Lecture 17-18 Primal methods

Solmaz Kia
Mechanical and Aerospace Eng. Dept.,
University of California Irvine

Consult: Section 2.3 of Ref[1] and Sections 12.1,12.2 and 12.4 of Ref[2]

Primal Methods for constraint óptimization

We consider the problem

$$
\begin{aligned}
& \min f(x) \\
& \begin{array}{l}
\mathrm{g}(\mathrm{x}) \leq 0 \\
\mathrm{~h}(\mathrm{x})=0
\end{array}
\end{aligned}
$$

By a primal method we mean a search method that works by searching through the feasible region.

First Order Necessary Condition for Optimality: χ^{\star} is a local minimizer then

$$
\nabla f\left(x^{\star}\right)^{\top} \Delta x \geqslant 0, \quad \text { for } \quad \Delta x \in V\left(x^{\star}\right)
$$

- Set of first order feasible variations at χ

$$
V(x)=\left\{d \in \mathbb{R}^{n} \mid \nabla h_{i}(x)^{\top} d=0, \quad \nabla g_{j}(x)^{\top} d \leqslant 0, \quad j \in A\left(x^{\star}\right)\right\}
$$

- Active inequality constraints at x

$$
A(x)=\left\{j \in\{1, \cdots, r\} \mid g_{j}(x)=0\right\}
$$

Primal Methods for constraint optimization

We consider the problem

$$
\begin{aligned}
& \min f(x) \\
& \mathbf{g}(x) \leq 0 \\
& \mathbf{h}(x)=0
\end{aligned}
$$

By a primal method we mean a search method that works by searching through the feasible region.

Advantages

$$
\begin{aligned}
& \text { you start with. a feasib } \\
& \text { in o way that } x_{k} \in \Omega
\end{aligned}
$$

- If the process is terminated before reaching the solution, the current point is feasible.
- It can often be guaranteed that if the sequence of points converges, then the limit is a local constrained minimum.
- Most of the primal methods do not rely on special structure, such as convexity.

Disadvantages

■ Needs a feasible starting point.

- It can be computationally hard to remain in the feasible region.

Feasible Direction Methods

The idea of feasible direction methods is the same as with unconstrained problems:
divection

where \mathbf{d}_{k} is a feasible direction at \mathbf{x}_{k}, and $\alpha_{k} \geq 0$.
α_{k} is chosen to minimize f with the restriction that the point x_{k+1}, and the line segment joining x_{k} and x_{k+1} be feasible.

$$
\text { OPT: } \quad x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)
$$

for $X=\mathbb{R}^{n} \quad$ (problem becomes unconstrained)
$D \in \mathbb{R}^{n}$ is a feasible direction at $x \in X$ for OPT
if $(x+\alpha d) \in X$ for

$$
\alpha \in[0, \bar{\alpha}]
$$

$$
\begin{aligned}
& x_{k+i}=x_{k}+\alpha d_{k} \in \Omega \\
& \exists \alpha \in[\infty, \bar{\alpha}]
\end{aligned}
$$

$$
f\left(x_{k}\right) \geqslant f\left(x_{k}+\alpha_{k} d_{k}\right) \triangleq f\left(x_{k}\right)+a_{k} \underbrace{\cdots w_{k}}
$$

A Feasible Direction Method: Simplified Zoutendijk method Consider the a problem with linear constraints:
unconstrained optriziation
d_{k} : descent direction $\nabla f\left(x_{k}\right)^{\top} d_{k} \leqslant 0$

Given a feasible point x_{k}, let $\mathcal{A}\left(x_{k}\right)$ be the set of indices of active constraints, ie., $a_{i}^{\top} x_{k}=b_{i}$ for $i \in A\left(x_{k}\right)$.
The direction vector d_{k} is then chosen as the solution of
start with x_{0} in Ω $\left.3 x_{k}\right\} \in \Omega$

$$
\left\{\begin{array}{l}
\underset{d}{\operatorname{minimize}} \nabla f\left(x_{k}\right)^{\top} d \quad \text { s.t. } \\
a_{i}^{\top} d \leqslant 0, \quad i \in A(x)
\end{array}\right.
$$

$$
x_{k+1}=x_{k}+d_{k} \in \Omega, A\left(x_{k}\right)
$$

- The last equation (which can be converted to linear constraints) ensures a bounded solution.
- The other constraints assure that $x_{k}+d_{k}$ will be feasible for sufficiently small $\alpha_{k}>0$.
- The objective function makes d as close to $\nabla \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$ as possible.

