
Optimization Methods
Lecture 3

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.

University of California Irvine
solmaz@uci.edu

Parts to consult in Ref[2]: 8.1-8.3 and 8.5.
Parts to consult in Ref[1]: pages 22-33 and Appendix C

1 / 12

Numerical solvers for unconstrained optimization

x? =argmin
x∈Rn

f(x)

Iterative descent methods

start from x0 ∈ Rn (initial guess)

successively generate vectors x1, x2, · · · such that

f(xk+1) < f(xk), k = 0, 1, 2, · · ·

xk+1 = xk + αk dk

Design factors in iterative descent algorithms:

what direction to move: descent direction

how far move in that direction: step size
2 / 12

Successive descent method

xk+1 = xk + αk dk such that f(xk+1) 6 f(xk)

Descent direction design

f(xk+1) = f(xk + αk dk) ≈ f(xk) + α∇f(xk)>dk
Requirement : f(xk+1) 6 f(xk)

}
⇒ ∇f(xk)>dk < 0

3 / 12

Successive descent method

xk+1 = xk+αk dk such that f(xk+1) 6 f(xk)

Step-size design

given dk that satisfies ∇f(xk)>dk < 0
Requirement : f(xk+1) 6 f(xk)
let g(α) = f(xk + αk dk)

⇒ αk = argmin
α>0

g(α),

There always exists α > 0 such that f(xk + αdk) 6 f(xk) because

g ′(α) =
∂g(α)

∂α
= ∇f(xk + αdk)>.dk ⇒ g ′(0) = ∇f(xk)>.dk < 0

(Note that g(α) = f(xk + αdk) and g(0) = f(xk))
4 / 12

Successive descent method

xk+1 = xk + αk dk, such that f(xk+1) 6 f(xk)

Decent direction: ∇f(xk)>dk < 0

General paradigm for the descent algorithms:

xk+1 = xk − αk Bk∇f(xk)

Lemma: Consider any positive definite matrix
B ∈ Rn×n. For any point x ∈ Rn with
∇f(x) 6= 0, the direction of d = −B∇f(x) is a
descent direction, i.e., ∇f(x)> d < 0.

Proof: We have
(∇f(x))>(−B∇f(x)) = −∇f(x)>B∇f(x) < 0 by
assumption that B > 0.

5 / 12

Common choices of descent direction

xk+1 = xk − αk Bk∇f(xk), Bk > 0

Steepest descent algorithm: Bk = I
Simplest descent direction but not always the fastest
Newtown’s method: Bk = (∇2f(xk))

−1, αk = 1 (under the assumption
that ∇2f(x) > 0)
Computationally expensive, but can have much faster convergence

Diagonally Scaled Steepest Descent: Bk =


d1,k 0 · · · 0

0 d2,k · · · 0
... 0

. . . 0
0 · · · 0 dn,k

,
di,k > 0.
For example di,k = (∂

2f(xk)
(∂xi)2

)−1 (diagonally approximates Newton direction)

Modified Newton directions
Bk = (∇2f(x0))

−1 (computationally cheaper)
Bk = (∇2f(xk) + γkI)

−1, γk > |λmin(∇2f(xk))| (to guarantee positive
definiteness)

Quasi Newton directions: will be discussed later
6 / 12

Convergence analysis: what can go wrong (a brief discussion)

Question:Wether each limit point of a sequence {xk} generated by gradient
successive decent algorithms is a stationary point.1

Observation: If dk asymptotically becomes orthogonal to the gradient direction,
∇f(xk)>dk

‖∇f(xk)‖‖dk‖ → 0 as xk approaches a non-stationary point, there is a chance that
the method will get “stuck" near that point.

A measure to avoid getting stuck: Let dk = −Bk∇f(xk), Bk > 0.

If eigenvalues of Bk are bounded above and bounded away from zero:

∃ c1, c2 > 0 such that c1‖z‖2 6 z>Bkz 6 c2‖z‖2, ∀z ∈ Rn,k ∈ Z>0

Then ‖∇f(xk)>dk‖ = ‖∇f(xk)>Bk∇f(xk)‖ > c1‖∇f(xk)‖2,{
‖dk‖2 = ‖∇f(xk)(Bk)2∇f(xk)‖c22‖∇f(xk)‖ 6 c22‖∇f(Xk)‖2 ⇒

c21‖∇f(Xk)‖2 6 ‖dk‖2 6 c22‖∇f(Xk)‖2

As long as ∇f(xk) does not tend to zero, dk cannot become asymptotically
orthogonal to ∇f(xk).

1We say x ∈ Rn is a limit point of a sequence {xk}, if there exists a subsequence of {xk}
that converges to x.

7 / 12

Convergence analysis

Theorem
Consider the sequence {xk} generated by any decent algorithm with

dk = −Bk∇f(xk), Bk > 0

such that ∃ c1, c2 > 0 such that c1‖z‖2 6 z>Bkz 6 c2‖z‖2, ∀z ∈ Rn,k ∈ Z>0,
and step size is chosen according to the minimization rule, or the limited
minimization rule, (or the Armijo rule). Then, every limit point of {xk} is a
stationary point.

