Limited minimization: &y = argminf(xy + ady)

x€(0,s]

@ Assumption: g(«) is unimodal over [0, s]

Figure C.2. A strictly unimodal func-

tion g over an interval [0, s] is defined as
g(a) i i

a function that has a unique global min-

imum «* in [0,s] and if @1,az are two

points in [0,s] such that a; < az < a*

or a* < ay < ag, then

9(a1) > g(az2) > g(a*)

or °

9(a”) < g(en) < g(az),

ol o’ s a respectively. An example of a strictly
unimodal function, is a function which

Image credit [Bertsekas] is strictly convex over [0, s].

minimize g over [0, s] by determining at the kth iteration an interval [0, &)
containing o*.
Solutions we explore

@ Golden Section method
@ Quadratic fit method

10/12

Stepsize selection via limited minimization: Golden Section method

Given [xy, &), determine [otey1, &icq1]) et baaler)
such that o* € [otx41, Bl
» Initialization: [0, &o] = [0, s]
» Step k:
{bk = o + T (X — k),

b = o — T (& — k),

» compute g(by) and g(by)

- o1 = Xk, et = by if glog) < g(by)
1) If g(by) < g(by): ~ _ .
(1) 1 g(bu) < glbx 01 = O, Oiqr = by if g(og) > g(by)
- Oki1 = by, Bpr = if g(bi) = g(a)
2) If g(by) > g(by): _ . - _
(2) 1 glbw) > (b o1 = bi, g1 = & if g(by) < g(&«)

(3) If glby) = Q(Bk)i Q1 = by, By = by.
» Stop: If (&g — o) < €
@ The intervals are obtained using T = % ~ 0.381966011250105
o T satisfies T = (1 — 1)? (see page 746 of Ref[1])
@ related to Fibonacci number sequence

Strictly unimodal g: the interval [xy, &) contains o* and (& — o) — 0
y g

11/12

Stepsize selection via limited minimization: quadratic fit

Quadratic fit: start with [, o, a3] that brackets the minimum
Step 1:fit a quadratic curve to {o, g, x3}:

(o — o) (x — &z)
(o3 — or) (o3 — oxa)

(oe — g) (ox — x3)
+9(0¢2]m +9g(as)

. (¢ — o) (¢ — x3)
ale) = glea) (o1 — ox2) (ot — 3)

Step 2: Find the minimum point of this quadratic curve, which is

_ 1bag(eoa) + barg(xe) + biag(xs)
* 7 2 apglo) + asngloe) + ang(as)’

locr, o2, xg] if oa > oty and g(og) > glax2),
[oea, oa, 3] if oa > op and g(ow) < glo),

Step 3: , X2, = .
ep 3: foa, 02 @alnew =3 [o 0] if e < 2 and g(oa) > glea),
[otr, g, 2] if g < 2 and g(ou) < g(oxa),

Step 4: Check if |a3 — 1| < € if satisfied stop and take &, as minimum point otherwise go to step 1 and
repeat the process.

Quadratic fit has a super-linear convergence (order of p = 1.2) and converges faster than Golden-section
method.

Safeguarding the process: the point oy must not be too close to any of the three existing points else the
subsequence fit will be ill-conditioned. This is especially needed when the polynomial fit algorithm is
embedded in a n-variable routine (searching for stepsize in optimization algorithms). This is taken care of
by defining a measure & and moving or bumping the point away from the existing point by this amount.
For example you can use the following routine:

x1 + 6
if |oeg — 3| < 8, then set o = a3 — &
if g — o < 6, and o > 0.5(ox; + x3) thenset oy = xp—
if l|oog — xo| < 6, and o < 0.5(ox; + x3) thenset oy = o+ 12/12

if |oeg — 1] < 8, then set oy