Feasible Direction Methods

There are two major shortcomings of feasible direction methods in this form.

■ For general problems there may not exist any feasible directions (see figure). for example in case of noilizear equility construints.
■ They are also vulnerable to „jamming", or „zigzagging", which we have also seen with unconstrained problems, but here it might converge to a point that is not even a constrained local minimum (the algorithmic map is not closed).

The gradient projection methods:

1-a move is made along the projected negative gradient to a point y_{k+1}
2. A move is mile in the direction perpendiculter to the tangent plane at the y_{k+1} to a nearby feasible point on the working surface.
projective gradient method
consider

$$
\begin{array}{rl}
\min f(x) & \\
a_{1}^{\top} \cdot x \leqslant b_{i} & i \in J_{1}=\{1, \ldots, r\} \\
a_{i}^{\top} x=b_{i} & i \in I_{2}=\{1, \ldots, m\}
\end{array}
$$

start with $x_{0} \in \Omega,\left\{x_{k}\right\}, x_{k} \in \Omega$
At a given feasible point $x: \exists g$ active constraints $a_{i}^{\top x}=b_{i}$
$\left\{\begin{array}{c}\text { and some are inactive } \\ a_{i}{ }^{\top} x<b_{i}\end{array}\right.$

* working set: set $W(x)$ to be the set of active constraints (including equalities)
At the feasible point x we want to move in direction d (feasible direction) such that

$$
\nabla f(x)^{\top} d<0
$$

\rightarrow movement in direction d to decrease the function f
we want direction d to satisfy

$$
\begin{aligned}
& a_{i}^{\top} d=0, i \in W(x) \\
& x^{\prime}=x+d \Rightarrow a_{i}^{\top}(x+d)=b_{i} \quad i \in W(x) \\
& \Rightarrow a_{i}^{\top} b_{i}=0 \quad i \in W(x)
\end{aligned}
$$

$$
\begin{aligned}
& a_{i}{ }^{\top} x=b_{i} \quad i \in W(x) \quad\left|W\left(x^{i}\right)\right|=q \text {. } \\
& A_{g}=\left[\begin{array}{c}
a_{i}^{\top} \\
\vdots \\
a_{j}^{\top}
\end{array}\right] \Rightarrow h(x)=A_{q}^{\top} x=b \\
& \operatorname{rank}\left(A_{q}\right)=q \\
& b=\left[\begin{array}{l}
b_{i} \\
\vdots \\
j \\
j
\end{array}\right] \quad \uparrow^{\nabla h(x)} \rightarrow-\nabla f(x)^{-g)^{(1)}} \\
& \text { } \operatorname{sh(r)})^{\top} y=0 \\
& M=\left\{y \in R^{n} \backslash A_{q} y=0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla h(x)=\left\{\nabla h_{i}(x)\right\}_{i \in W(x)} \quad \sum_{i \in W(x)} \nabla h_{i}(x) \lambda_{i} \\
& \nabla f\left(x_{k}\right)=g\left(x_{k}\right) \\
& -g\left(x_{k}\right)=d_{k}+A_{g}^{\top} \lambda_{k} \\
& A_{g} d_{k}=0 \longleftarrow \text { Rom } d_{k} \in M \text { (tangent space) } \\
& -A_{q} g\left(x_{k}\right)=+A_{q} d_{k}+A_{q} A_{q}^{\top} \lambda_{k} \\
& \text { - } \vec{b}=\vec{a} \| \vec{a} \cos \theta \\
& \xrightarrow[\rho_{\operatorname{loj}(b)}^{a}]{a} a \\
& \begin{array}{r}
\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\left(\frac{\vec{a}}{|\vec{a}|}\right) \\
=\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}
\end{array} \\
& \lambda_{k}=-\underbrace{\left(A_{q} A_{q}^{\top}\right)^{-1} A_{q} g_{k}}_{\text {the inverse exists because }} \quad \begin{array}{l}
\operatorname{rank}\left(A_{q}\right)=q \quad A_{q} \in R^{q \times n}
\end{array} \\
& d_{k}=-\underbrace{\left[I-A_{g}^{\top}\left(A_{q} A_{q}^{\top}\right)^{-1} A_{q}\right]} g_{k}=-P_{k} g_{k}
\end{aligned}
$$

