Optimization Methods Lecture 3

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept. University of California Irvine solmaz@uci.edu

Numerical solvers for unconstrained optimization

 $x^{\star} = \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)$

Iterative descent methods

- start from $x_0 \in \mathbb{R}^n$ (initial guess)
- successively generate vectors x_1, x_2, \cdots such that

 $x_{k+1} = x_k + \alpha_k d_k$

Design factors in iterative descent algorithms:

- what direction to move: descent direction
- how far move in that direction: step size

$$x_{k+1} = x_k + \alpha_k d_k$$
 such that $f(x_{k+1}) \leq f(x_k)$

Descent direction design

$$\begin{array}{l} f(x_{k+1}) = f(x_k + \alpha_k \, d_k) \approx f(x_k) + \alpha \nabla f(x_k)^\top d_k \\ \text{Requirement}: \ f(x_{k+1}) \leqslant f(x_k) \end{array} \right\} \Rightarrow \nabla f(x_k)^\top d_k < 0$$

$$x_{k+1} = x_k + \alpha_k \, d_k$$
 such that $f(x_{k+1}) \leqslant f(x_k)$

Step-size design

(

given
$$d_k$$
 that satisfies $\nabla f(x_k)^\top d_k < 0$
Requirement : $f(x_{k+1}) \leq f(x_k)$
let $g(\alpha) = f(x_k + \alpha_k d_k)$ $\Rightarrow \alpha_k = \underset{\alpha > 0}{\operatorname{argmin}} g(\alpha),$

 \bullet There always exists $\alpha>0$ such that $f(x_k+\alpha d_k)\leqslant f(x_k)$ because

$$\begin{split} g'(\alpha) &= \frac{\partial g(\alpha)}{\partial \alpha} = \nabla f(x_k + \alpha \, d_k)^\top . d_k \Rightarrow g'(0) = \nabla f(x_k)^\top . d_k < 0 \\ \text{Note that } g(\alpha) &= f(x_k + \alpha d_k) \text{ and } g(0) = f(x_k)) \end{split}$$

 $x_{k+1} = x_k + \alpha_k \, d_k, \text{ such that } f(x_{k+1}) \leqslant f(x_k)$

• Decent direction: $\nabla f(x_k)^{\top} d_k < 0$

General paradigm for the descent algorithms:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\alpha}_k \, \mathbf{B}_k \, \nabla \mathbf{f}(\mathbf{x}_k)$$

Lemma: Consider any positive definite matrix $B \in \mathbb{R}^{n \times n}$. For any point $x \in \mathbb{R}^n$ with $\nabla f(x) \neq 0$, the direction of $d = -B\nabla f(x)$ is a descent direction, i.e., $\nabla f(x)^\top d < 0$.

Proof: We have $(\nabla f(x))^{\top}(-B\nabla f(x)) = -\nabla f(x)^{\top}B\nabla f(x) < 0$ by assumption that B > 0.

 $x_{k+1} = x_k - \alpha_k \, B_k \, \nabla f(x_k), \quad B_k > 0$

- Steepest descent algorithm: $B_k = I$ Simplest descent direction but not always the fastest
- Newtown's method: $B_k=(\nabla^2 f(x_k))^{-1}, \ \alpha_k=1$ (under the assumption that $\nabla^2 f(x)>0)$

Computationally expensive, but can have much faster convergence

• Diagonally Scaled Steepest Descent: $B_k =$

$$B_{k} = \begin{bmatrix} d_{1,k} & 0 & \cdots & 0 \\ 0 & d_{2,k} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & d_{n,k} \end{bmatrix},$$

 $d_{i,k} > 0.$ For example $d^{i,k} = (\frac{\partial^2 f(x_k)}{(\partial x_i)^2})^{-1}$ (diagonally approximates Newton direction)

