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Unconstrained optimization

x? =argmin
x∈Rn

f(x)

x? ∈ Rn Unconstrained local minimum of f if

∃ ε > 0 s.t. f(x?) 6 f(x), ∀x with ‖x− x?‖ < ε,

x? ∈ Rn Unconstrained global minimum of f if

f(x?) 6 f(x), ∀x ∈ Rn,

x? ∈ Rn Unconstrained strict local minimum of f if

∃ ε > 0 s.t. f(x?) < f(x), ∀x with ‖x− x?‖ < ε,

x? ∈ Rn Unconstrained strict global minimum of f if

f(x?) < f(x), ∀x ∈ Rn,
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Necessary conditions for optimality

OPT: x? =argmin
x∈Rn

f(x)

x ∈ X (X is the set of constraints)
for X = Rn (problem becomes unconstrained)

D ∈ Rn is a feasible
direction at x ∈ X for OPT
if (x+ αd) ∈ X for
α ∈ [0, ᾱ]

Proposition:
First order necessary condition (FONC) consider OPT and let f ∈ C1 if x?

is a local minimizer for f then

∇f(x?)>d > 0, ∀d ∈ Rn, d is a feasible direction

Second order necessary condition (SONC) let f ∈ C2 if x? is a local
minimizer for f then
(i) ∇f(x?)>d > 0
(ii) if ∇f(x?) = 0 ⇒ d>∇2f(x?)d > 0 ∀d ∈ Rn, d is a feasible direction
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Necessary conditions for optimality

x? =argmin
x∈Rn

f(x)

Proposition (necessary optimality conditions)

Let x? be an unconstrained local minimum of f : Rn → R and assume that f is
continuously differentiable in an open set S containing x? , Then

∇f(x?) = 0. (First Order Necessary Condition)

If in addition f is twice continuously differentiable within S, then

∇2f(x?) : positive semidefinite. (Second Order Necessary Condition)

Proof: see page 13-14 of Ref[1].

Stationary point: Any point x̄ ∈ Rn that satisfies ∇f(x̄) = 0 is called a stationary
point. A stationary point can be a minimum, maximum or saddle point of cost
function f.
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Sufficient conditions for optimality

x? =argmin
x∈Rn

f(x)

Proposition (Second order sufficient optimality conditions)

Let f : Rn → R be twice continuously differentiable in an open set S. Suppose
that a vector x? satisfies the conditions

∇f(x?) = 0, ∇2f(x?) : positive definite.

Then, x? is a strict unconstrained local minimum of f. In particular, there exist
scalars γ > 0 and ε > 0 such that

f(x) > f(x?) +
γ

2
‖x− x?‖2, ∀x with ‖x− x?‖ < ε.

Proof: see page 15 of Ref[1].
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Stationary points: example

f(x) = x3

∇f(x) = 3x2

stationary point:

∇f(0) = 0

x? = 0 reflection point

−−−−−

∇2f(x) = 6x

∇2f(0) = 0

f(x) = |x|3

∇f(x) =

{
3x2 x > 0

−3x2 x < 0

stationary point:

∇f(0) = 0

x? = 0 local minimizer

−−−−−

∇2f(x) =

{
6x x > 0

−6x x < 0

∇2f(0) = 0

f(x) = −|x|3

∇f(x) =

{
−3x2 x > 0

3x2 x < 0

stationary point:

∇f(0) = 0

x? = 0 local maximizer

−−−−−

∇2f(x) =

{
−6x x > 0

6x x < 0

∇2f(0) = 0

Note here that in all three of these cases x? satisfies FONC and SONC, but satisfying necessary

conditions does not mean that these points are minimizers. Note that x? does not satisfy the second

order sufficient conditions either. 6 / 19



Singular and non-singular local minimum

Local minimum point that does not satisfy the sufficiency condition
∇f(x?) = 0, ∇f(x?) > 0 is called singular otherwise it is called nonsingular.