* d_{k} is a descent direction because it satisfies

$$
\nabla f\left(x_{k}\right)^{\top} d_{k} \leqslant 0 \quad \text { or } \quad g\left(x_{k}\right)^{\top} d_{k} \leqslant 0
$$

proof

$$
\begin{aligned}
g\left(x_{k}\right)^{\top} d_{k}= & -\left(d_{k}+A_{q}^{\top} \lambda_{k}\right)^{\top} d_{k}= \\
& -d_{k}^{\top} d_{k}+\lambda_{k}^{\top} A_{0}^{T} d_{k}=-d_{k}^{\top} d_{k} \leqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& y_{k+1}=x_{k}+\alpha_{k} d_{k} \\
& \text { with a }
\end{aligned}
$$

 of α_{k}, y_{k+1}

$$
\begin{aligned}
& \text { can be on } \\
& \text { che wo king } \\
& \text { thenstaint }
\end{aligned}
$$

constraint
aet
$r_{\text {boundary }}^{2}$
The Algorithm
1 . Start with x_{0} feasible; $x_{0} \in \Omega$
2. Find $W\left(x_{k}\right)$ and form Aq
3. Calculate $P=I-A_{q}^{\top}\left(A_{q} A_{q}^{\top}\right)^{-1} A_{q}$ and

$$
d_{k}=-P g\left(x_{k}\right)
$$

4. If $d \neq 0$, find α_{1} and α_{2} achieving, respecticly

$$
\begin{aligned}
& \neq 0 \text {, find } \alpha_{1} \text { argmax }\left\{\alpha: x+\alpha d_{k} \text { is feasible }\right\} \\
& \alpha_{1}=\sin \text { wo working set } \\
& \left.\alpha_{2}=\arg \min f_{c} x+\alpha d_{k}\right) \\
& \alpha \in\left[0, \alpha_{1}\right]
\end{aligned}
$$

set x_{k} to $x_{k}+\alpha_{2} d_{k}$ and go to step 2 . (see next page)
is If $d_{k}=0$; Compute $\lambda_{k}=-\left(A_{q} A_{q}^{\top}\right)^{-1} A_{q} g_{k}$
a) If $\left(\lambda_{k}\right)_{j} \geqslant 0$ for all j corresponding to active inequality constraints in $W\left(x_{k}\right)$ stop; x_{k} satisfies the $k K T$ condition.
(b) otherwise delete the row corresponding to the inequality Constraint with most negative $\left(\lambda_{k}\right)_{i}$ from Ag and from $W\left(x_{k}\right)$, repeat from ster (2) with the new Ag and $W_{\left(x_{k}\right)}$

If

$$
\begin{array}{r}
d_{k}=0 \quad-g_{k}=d_{k}+A_{\frac{j}{\top}} \lambda_{k} \Longrightarrow \\
-d_{k}=g_{k}+A_{q}^{\top} \lambda_{k}=0
\end{array}
$$

potentially you KKT condition if

$$
\text { KKT condition if } \lambda_{k}=-\left(A_{q} A_{q}^{\top}\right)^{-1} A_{q} g_{k}
$$

are nonnegative if all the $\left(\lambda_{k}\right)_{i}$ corresponding to the in equality constraints are nonnegatione ($\geqslant 0$)

$$
x_{k+1}=x_{k} \text { is a stationary point }
$$

if one or more of $\left(\lambda_{k}\right)_{i}$ corresponding to the in equality constraints are negative then drop the inequality constraint corresponding to the most negative $\left(\lambda_{k}\right)_{i}$ (for inequalities) form the new $W(x)$ and repeat the process.

* gradient projection (Projective gradient method) (non-linear constraints)
$\min f(x)$

For notational simplicity Lets lump all active inequality constraints in $h\left(x_{k}\right)=0$ assumption x_{k} is regular we choose d_{k} as projection of $-\nabla f\left(x_{k}\right)$ on $\left[\begin{array}{l}\left.\left.g_{i}\right]_{i \in A\left(x_{k}\right)}\right]\end{array}\right.$ the tangent plane M :

$$
\begin{aligned}
& P_{k}=I-\nabla h\left(x_{k}\right)^{\top}\left[\nabla h\left(x_{k}\right) \nabla h(n)\right]^{\top} \nabla h\left(x_{k}\right) \\
& d_{k}=-P_{k} g\left(x_{k}\right)
\end{aligned}
$$