- Modified Newton directions
 - $B_k = (\nabla^2 f(x_0))^{-1}$ (computationally cheaper)
 - $B_k = (\nabla^2 f(x_k) + \gamma_k I)^{-1}$, $\gamma_k > |\lambda_{min}(\nabla^2 f(x_k))|$ (to guarantee positive definiteness)
- Quasi Newton directions: will be discussed later

Convergence analysis: what can go wrong (a brief discussion)

Question:Wether each limit point of a sequence $\{x_k\}$ generated by gradient successive decent algorithms is a stationary point.¹

Observation: If d_k asymptotically becomes orthogonal to the gradient direction, $\frac{\nabla f(x_k)^\top d_k}{\|\nabla f(x_k)\| \|d_k\|} \to 0$ as x_k approaches a non-stationary point, there is a chance that the method will get "stuck" near that point.

A measure to avoid getting stuck: Let $d_k = -B_k \nabla f(x_k)$, $B_k > 0$.

If eigenvalues of B_k are bounded above and bounded away from zero:

$$\exists \ c_1, c_2 > 0 \ \text{such that} \ c_1 \|z\|^2 \leqslant z^\top B_k z \leqslant c_2 \|z\|^2, \ \ \forall z \in \mathbb{R}^n, k \in \mathbb{Z}_{\geqslant 0}$$

Then
$$\|\nabla f(x_k)^{\top} d_k\| = \|\nabla f(x_k)^{\top} B_k \nabla f(x_k)\| \ge c_1 \|\nabla f(x_k)\|^2,$$

$$\begin{cases} \|d_k\|^2 = \|\nabla f(x_k)(B_k)^2 \nabla f(x_k)\| c_2^2 \|\nabla f(x_k)\| \le c_2^2 \|\nabla f(X_k)\|^2 \Rightarrow \\ c_1^2 \|\nabla f(X_k)\|^2 \le \|d_k\|^2 \le c_2^2 \|\nabla f(X_k)\|^2 \end{cases}$$

As long as $\nabla f(x_k)$ does not tend to zero, d_k cannot become asymptotically orthogonal to $\nabla f(x_k).$

¹We say $x \in \mathbb{R}^n$ is a **limit point of a sequence** $\{x_k\}$, if there exists a subsequence of $\{x_k\}$ that converges to x.

Theorem

Consider the sequence $\{x_k\}$ generated by any decent algorithm with

$$\mathbf{d}_{\mathbf{k}} = -\mathbf{B}_{\mathbf{k}} \nabla \mathbf{f}(\mathbf{x}_{\mathbf{k}}), \quad \mathbf{B}_{\mathbf{k}} > \mathbf{0}$$

such that $\exists c_1, c_2 > 0$ such that $c_1 ||z||^2 \leqslant z^\top B_k z \leqslant c_2 ||z||^2$, $\forall z \in \mathbb{R}^n, k \in \mathbb{Z}_{\geqslant 0}$, and step size is chosen according to the minimization rule, or the limited minimization rule, (or the Armijo rule). Then, every limit point of $\{x_k\}$ is a stationary point.

Note: A stationary point may not be a local minimum point. It may be a saddle point or even a local maximum. There is a result called the "capture theorem" (see Ref[1]), which informally states that isolated local minima tends to attract gradient methods.

Question to think about: How would you check if the point that you endup with (assuming it is stationary) is actually a local minimum?

 $x_{k+1} = x_k - \alpha_k \, B_k \, \nabla f(x_k), \quad B_k > 0$

- Exact line search: $\alpha_k = \operatorname{argminf}(x_k + \alpha d_k)$
 - A minimization problem itself, but an easier one (one dimensional).
 - If f convex, the one dimensional minimization problem also convex (why?).
- Limited minimization: $\alpha_k = \underset{\alpha \in [0,s]}{\operatorname{argminf}} (x_k + \alpha d_k)$

(tries not to stop too far)

- Constant stepsize: $\alpha_k = s > 0$ for all k (simple rule but may not converge if it is too large or may converge too slow because it is too small)
- Diminishing step size: $\alpha_k \to 0$, and $\sum_{k=1}^{\infty} \alpha_k = \infty$. For example $\alpha_k = \frac{1}{k}$
 - Descent not guaranteed at each step; only later when becomes small.
 - $\sum_{k=1}^{\infty} \alpha_k = \infty$ imposed to guarantee progress does not become too slow.
 - Good theoretical guarantees, but unless the right sequence is chosen, can also be a slow method.