Singular local minima are harder to deal with
In the absence of convexity of f, their optimality cannot be ascertained using
easily verifiable sufficient conditions

In their neighborhood, the behavior of most commonly used optimization
algorithms tends to be slow and /or erratic
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Convex sets and convex functions (see Appendix B of Ref[1])

Convex set Ω: The line connecting any point p,q ∈ Ω belongs to Ω:

∀p,q ∈ C : (t p+ (1 − t)q) ∈ Ω for t ∈ [0, 1].

Convex function: f is convex over convex set Ω iff

f(t x1 + (1 − t) x2) 6 t f(x1) + (1 − t) f(x2), ∀x1, x2 ∈ Ω for t ∈ [0, 1].
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Convex function

Convex function: f is convex over convex set Ω iff

f(t x1 + (1 − t) x2) 6 t f(x1) + (1 − t) f(x2), ∀x1, x2 ∈ Ω for t ∈ [0, 1].

When f is differentiable, it is convex over convex set Ω iff

f(x) > f(x0) +∇f(x0)(x− x0), ∀x0, x ∈ Ω.

When f is twice differentiable, it is convex over convex set Ω iff

∇2f(x) > 0, ∀x0, x ∈ Ω.
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Optimality conditions for convex functions

Proposition (Optimality conditions for convex functions)

Let f : X→ R be a convex function over the convex set X.
(a) A local minimum of f over X is also a global minimum over X. If in addition

f is strictly convex, then there exists at most one global minimum of f.

(b) If f is convex and the set X is open, then ∇f(x?) = 0 is a necessary and
sufficient condition for a vector x ∈ X to be a global minimum of f over X.

Proof: see page 14 of Ref[1]

for part (a) use f(αx? + (1 − α)x̄) 6 αf(x?) + (1 − α)f(x̄)

for part (b) use f(x) > f(x?) +∇f(x?)>(x− x?), ∀x ∈ X.
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Numerical solvers (see Section 1.2 of Ref[1])

Iterative descent methods

start from x0 ∈ Rn (initial guess)

successively generate vectors x1, x2, · · · such that

f(xk+1) < f(xk), k = 0, 1, 2, · · ·

xk+1 = xk + αk dk

Design factors in iterative descent algorithms:

what direction to move: descent direction

how far move in that direction: step size
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Successive descent method

xk+1 = xk + αk dk

1st order Taylor series : f(xk+1) = f(xk + αk dk) ≈ f(xk) + αk∇f(xk)> dk
for successive reduction: αk∇f(xk)> dk < 0

If ∇f(xk) 6= 0

90◦ < ∠(dk,∇f(xk)) < 270◦: ∇f(xk)> d < 0

by appropriate choice of step size αk we can
achieve f(xk+1) < f(xk)

Observations above lead to a set of gradient based
algorithms
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Steepest descent method

xk+1 = xk + αk dk

1st order Taylor series : f(xk+1) = f(xk + αk dk) ≈ f(xk) + αk∇f(xk)> dk
for successive reduction: αk∇f(xk)> dk < 0

dk = −∇f(xk) : −∇f(xk)>∇f(xk) < 0, ∇f(xk) 6= 0

Proposition dk = −∇f(xk) is a descent direction, i.e., f(xk + αkdk) < f(xk) for
all sufficiently small values of αk > 0.

Steepest Descent Algorithm

Step 0. Given x0, set k := 0

Step 1. dk := −∇f(xk). If dk = 0, then stop.

Step 2. Solve αk = argmin
α

f(xk + αdk) for the stepsize αk (chosen by an

exact or inexact linesearch)

Step 3. Set xk+1 ← xk + αkdk, k← k+ 1. Go to Step 1.