$$
y^{*}=y+\nabla h\left(x_{k}\right) \omega
$$

II
\rightarrow both equality and active
$h\left(y^{*}\right)=0$

$$
\begin{aligned}
h(y+\nabla h(x) \omega) & \simeq h(y)+\nabla h\left(x_{k}\right)^{\top} \nabla h\left(x_{k}\right) \omega \simeq 0 \\
\omega & =-\left(\nabla h\left(x_{k}\right)^{\top} \nabla h\left(x_{k}\right)\right)^{-1} h(y)
\end{aligned}
$$

because are used the first order approximation

$$
y^{*}=y-\nabla h\left(x_{k}\right)\left(h\left(x_{k}\right)^{\top} \nabla h\left(x_{k}\right)\right)^{-1} h(y)
$$

is not going to necessarily saris $f y\left(y^{*} y^{*}\right)=0$
we set $y=y^{*}$ and repeat the process until

$$
\left\|h\left(y^{*}\right)\right\| \leqslant \varepsilon
$$

the choice of y_{k+1} should be sate guarded.

Gradient Projection Method (when Ω is convex)
The basic idea in gradient projection methods is that first we use ideas from what we learned in vaconstrained optimization about descent direction to come up with a direction to more that increases the cost. If, this direction ends up at a point the mere in outside the feasible region, the we project back to the feasible region and use this projected point to come wo with a descent direction in the feasible zone.
There are many variations of gradient projection meth ed. In the following we discuss a method to solve min $f(x)$ st.

$$
x \in \Omega
$$

where Ω is the feasible set of the optimization problem Here we assume that Ω is convex. (for mona details check Section 2,3 of $\operatorname{Ref}[1]$).

* Gradient Projection method:
$\min f(x)$

$$
x \in \Omega_{\uparrow}
$$

Convex
check section 2.3 of Ref [1]
1 start with x_{0} inside the feasible set Ω

unconstrained
2- Use the Gradient descent method to obtain
stepsize of unconstrained gradient descent

$$
\bar{x}=\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}
$$

$d_{k}=\bar{x}_{k}-x_{k}$ is a feasible direction

$$
\begin{aligned}
& x_{k+1}=x_{k}+\alpha_{k} d_{k} \\
& x_{k+1}=x_{k}+\alpha_{k}\left(\bar{x}_{k}-x_{k}\right) \\
& \alpha_{k} \in[0,1] \\
& \alpha_{k}=\operatorname{argmin} f\left(x_{k}+\alpha d_{k}\right) \\
& \alpha \in[0,1]
\end{aligned}
$$

x_{k+1} is gauranted to be in Ω
(because Ω is Convex)

Here, $[\cdot]^{t}$ denotes projection on the set Ω $\alpha_{k} \in(0, \Pi$ is a stepsize.

To obtain the vector \bar{x}_{k}, we take a step $-s_{k} T\left(x_{k}\right)$ along the negative gradient, as in stegest descent. We then project the result $x_{k}-s_{k} \nabla f\left(n_{k}\right)$ on Ω, thereby obtaining the feasible vector \bar{x}_{k}. Finally, we take a step a bong the feasible direction $\left(\bar{x}_{k}-x_{k}\right)$ using the stepsize α_{k}.

* Note here that since Ω is a close convex set, thesefo $\left(\bar{x}_{k}-x_{k}\right) \in \Omega$.
* Note that any $\alpha_{k}>1$ will result in $x_{k+1} \notin \Omega$.

Next me study sone of the properties of th gradient projection method introduced above, Our study relics on properties of the projection operation discussed in the Projection Theorem below.
The projection operator maps any point $y \notin \Omega$ to the closest point on Ω.

Projection Theorem
Let Ω be a nonempty, closed and coorrex subset of \mathbb{R}^{n}. Then for any $y \in \mathbb{R}^{n}$, there exists a unique $x \in \Omega$ denoted by $[y]^{+}$such that $[y]^{+}$solves the minimization problem $\min \| y$-x\|
 $x \in \Omega$
$[y]^{+}$is called the projection of y on Ω. The projection operator has the following properties.
(a) $\left(y-[y]^{+}\right)^{\top}\left(x-[y]^{+}\right) \leqslant 0$ for $\forall x \in \Omega$
(b) Let $\psi: R^{n} \rightarrow \Omega_{\text {bede dined by }} \psi(y)=[y]$. Then ψ is continuous and

$$
\left\|[\omega]^{+}-[v]^{+}\right\| \leqslant\|\omega-v\| \text { for } \omega, v \in \mathbb{R}^{n} \text {. }
$$