• Successive step size reduction: well-known examples are Armijo rule (also called Backtracking) and Goldstein rule (search but not minimization)

Limited minimization: $\alpha_k = \underset{\alpha \in [0,s]}{\operatorname{argminf}} (x_k + \alpha d_k)$

• Assumption: $g(\alpha)$ is unimodal over [0, s]

Figure C.2. A strictly unimodal function g over an interval [0,s] is defined as a function that has a unique global minimum α^* in [0,s] and if α_1, α_2 are two points in [0,s] such that $\alpha_1 < \alpha_2 < \alpha^*$ or $\alpha^* < \alpha_1 < \alpha_2$, then

$$g(\alpha_1) > g(\alpha_2) > g(\alpha^*)$$

or

 $g(\alpha^*) < g(\alpha_1) < g(\alpha_2),$

respectively. An example of a strictly unimodal function, is a function which is strictly convex over [0, s].

minimize g over [0, s] by determining at the kth iteration an interval $[\alpha_k, \bar{\alpha}_k]$ containing α^* .

Solutions we explore

- Golden Section method
- Quadratic fit method

Stepsize selection via limited minimization: Golden Section method

 $\begin{array}{l} \mbox{Given } [\alpha_k,\bar{\alpha}_k], \mbox{ determine } [\alpha_{k+1},\bar{\alpha}_{k+1}] \\ \mbox{such that } \alpha^{\star} \in [\alpha_{k+1},\bar{\alpha}_{k+1}]. \end{array}$

• Initialization: $[\alpha_0, \bar{\alpha}_0] = [0, s]$

$$\label{eq:step k:} \begin{array}{l} \textbf{Step k:} \\ \left\{ \begin{aligned} b_k &= \alpha_k + \tau \left(\bar{\alpha}_k - \alpha_k \right), \\ \bar{b}_k &= \alpha_k - \tau \left(\bar{\alpha}_k - \alpha_k \right), \end{aligned} \right. \end{array} \right.$$

compute $q(b_{\nu})$ and $q(\bar{b}_{\nu})$

11/12

$$\begin{array}{l} \text{(1) If } g(b_{k}) < g(\bar{b}_{k}) \colon \begin{cases} \alpha_{k+1} = \alpha_{k}, & \bar{\alpha}_{k+1} = b_{k} & \text{if } g(\alpha_{k}) \leqslant g(b_{k}) \\ \alpha_{k+1} = \alpha_{k}, & \bar{\alpha}_{k+1} = \bar{b}_{k} & \text{if } g(\alpha_{k}) > g(b_{k}) \end{cases} \\ \text{(2) If } g(b_{k}) > g(\bar{b}_{k}) \colon \begin{cases} \alpha_{k+1} = \bar{b}_{k}, & \bar{\alpha}_{k+1} = \bar{\alpha}_{k} & \text{if } g(\bar{b}_{k}) \ge g(\bar{\alpha}_{k}) \\ \alpha_{k+1} = b_{k}, & \bar{\alpha}_{k+1} = \bar{\alpha}_{k} & \text{if } g(\bar{b}_{k}) \ge g(\bar{\alpha}_{k}) \end{cases} \\ \text{(3) If } g(b_{k}) = g(\bar{b}_{k}) \colon & \alpha_{k+1} = b_{k}, & \bar{\alpha}_{k+1} = \bar{b}_{k}. \end{cases} \\ \textbf{Stop: If } (\bar{\alpha}_{k} - \alpha_{k}) < \epsilon \end{array}$$

