Optimization Methods Lecture 2

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Reading: Sections 7.1-7.5, 8.6, 8.8 of Ref[2].

Unconstrained optimization

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)
$$

- $x^{\star} \in \mathbb{R}^{n}$ Unconstrained local minimum of f if

$$
\exists \epsilon>0 \text { s.t. } f\left(x^{\star}\right) \leqslant f(x), \quad \forall x \text { with }\left\|x-x^{\star}\right\|<\epsilon
$$

- $x^{\star} \in \mathbb{R}^{n}$ Unconstrained global minimum of f if

$$
f\left(x^{\star}\right) \leqslant f(x), \quad \forall x \in \mathbb{R}^{n}
$$

- $x^{\star} \in \mathbb{R}^{n}$ Unconstrained strict local minimum of f if

$$
\exists \epsilon>0 \text { s.t. } f\left(x^{\star}\right)<f(x), \quad \forall x \text { with }\left\|x-x^{\star}\right\|<\epsilon
$$

- $x^{\star} \in \mathbb{R}^{n}$ Unconstrained strict global minimum of f if

$$
f\left(x^{\star}\right)<f(x), \quad \forall x \in \mathbb{R}^{n}
$$

Necessary conditions for optimality

$$
\begin{aligned}
& \text { OPT: } \quad x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \\
& \quad x \in X \quad(X \text { is the set of constraints) } \\
& \quad \text { for } X=\mathbb{R}^{n} \quad \text { (problem becomes unconstrained) } \\
& \text { D } \in \mathbb{R}^{n} \text { is a feasible } \\
& \text { direction at } x \in X \text { for OPT } \\
& \text { if }(x+\alpha \mathrm{d}) \in X \text { for } \\
& \alpha \in[0, \bar{\alpha}]
\end{aligned}
$$

Proposition:

- First order necessary condition (FONC) consider OPT and let $\mathfrak{f} \in \mathcal{C}^{1}$ if x^{\star} is a local minimizer for f then

$$
\nabla \mathrm{f}\left(\mathrm{x}^{\star}\right)^{\top} \mathrm{d} \geqslant 0, \quad \forall \mathrm{~d} \in \mathbb{R}^{n}, \quad \mathrm{~d} \text { is a feasible direction }
$$

- Second order necessary condition (SONC) let $f \in \mathcal{C}^{2}$ if x^{\star} is a local minimizer for f then
(i) $\nabla f\left(x^{\star}\right)^{\top} d \geqslant 0$
(ii) if $\nabla f\left(x^{\star}\right)=0 \Rightarrow d^{\top} \nabla^{2} f\left(x^{\star}\right) d \geqslant 0 \forall d \in \mathbb{R}^{n}$, d is a feasible direction

Necessary conditions for optimality

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)
$$

Proposition (necessary optimality conditions)

Let x^{\star} be an unconstrained local minimum of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and assume that f is continuously differentiable in an open set S containing \mathbf{x}^{\star}, Then

$$
\nabla f\left(\mathbf{x}^{\star}\right)=0
$$

(First Order Necessary Condition)
If in addition f is twice continuously differentiable within S, then

$$
\nabla^{2} f\left(x^{\star}\right) \text { : positive semidefinite. (Second Order Necessary Condition) }
$$

Proof: see page 13-14 of Ref[1].
Stationary point: Any point $\overline{\mathbf{x}} \in \mathbb{R}^{n}$ that satisfies $\nabla f(\overline{\mathbf{x}})=0$ is called a stationary point. A stationary point can be a minimum, maximum or saddle point of cost function f.

Sufficient conditions for optimality

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)
$$

Proposition (Second order sufficient optimality conditions)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable in an open set S. Suppose that a vector x^{\star} satisfies the conditions

$$
\nabla f\left(x^{\star}\right)=0, \quad \nabla^{2} f\left(x^{\star}\right): \text { positive definite. }
$$

Then, \mathbf{x}^{\star} is a strict unconstrained local minimum of f . In particular, there exist scalars $\gamma>0$ and $\epsilon>0$ such that

$$
\mathrm{f}(\mathrm{x}) \geqslant \mathrm{f}\left(\mathrm{x}^{\star}\right)+\frac{\gamma}{2}\left\|\mathrm{x}-\mathrm{x}^{\star}\right\|^{2}, \quad \forall \mathrm{x} \text { with }\left\|\mathrm{x}-\mathrm{x}^{\star}\right\|<\epsilon
$$

Proof: see page 15 of $\operatorname{Ref}[1]$.