(c) If Ω is a subspace in $\mathbb{R}^{n}, \bar{y}=[y]^{+}$if and only y $(y-\bar{y}) \perp \Omega$.

$$
* * * *
$$

)

In the gradient projection method
)

$$
\begin{aligned}
& x_{k+1}=x_{k}+\alpha_{k} d_{k} \\
& d_{k}=\left(\bar{x}_{k}-x_{k}\right) \\
& \bar{x}_{k}=\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}
\end{aligned}
$$

Question: Is the direction of the gradient projection method a descent direction?
We need to show $\nabla f\left(x_{k}\right)^{\top} d_{k} \leqslant 0$ for $d_{k} \neq 0$

$$
\begin{equation*}
\nabla f\left(x_{k}\right)^{\circ}\left(\bar{x}_{k}-x_{k}\right) \leqslant 0 \tag{1}
\end{equation*}
$$

We use property (a) of the projection theorem:
) $x_{k} \in \Omega \quad x_{k}-s_{k} \nabla f\left(w_{k}\right.$ is projected to Ω to obtain $\left.\bar{x}_{k}\right)$

$$
\begin{aligned}
& \quad\left(\left(x_{k}-s_{k} \nabla f\left(x_{k}\right)\right)-\bar{x}_{k}\right)^{\top}\left(x_{k}-\bar{x}_{k}\right) \leqslant 0 \\
& \quad(y-[y] T)\left(x-\left[y J^{\top}\right) \leqslant 0\right. \\
& \left(\left(x_{k}-s_{k} \nabla f\left(x_{k}\right)\right)-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{\top}\right)^{\top}\left(x_{k}-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}\right) \leqslant 0 \\
& \quad\left(-s_{k} \nabla f\left(x_{k}\right)+\left(x_{k}-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{\top}\right)\right)^{\top}\left(x_{k}-\left[x_{k}-s_{k} \nabla f\left(n_{k}\right)\right]^{+}\right) \leqslant s \\
& -s_{k} \nabla f\left(x_{k}\right)^{\top}\left(x_{k}-\bar{x}_{k}\right)+\left(x_{k}-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}\right)^{\top}\left(x_{k}-\left[x_{k}-s_{k} \nabla+\left(x_{k}\right)\right]^{\top}\right) \leqslant \\
& s_{k} \nabla f\left(x_{k}\right)^{\top}\left(\bar{x}_{k}-x_{k}\right) \leqslant-\left\|\bar{x}_{k}-x_{k}\right\|^{2}
\end{aligned}
$$

then for and $\bar{x}_{k} \neq x_{k}$ we have (1).

$$
\begin{aligned}
& (\underbrace{x_{k}-s_{k} \nabla f\left(x_{k}\right)}_{y}-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+})^{\top}\left(x_{k}-\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+} k^{+\quad}\right. \\
& -s_{k} \nabla f_{\left(x_{k}\right)^{\top}}^{\top}(x_{k}-\underbrace{\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}}_{\bar{x}})+\| x_{k}-\underbrace{\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right.}_{\bar{x}}]^{+} \|^{2} \\
& -s_{k} \nabla f\left(x_{k}\right) \underbrace{\left.x_{k}-\bar{x}\right)}_{-d_{k}} \leqslant-\left\|x_{k}-\bar{x}\right\|^{2} \\
& s_{k} \nabla f\left(x_{k}\right)^{\top} d_{k} \leqslant-\left\|x_{k}-\bar{x}\right\|^{2} \\
& \| \leqslant \nabla \leqslant\left(x_{k}\right) d_{k} \leqslant 0
\end{aligned}
$$

no d_{k} is a descent direction

$$
\exists \alpha_{k} \in[0,1] \quad f_{\left(x_{k+1}\right)} \leqslant f\left(x_{k}\right)
$$