Note: from Step 2 and the fact that dk = −∇kf(xk) is a descent direction it
follows that f(xk+1) < f(xk). 13 / 19



Steepest descent method

Steepest descent method can have slow convergence

f(x1, x2) = 1 − e−(10x21+x
2
2)

Rosenbrock function:
f(x1, x2) = 100(x2 − x

2
1)

2 + (1 − x1)
2

x0 = (−1.2, 1.0)> x? = (1, 1)>
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Newton’s method

xk+1 = xk + αk dk︸ ︷︷ ︸
∆xk

2nd order Taylor series:

f(xk+1) = f(xk + ∆xk) ≈ h(∆xk) = f(xk) +∇f(xk)> ∆xk +
1

2
∆x>k∇2f(xk)∆xk

For successive reduction: find the ∆xk from minimize
∆xk

h(∆xk)

∇h(∆x) = 0⇒ ∇2f(xk)∆xk +∇f(xk) = 0⇒ ∆xk = −(∇2f(xk))
−1∇f(xk)

xk+1 = xk − (∇2f(xk))
−1∇f(xk)

Newton’s method

Step 0. Given x0, set k := 0

Step 1. dk := −(∇2f(xk))
−1∇f(xk). If dk = 0, then stop.

Step 2. Solver αk = 1

Step 3. Set xk+1 ← xk + αkdk, k← k+ 1. Go to Step 1.
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Modified Newton’s method

2nd order Taylor series:

f(xk+1) = f(xk + ∆xk) ≈ h(∆xk) = f(xk) +∇f(xk)> ∆xk + ∆x>k∇2f(xk)∆xk

xk+1 = xk − (∇2f(xk))
−1∇f(xk),

Note the following:
f(xk+1) < f(xk) is not necessarily guaranteed

Algorithm can be modified to be xk+1 = xk − αk (∇2f(xk))
−1∇f(xk),

Step 2 the should be modified to be
Step 2. Solve αk = argmin

α
f(xk − α (∇2f(xk))

−1∇f(xk)) for the stepsize αk

(chosen by an exact or inexact linesearch)

Proposition If H(xk) = ∇2f(xk) is a symmetric positive definite matrix, then
dk := −H(x)−1∇f(xk)) is a descent direction, i.e., f(xk + αkdk) < f(xk) for all
sufficiently small values of αk > 0.

proof: for dk to be a descent direction we should show that ∇f(xk)>dk < 0.
here: ∇f(xk)>dk = −∇f(xk)>H(x)−1∇f(xk). Because H(xk) is positive
definite, it follows that ∇f(xk)>dk = −∇f(xk)>H(x)−1∇f(xk) < 0. Here we
used the fact that if a matrix is positive definite, its inverse is also positive definite
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Newton and modified Newton methods

Newton method typically converges very fast asymptotically

Does not exhibit the zig-zagging behavior of the steepest descent

on the down side: Newton’s method needs to compute not only the gradient, but
also the Hessian, which contains n(n+ 1)/2 second order derivatives (numerically
expensive).

Example: f(x1, x2) = 1 − e−(10x21+x
2
2)
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Practical Stopping Conditions for Iterative Optimization Algorithms for
Unconstrained Optimization

In iterative algorithms typically the initial point is picked randomly, or if we have a
guess for the location of local minima, we pick close to them.

Stopping Criteria: The stoping condition is related to the first order optimality
condition of ∇f(x) = 0. The followings are common practical stopping conditions
for iterative unconstrained optimization algorithms. Let ε > 0:

‖f(xk)‖ 6 ε
close to satisfying first order necessary condition ∇f(x) = 0.

|f(xk+1) − f(xk)| 6 ε
Improvements in function value are saturating.

‖xk+1 − xk‖ 6 ε
Movement between iterates has become small.

|f(xk+1)−f(xk)|
max{1,|f(xk)|}

6 ε
A “relative" measure -removes dependence on the scale of f.
The max is taken to avoid dividing by small numbers.

‖xk+1−xk‖
max{1,‖xk‖} 6 ε

A “relative" measure -removes dependence on the scale of x(k)
The max is taken to avoid dividing by small numbers.
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