Note: A stationary point may not be a local minimum point. It may be a saddle
point or even a local maximum. There is a result called the “capture theorem"
(see Ref[1]), which informally states that isolated local minima tends to attract
gradient methods.

Question to think about: How would you check if the point that you endup
with (assuming it is stationary) is actually a local minimum?

8 / 12

Common choices of the stepsize

xk+1 = xk − αk Bk∇f(xk), Bk > 0

Exact line search: αk = argmin
α>0

f(xk + αdk)

A minimization problem itself, but an easier one (one dimensional).
If f convex, the one dimensional minimization problem also convex (why?).

Limited minimization: αk = argmin
α∈[0,s]

f(xk + αdk)

(tries not to stop too far)
Constant stepsize: αk = s > 0 for all k
(simple rule but may not converge if it is too large or may converge too slow
because it is too small)
Diminishing step size: αk → 0, and

∑∞
k=1 αk =∞. For example αk = 1

k

Descent not guaranteed at each step; only later when becomes small.∑∞
k=1 αk =∞ imposed to guarantee progress does not become too slow.

Good theoretical guarantees, but unless the right sequence is chosen, can also
be a slow method.

Successive step size reduction: well-known examples are Armijo rule (also
called Backtracking) and Goldstein rule
(search but not minimization)

9 / 12

Stepsize selection: limited minimization

Limited minimization: αk = argmin
α∈[0,s]

f(xk + αdk)

Assumption: g(α) is unimodal over [0, s]

minimize g over [0, s] by determining at the kth iteration an interval [αk, ᾱk]
containing α?.

Solutions we explore

Golden Section method
Quadratic fit method

10 / 12

Stepsize selection via limited minimization: Golden Section method

Given [αk, ᾱk], determine [αk+1, ᾱk+1]
such that α? ∈ [αk+1, ᾱk+1].

I Initialization: [α0, ᾱ0] = [0, s]

I Step k:{
bk = αk + τ (ᾱk − αk),

b̄k = αk − τ (ᾱk − αk),

I compute g(bk) and g(b̄k)

(1) If g(bk) < g(b̄k):

{
αk+1 = αk, ᾱk+1 = bk if g(αk) 6 g(bk)
αk+1 = αk, ᾱk+1 = b̄k if g(αk) > g(bk)

(2) If g(bk) > g(b̄k):

{
αk+1 = b̄k, ᾱk+1 = ᾱk if g(b̄k) > g(ᾱk)
αk+1 = bk, ᾱk+1 = ᾱk if g(b̄k) < g(ᾱk)

(3) If g(bk) = g(b̄k): αk+1 = bk, ᾱk+1 = b̄k.
I Stop: If (ᾱk − αk) < ε

The intervals are obtained using τ = 3−
√
5

2 ≈ 0.381966011250105
τ satisfies τ = (1 − τ)2 (see page 746 of Ref[1])
related to Fibonacci number sequence

Strictly unimodal g: the interval [αk, ᾱk] contains α? and (ᾱk − αk)→ 0 11 / 12

Stepsize selection via limited minimization: quadratic fit

Quadratic fit: start with [α1,α2,α3] that brackets the minimum
Step 1:fit a quadratic curve to {α1,α2,α3}:

q(α) = g(α1)
(α−α2)(α−α3)

(α1 −α2)(α1 −α3)
+ g(α2)

(α−α1)(α−α3)

(α2 −α1)(α2 −α3)
+ g(α3)

(α−α1)(α−α2)

(α3 −α1)(α3 −α2)

Step 2: Find the minimum point of this quadratic curve, which is

α4 =
1

2

b23g(α1) + b31g(α2) + b12g(α3)

a23g(α1) +a31g(α2) +a12g(α3)
, aij = αi −αj, bij = α2

i −α2
j.

Step 3: [α1,α2,α3]new =


[α1,α2,α4] if α4 > α2 and g(α4) > g(α2),

[α2,α4,α3] if α4 > α2 and g(α4) < g(α2),

[α4,α2,α3] if α4 < α2 and g(α4) > g(α2),

[α1,α4,α2] if α4 < α2 and g(α4) < g(α2),

Step 4: Check if |α3 −α1| < ε if satisfied stop and take α2 as minimum point otherwise go to step 1 and
repeat the process.

Quadratic fit has a super-linear convergence (order of p = 1.2) and converges faster than Golden-section
method.

Safeguarding the process: the point α4 must not be too close to any of the three existing points else the
subsequence fit will be ill-conditioned. This is especially needed when the polynomial fit algorithm is
embedded in a n-variable routine (searching for stepsize in optimization algorithms). This is taken care of
by defining a measure δ and moving or bumping the point away from the existing point by this amount.
For example you can use the following routine:

if |α4 −α1| < δ, then set α4 = α1 + δ

if |α4 −α3| < δ, then set α4 = α3 − δ

if |α4 −α2| < δ, and α2 > 0.5(α1 +α3) then set α4 = α2 − δ

if |α4 −α2| < δ, and α2 6 0.5(α1 +α3) then set α4 = α2 + δ 12 / 12