Note that we have $x^{*}=\left[x^{*}-s \nabla f\left(x^{*}\right)\right]^{+}$for all $s>0$. fond only if x^{*} is stationary point. Thus, the gradient projection stops if and only of it encounters a stationary point Lets say at stop k we have $\left[x_{k}-s_{k} \nabla f\left(n_{k}\right)\right]^{+}=x_{k}$ then using property cal of gradient projection we can write

$$
\begin{aligned}
& \text { te } \quad\left(y-\left(y y^{+}\right)^{\top}(x\right. \\
& \left.\qquad\left(x_{k}-s_{k} \nabla f\left(n_{k}\right)\right)-\left[x_{k}-s_{k} \nabla f\left(u_{k}\right)\right]^{+}\right)^{\top}\left(x-\left[x_{k}-s_{k}+f\left(n_{k}\right)\right]^{\top},\right. \\
& \leqslant 0
\end{aligned}
$$

for an g $x \in \Omega \quad\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}=x_{k}$

$$
\begin{aligned}
& \left(x_{k}-s_{k} \nabla f\left(n_{k}\right)-x_{k}\right)^{\top}\left(x-x_{k}\right) \leqslant 0 \\
& -s_{k} \nabla f\left(x_{k}\right)^{\top}\left(x-x_{k}\right) \leqslant 0 \Rightarrow \\
& \therefore \nabla f\left(n_{k}\right)^{\top}\left(x-x_{k}\right) \geqslant 0 \quad \forall x \in \Omega
\end{aligned}
$$

)
tarecall. the first order necessary condition for optimality.

Examples of projection operator

$$
\begin{aligned}
& \left\{\begin{array}{l}
\min _{x \in R^{n}} f(x) \text { set. } \\
\underline{x}_{i} \leqslant x_{i} \leqslant \bar{x}_{i} \longleftarrow \text { box inequality }
\end{array}\right. \\
& y_{k} \Rightarrow\left[y_{k}\right]^{+}= \begin{cases}\left(y_{k}\right)_{i} & \underline{x}_{i} \leqslant\left(y_{k}\right)_{i} \leqslant \bar{x}_{i} \\
\underline{x}_{i} & \left(y_{k}\right)_{i} \leqslant \underline{x}_{i} \\
\bar{x}_{i} & \left(y_{k}\right)_{i}>\bar{x}_{i}\end{cases} \\
& \left.\begin{array}{c}
\underline{x}_{1} \\
\\
\\
y_{x}=\left[\begin{array}{c}
\left(y_{k}\right) \\
\vdots \\
\underline{x}_{n}
\end{array}\right] \leqslant \bar{x}_{1} \\
\left(y_{k}\right)_{n}
\end{array}\right] \leqslant \bar{x}_{n} \\
& \underline{x}_{2} \ll x_{22}\left\langle\bar{x}_{2}\right.
\end{aligned}
$$

Examples.
consider min $f(x)$

$$
\begin{aligned}
& a^{\top} x=b \in R \\
& y_{k}=x_{k}-s_{k} \nabla f\left(x_{k}\right) \\
& {\left[y_{k}\right]^{+}=\bar{x}_{k}=y_{k}-\omega a} \\
& \bar{x}_{k} \in \Omega \Rightarrow a^{\top}\left(y_{k}-w a\right)=b \Rightarrow a^{\top} y_{k}-w a^{\top} a=b \Rightarrow \\
& \omega=\frac{b-a^{\top} y_{k}}{a^{\top} a}=-\frac{b-a^{\top}\left(x_{k}-{ }^{-} k_{k}+f\left(n_{k}\right)\right.}{a^{\top} a} \\
& \omega=-\frac{s_{k} a^{\top} \nabla f\left(x_{k}\right)}{a^{\top} a} \\
& \Rightarrow\left[y_{k}\right]^{+}=\bar{x}_{k}=x_{k}-s_{k} \nabla f\left(x_{k}\right)+\frac{s_{k} a^{\top} \nabla f\left(x_{k}\right) a}{a^{\top} a}= \\
& x_{k}-s_{k}\left(I-\frac{a^{\top} a}{a^{\top} a}\right) \nabla f\left(x_{k}\right)= \\
& x_{k}-S_{k}\left(I-a^{\top}\left(a^{\top} a\right)^{-1} a\right) \nabla f\left(r_{k}\right)
\end{aligned}
$$