Stationary points: example

$$
\begin{aligned}
& f(x)=x^{3} \\
& \nabla f(x)=3 x^{2}
\end{aligned}
$$

stationary point:
$\nabla \mathrm{f}(0)=0$
$x^{\star}=0$ reflection point

$$
\begin{aligned}
& ----- \\
& \nabla^{2} f(x)=6 x \\
& \nabla^{2} f(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=|\hat{x}|^{3} \\
& \nabla f(x)= \begin{cases}3 x^{2} & x>0 \\
-3 x^{2} & x<0\end{cases}
\end{aligned}
$$

stationary point:

$$
\nabla f(0)=0
$$

$$
x^{\star}=0 \text { local minimizer }
$$

$$
\nabla^{2} f(x)= \begin{cases}6 x & x>0 \\ -6 x & x<0\end{cases}
$$

$$
\nabla^{2} f(0)=0
$$

$f(x)=-|x|^{3}$
$\nabla f(x)= \begin{cases}-3 x^{2} & x>0 \\ 3 x^{2} & x<0\end{cases}$
stationary point:

$$
\nabla f(0)=0
$$

$x^{\star}=0$ local maximizer
$\nabla^{2} f(x)= \begin{cases}-6 x & x>0 \\ 6 x & x<0\end{cases}$
$\nabla^{2} \mathrm{f}(0)=0$

Note here that in all three of these cases x^{\star} satisfies FONC and SONC, but satisfying necessary conditions does not mean that these points are minimizers. Note that χ^{\star} does not satisfy the second order sufficient conditions either.

Singular and non-singular local minimum

- Local minimum point that does not satisfy the sufficiency condition $\nabla f\left(x^{\star}\right)=0, \nabla f\left(x^{\star}\right)>0$ is called singular otherwise it is called nonsingular.

Singular local minima are harder to deal with

- In the absence of convexity of f, their optimality cannot be ascertained using easily verifiable sufficient conditions
- In their neighborhood, the behavior of most commonly used optimization algorithms tends to be slow and /or erratic

Convex sets and convex functions (see Appendix B of Ref[1])

- Convex set Ω : The line connecting any point $\mathrm{p}, \mathrm{q} \in \Omega$ belongs to Ω :

$$
\forall p, q \in C: \quad(t p+(1-t) q) \in \Omega \text { for } t \in[0,1] .
$$

(A) Convex set

(B)Non-convex set

- Convex function: f is convex over convex set Ω iff

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leqslant t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right), \quad \forall x_{1}, x_{2} \in \Omega \text { for } t \in[0,1] .
$$

Convex function

- Convex function: f is convex over convex set Ω iff

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leqslant t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right), \quad \forall x_{1}, x_{2} \in \Omega \text { for } t \in[0,1] .
$$

- When f is differentiable, it is convex over convex set Ω iff

$$
f(x) \geqslant f\left(x_{0}\right)+\nabla f\left(x_{0}\right)\left(x-x_{0}\right), \quad \forall x_{0}, x \in \Omega
$$

convex function

- When f is twice differentiable, it is convex over convex set Ω iff

$$
\nabla^{2} f(x) \geqslant 0, \quad \forall x_{0}, x \in \Omega
$$

Optimality conditions for convex functions

Proposition (Optimality conditions for convex functions)

Let $f: X \rightarrow \mathbb{R}$ be a convex function over the convex set X.
(a) A local minimum of f over X is also a global minimum over X. If in addition f is strictly convex, then there exists at most one global minimum of f.
(b) If f is convex and the set X is open, then $\nabla f\left(x^{\star}\right)=0$ is a necessary and sufficient condition for a vector $x \in X$ to be a global minimum of f over X.