- The intervals are obtained using $\tau = \frac{3-\sqrt{5}}{2} \approx 0.381966011250105$
- τ satisfies $\tau = (1 \tau)^2$ (see page 746 of Ref[1])
- related to Fibonacci number sequence

Strictly unimodal g: the interval $[\alpha_k, \bar{\alpha}_k]$ contains α^{\star} and $(\bar{\alpha}_k - \alpha_k) \rightarrow 0$

Stepsize selection via limited minimization: quadratic fit

Quadratic fit: start with $[\alpha_1, \alpha_2, \alpha_3]$ that brackets the minimum Step 1:fit a quadratic curve to $\{\alpha_1, \alpha_2, \alpha_3\}$:

$$q(\alpha) = g(\alpha_1) \frac{(\alpha - \alpha_2)(\alpha - \alpha_3)}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)} + g(\alpha_2) \frac{(\alpha - \alpha_1)(\alpha - \alpha_3)}{(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3)} + g(\alpha_3) \frac{(\alpha - \alpha_1)(\alpha - \alpha_2)}{(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2)}$$

Step 2: Find the minimum point of this quadratic curve, which is

$$\alpha_{4} = \frac{1}{2} \frac{b_{23}g(\alpha_{1}) + b_{31}g(\alpha_{2}) + b_{12}g(\alpha_{3})}{a_{23}g(\alpha_{1}) + a_{31}g(\alpha_{2}) + a_{12}g(\alpha_{3})}, \quad a_{ij} = \alpha_{i} - \alpha_{j}, \ b_{ij} = \alpha_{i}^{2} - \alpha_{j}^{2}$$

$$\text{Step 3: } [\alpha_{1}, \alpha_{2}, \alpha_{3}]_{\text{new}} = \begin{cases} [\alpha_{1}, \alpha_{2}, \alpha_{4}] & \text{if } \alpha_{4} > \alpha_{2} \text{ and } g(\alpha_{4}) \geqslant g(\alpha_{2}), \\ [\alpha_{2}, \alpha_{4}, \alpha_{3}] & \text{if } \alpha_{4} > \alpha_{2} \text{ and } g(\alpha_{4}) < g(\alpha_{2}), \\ [\alpha_{4}, \alpha_{2}, \alpha_{3}] & \text{if } \alpha_{4} < \alpha_{2} \text{ and } g(\alpha_{4}) \geqslant g(\alpha_{2}), \\ [\alpha_{1}, \alpha_{4}, \alpha_{2}] & \text{if } \alpha_{4} < \alpha_{2} \text{ and } g(\alpha_{4}) < g(\alpha_{2}), \end{cases}$$

Step 4: Check if $|\alpha_3 - \alpha_1| < \varepsilon$ if satisfied stop and take α_2 as minimum point otherwise go to step 1 and repeat the process.

Quadratic fit has a super-linear convergence (order of p=1.2) and converges faster than Golden-section method.

Safeguarding the process: the point α_4 must not be too close to any of the three existing points else the subsequence fit will be ill-conditioned. This is especially needed when the polynomial fit algorithm is embedded in a n-variable routine (searching for stepsize in optimization algorithms). This is taken care of by defining a measure δ and moving or bumping the point away from the existing point by this amount. For example you can use the following routine:

ſ	f if $ \alpha_4 - \alpha_1 < \delta$,	then set	$\alpha_4=\alpha_1+\delta$	
J	$\text{if } \alpha_4-\alpha_3 <\delta,\\$	then set	$\alpha_4=\alpha_3-\delta$	
Ì		then set	$\alpha_4=\alpha_2-\delta$	
l	if $ \alpha_4 - \alpha_2 < \delta$, and $\alpha_2 \leqslant 0.5(\alpha_1 + \alpha_3)$	then set	$\alpha_4=\alpha_2+\delta$	12/12