
Lecture 17-18
Primal methods

Solmaz Kia
Mechanical and Aerospace Eng. Dept.,
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Consult: Section 2.3 of Ref[1] and Sections 12.1,12.2 and 12.4 of Ref[2]



Primal Methods for constraint 4timization
We consider the problem . . ?>7ô

. Iminf(x)
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By a primal method we mean a search method that works by
searching through the feasible region.
First Order Necessary Condition for Optimality: x is a local minimizer then

Vf(x*)TL\x ; 0, for I\x e V(x*)

. Set of first order feasible variations at x

V(x) ={d e R f Vhj,(x)Td = 0, Vg(x)Td 0, j e A(x*)}

. Active inequality constraints at x

A(x) = {j E {1, . . . , r} gj (x) = O}



Primal Methods for constraint optimization

We consider the problem

mm f(x)
g(x)O
h(x)=O

By a primal method we mean a search method that works by
searching through the feasible region.
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Advantages “

. If the process is terminated before reaching the solution, the
. . . 4-current point is feasible. V — ‘j

. It can often be guaranteed that if the sequence of points
converges, then the limit is a local constrained minimum. 7

• Most of the primal methods do not rely on special structure,
such as convexity.

Disadvantages
• Needs a feasible starting point.
• It can be computationally hard to remain in the feasible region.



Feasible Direction Methods
The idea of feasible direction methods is the same as with

) L

where dk 5 a feasible direction at xk, and ük 0.

is chosen to minimize f with the restriction that the point xk+1,
and the line segment joining xk and xk+1 be feasible.

\>

unconstrained problems:
,7)

Xk+1 Xk+kdkS

OPT: x =argmin f(x)
xR

x E X (X is the set of constraints)
for X = RU (problem becomes unconstrained) /

D RTh is a feasible
direction at x e X for OPT
if(x+ocd) Xfor

&

LXEE [O,]
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A Feasible Direction Method: Simplified Zoutendijk method
4Consider the a problem with linear constraints:

Given a feasible point Xk, let A(Xk) be the set of indices of active constraints,
aj1xk b for 1 e A(Xk).

• The other constraints assure that Xk + dk will be feasible for sufficiently
small k > 0.

minimize f(x)

u[xb, 1=1,••• ,r
S t. fr- 4

The direction vector dk is then chosen as the solution of

5r\ )Lc 52.
l minimize Vf(xk)Td
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s.t.

i e A(xk),ad0,
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bounded solution

.-1_ ir
J_/(

.,‘\
Ot,’ k

c, LII’

• The last equation (which can be converted to linear constraints) ensures a

• The objective function makes d as close to Vf(Xk) as possible.



Feasible Direction Methods

There are two major shortcomings of feasible direction methods in
this form.
. For general problems there may not exist any feasible
directions (see figure). ?‘ (‘‘

. They are also vulnerable to ,,jamming”, or ,,zigzagging”, which
we have also seen with unconstrained problems, but here it
might converge to a point that is not even a constrained local
minimum (the algorithmic map is not closed).

Feasible
set
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PRACTICAL AUGMENTED LAGRANGIAN METHODS:
BOUND-CONSTRAINED FORMULATION

minimize f(x)

h(x)=O, l<x<u

LA (x,;tk) = f(x)+
rn , rn

Akh(x)+kh(x)2

Bounded Gradient Lagrangian method

; Ik ) subject to

l<x<u

Ak+l Ak +kh(Xk)



Ak+1 Ak;

k+1 1OO;
1 iaOA

11k+1
Wk+1 l/&k+1;

(Bound-Constrained Lagrongian Method). I here is the projection operator tor boxed I
. , . . . . * . 0 inequality (check your notes on gradient

Choose an initial point x0 and initial multipliers A ; projection method for further details)
Choose convergence tolerances i4, and w;
Set Co = 10, w = 1/ , and i = if ‘;
fork = 0, 1, 2, .

ar0mate solution Xk subproble mm £A(x,Ak;) subject to I x U

IIxk (xkV1CA(xk,A’;Ck),1. <wk;

An efficient technique for
solving the nonlinear program
with bound constraints
(forfixed .t andA) is the
(nonlinear) gradient projection
method (see your notes from
lectures on primal methods)

ifllh(xk)1I 1IkNN

( * test for cwergence )
if IIh(xk ) Ii s ‘7* Xk ‘ (Xk VItA (Xk , Ak ; k )‘ 1, u) II <

stop with apprimte solution xk;
end(if)
(* update multipliers, tighten tokq.ices )
Ak+l Ak + kh(xk);

Remember that gradient projection method stops
when the point generated from Xk by the gradient
descent algorithm gets projected back on Xk

Check the stopping condition of the gradient
projection method in your notes for more details.

else

L.)k+1
Io9

Ilk-i-i = TIk/L..’k+i,
WkI1 Wk/k+1

(* increase penalty parameter, tighten tolerances

If this condition holds, the penalty parameter is not changed for
the next iteration because the current value of Pk is producing an
acceptable level of constraint violation. The Lagrange multiplier
estimates are updated according to the update formula and the
tolerances Wk and flk are tightened in advance of the next
iteration. If, on the other hand, this condition does not
hold, then we increase the penalty parameter to ensure that the
next subproblem will place more emphasis on decreasing the
constraint violations. The Lagrange multiplier estimates are not
updated in this case; the focus is on improving feasibility.

end (if)
end (for)

The constants 100, 0.1, 1 appearing here
are to some extent arbitrary;

—-—-———-—-—-—-———————-— other values can be used without
compromising theoretical convergence
properties.