Proof: see page 14 of $\operatorname{Ref}[1]$

- for part (a) use $f\left(\alpha \mathrm{x}^{\star}+(1-\alpha) \overline{\mathbf{x}}\right) \leqslant \alpha f\left(\mathrm{x}^{\star}\right)+(1-\alpha) \mathrm{f}(\overline{\mathrm{x}})$
- for part (b) use $\mathrm{f}(\mathrm{x}) \geqslant \mathrm{f}\left(\mathrm{x}^{\star}\right)+\nabla \mathrm{f}\left(\mathrm{x}^{\star}\right)^{\top}\left(\mathrm{x}-\mathrm{x}^{\star}\right), \forall \mathrm{x} \in \mathrm{X}$.

Numerical solvers (see Section 1.2 of Ref[1])

Iterative descent methods

- start from $x_{0} \in \mathbb{R}^{n}$ (initial guess)
- successively generate vectors x_{1}, x_{2}, \cdots such that

$$
f\left(x_{k+1}\right)<f\left(x_{k}\right), \quad k=0,1,2, \cdots
$$

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

Design factors in iterative descent algorithms:

- what direction to move: descent direction
- how far move in that direction: step size

Successive descent method

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

1st order Taylor series : $f\left(x_{k+1}\right)=f\left(x_{k}+\alpha_{k} d_{k}\right) \approx f\left(x_{k}\right)+\alpha_{k} \nabla f\left(x_{k}\right)^{\top} d_{k}$ for successive reduction: $\alpha_{k} \nabla f\left(x_{k}\right)^{\top} d_{k}<0$

If $\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \neq 0$

- $90^{\circ}<\angle\left(d_{k}, \nabla f\left(x_{k}\right)\right)<270^{\circ}: \nabla f\left(x_{k}\right)^{\top} \mathrm{d}<0$
- by appropriate choice of step size α_{k} we can achieve $f\left(x_{k+1}\right)<f\left(x_{k}\right)$

Observations above lead to a set of gradient based algorithms

Steepest descent method

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

1st order Taylor series : $f\left(x_{k+1}\right)=f\left(x_{k}+\alpha_{k} d_{k}\right) \approx f\left(x_{k}\right)+\alpha_{k} \nabla f\left(x_{k}\right)^{\top} d_{k}$ for successive reduction: $\alpha_{k} \nabla f\left(x_{k}\right)^{\top} d_{k}<0$

$$
\mathrm{d}_{\mathrm{k}}=-\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right): \quad-\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)<0, \quad \nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \neq 0
$$

Proposition $d_{k}=-\nabla f\left(x_{k}\right)$ is a descent direction, i.e., $f\left(x_{k}+\alpha_{k} d_{k}\right)<f\left(x_{k}\right)$ for all sufficiently small values of $\alpha_{k}>0$.

Steepest Descent Algorithm

- Step 0. Given x_{0}, set $k:=0$
- Step 1. $d_{k}:=-\nabla f\left(x_{k}\right)$. If $d_{k}=0$, then stop.
- Step 2. Solve $\alpha_{k}=\operatorname{argminf}\left(\chi_{k}+\alpha d_{k}\right)$ for the stepsize α_{k} (chosen by an exact or inexact linesearch)
- Step 3. Set $x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k}, k \leftarrow k+1$. Go to Step 1.

Note: from Step 2 and the fact that $d_{k}=-\nabla_{k} f\left(\chi_{k}\right)$ is a descent direction it follows that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

Steepest descent method

- Steepest descent method can have slow convergence

$$
f\left(x_{1}, x_{2}\right)=1-e^{-\left(10 x_{1}^{2}+x_{2}^{2}\right)}
$$

Rosenbrock function:
$f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$

Newton's method

$$
x_{k+1}=x_{k}+\underbrace{\alpha_{k} d_{k}}_{\Delta x_{k}}
$$

2nd order Taylor series:

$$
\mathrm{f}\left(\mathrm{x}_{\mathrm{k}+1}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}+\Delta \mathrm{x}_{\mathrm{k}}\right) \approx \mathrm{h}\left(\Delta \mathrm{x}_{\mathrm{k}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)+\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top} \Delta \mathrm{x}_{\mathrm{k}}+\frac{1}{2} \Delta \mathrm{x}_{\mathrm{k}}^{\top} \nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \Delta \mathrm{x}_{\mathrm{k}}
$$

For successive reduction: find the Δx_{k} from $\underset{\Delta x_{k}}{\operatorname{minimize}} h\left(\Delta x_{k}\right)$

$$
\begin{gathered}
\nabla h(\Delta x)=0 \Rightarrow \nabla^{2} f\left(x_{k}\right) \Delta x_{k}+\nabla f\left(x_{k}\right)=0 \Rightarrow \Delta x_{k}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \\
x_{k+1}=x_{k}-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
\end{gathered}
$$

Newton's method

- Step 0. Given x_{0}, set $k:=0$
- Step 1. $d_{k}:=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$. If $d_{k}=0$, then stop.
- Step 2. Solver $\alpha_{k}=1$
- Step 3. Set $x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k}, k \leftarrow k+1$. Go to Step 1.

Modified Newton's method

2nd order Taylor series:

$$
\begin{gathered}
f\left(x_{k+1}\right)=f\left(x_{k}+\Delta x_{k}\right) \approx h\left(\Delta x_{k}\right)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}+\Delta x_{k}^{\top} \nabla^{2} f\left(x_{k}\right) \Delta x_{k} \\
x_{k+1}=x_{k}-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
\end{gathered}
$$

Note the following:

- $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ is not necessarily guaranteed
- Algorithm can be modified to be $x_{k+1}=x_{k}-\alpha_{k}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$,
- Step 2 the should be modified to be
- Step 2. Solve $\alpha_{k}=\operatorname{argminf}\left(x_{k}-\alpha\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)\right)$ for the stepsize α_{k} (chosen by an exact or inexact linesearch)
Proposition If $H\left(x_{k}\right)=\nabla^{2} f\left(x_{k}\right)$ is a symmetric positive definite matrix, then $\left.d_{k}:=-H(x)^{-1} \nabla f\left(x_{k}\right)\right)$ is a descent direction, i.e., $f\left(x_{k}+\alpha_{k} d_{k}\right)<f\left(x_{k}\right)$ for all sufficiently small values of $\alpha_{k}>0$.
proof: for d_{k} to be a descent direction we should show that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. here: $\nabla f\left(x_{k}\right)^{\top} d_{k}=-\nabla f\left(x_{k}\right)^{\top} H(x)^{-1} \nabla f\left(x_{k}\right)$. Because $H\left(x_{k}\right)$ is positive definite, it follows that $\nabla f\left(x_{k}\right)^{\top} d_{k}=-\nabla f\left(x_{k}\right)^{\top} H(x)^{-1} \nabla f\left(x_{k}\right)<0$. Here we used the fact that if a matrix is positive definite, its inverse is also positive definite

Newton and modified Newton methods

- Newton method typically converges very fast asymptotically
- Does not exhibit the zig-zagging behavior of the steepest descent
- on the down side: Newton's method needs to compute not only the gradient, but also the Hessian, which contains $n(n+1) / 2$ second order derivatives (numerically expensive).

Example: $f\left(x_{1}, x_{2}\right)=1-e^{-\left(10 x_{1}^{2}+x_{2}^{2}\right)}$

Practical Stopping Conditions for Iterative Optimization Algorithms for Unconstrained Optimization

In iterative algorithms typically the initial point is picked randomly, or if we have a guess for the location of local minima, we pick close to them.
Stopping Criteria: The stoping condition is related to the first order optimality condition of $\nabla f(x)=0$. The followings are common practical stopping conditions for iterative unconstrained optimization algorithms. Let $\epsilon>0$:

- $\left\|f\left(x_{k}\right)\right\| \leqslant \epsilon$
- close to satisfying first order necessary condition $\nabla f(x)=0$.
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right| \leqslant \epsilon$
- Improvements in function value are saturating.
- $\left\|x_{k+1}-x_{k}\right\| \leqslant \epsilon$
- Movement between iterates has become small.
- $\frac{\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|}{\max \left\{1, f\left(x_{k}\right) \mid\right\}} \leqslant \epsilon$
- A "relative" measure -removes dependence on the scale of f.
- The max is taken to avoid dividing by small numbers.
- $\frac{\left\|x_{k+1}-x_{k}\right\|}{\max \left\{1,\left\|x_{k}\right\|\right\}} \leqslant \epsilon$
- A "relative" measure -removes dependence on the scale of $x(k)$
- The max is taken to avoid dividing by small numbers.

References

[1] Nonlinear Programming: 3rd Edition, by D. P. Bertsekas
[2] Linear and Nonlinear Programming, by D. G. Luenberger, Y. Ye