Recall that projection of $y_{k}-x_{k}$ on to $a^{\top} x=b$ is

$$
\begin{aligned}
& \bar{x}_{k}-x_{k}=\left(I-a^{\top}\left(a^{\top} a\right)^{-1} a\right)\left(y_{k}-x_{k}\right) \\
& {\left[y_{k}\right]^{\top}=\bar{x}_{k}=x_{k}+\left(I-a^{\top}\left(a^{\top} a\right)^{-1} a\right)\left(-s_{k} \nabla f\left(x_{k}\right)\right)} \\
& \\
& =x_{k}-s_{k}\left(I-a^{\top}\left(a^{\top} a\right)^{-1} a\right) \nabla f\left(x_{k}\right)
\end{aligned}
$$

Examples min $f(x)$

$$
A x=b \in R^{m} \quad \operatorname{rank}(A)=m
$$

$\operatorname{sh}(\gamma, k)$
projection of $y_{k}-x_{k}$ using
projection matrix (see the earlier derivation of

$$
P=\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right)
$$

is

$$
\begin{gathered}
\bar{x}_{k}=y_{k}-A^{\top} \omega \rightarrow \\
\bar{x}_{k}=x_{k}-S_{k}\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) \nabla+\left(a_{k}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \bar{x}_{k}-x_{k}=P\left(y_{k}-x_{k}\right) \\
& \bar{x}_{k}-x_{k}=\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right)\left(y_{k}-x_{k}\right) \\
& \bar{x}_{k}=x_{k}-s_{k}\left(I-A^{\top}(A\right. \\
& \bar{x}_{k}+\left(J-A^{\top}\left(A A^{\top}\right)^{-1} A\right)\left(-s_{k} \nabla f\left(x_{k}\right)\right) \\
& \bar{x}_{k}=\left[y_{k}\right]^{+}=x_{k} s_{k}\left(J-A^{\top}\left(A A^{\top}\right)^{-1} A\right) \nabla f\left(x_{k}\right)
\end{aligned}
$$

Gradient Projection Algorithm:

$$
\min f(x)
$$

$$
x \in \Omega
$$

1- Initialize with $x_{0} \in \Omega$

$$
\begin{aligned}
& \Omega \\
& \{A x=b \quad\{A x \leqslant b
\end{aligned} \begin{aligned}
& \Omega \\
& \left\{\begin{array}{l}
A x=b \\
\underset{\uparrow}{g}(x) \leqslant 0
\end{array}\right.
\end{aligned}
$$

\uparrow gives
2. Implement one step of gradient descent for unconstrained optimization

$$
y_{k}=x_{k}-s_{k} \nabla t e x_{k 1}
$$

* $\bar{x}_{k}=\left[y_{k}\right]^{p}$ where $[\cdot]^{+}$denotes the projectionouto Ω operator
* stop if $\bar{x}_{k}=x_{k}=\left[x_{k}-s_{k} \nabla f\left(x_{k}\right)\right]^{+}$; otherewise

$$
\begin{aligned}
& * x_{k+1}=x_{k}+\alpha_{k}\left(\bar{x}_{k}-x_{k}\right) \\
& \alpha_{k}=\operatorname{argmis} f\left(x_{k}+\alpha d_{k}\right) ; d_{k}=\bar{x}_{k}-x_{k} \\
& \alpha \in[0,1]
\end{aligned}
$$

go to ster 2.

PRACTICAL AUGMENTED LAGRANGIAN METHODS: BOUND-CONSTRAINED FORMULATION

$$
\begin{gathered}
\begin{array}{c}
\text { minimize } \begin{array}{l}
f(x) \\
h(x)=0, \quad l<x<u
\end{array} \\
L_{A}\left(x, \lambda^{k} ; C_{k}\right)=f(x)+\sum_{i=1}^{m} \lambda_{i}^{k} h_{i}(x)+\frac{C_{k}}{2} \sum_{i=1}^{m} h_{i}(x)^{2} \\
\text { Bounded Gradient Lagrangian method }
\end{array} \\
\left\{\begin{array}{c}
x_{k} \leftarrow \operatorname{argmin} L_{A}\left(x, \lambda^{k} ; \mu_{k}\right) \text { subject to } \\
l<x<u
\end{array}\right. \\
\lambda_{i}^{k+1}=\lambda_{i}^{k}+ধ_{k} h_{i}\left(x_{k}\right) \\
C_{k+1}>\varphi_{k}>0
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& h(x)=0, \quad l<x<u
\end{aligned}
$$

(Bound-Constrained Lagrangian Method).
Choose an initial point x_{0} and initial multipliers λ^{0}; Choose convergence tolerances η_{*} and ω_{*}; Set $\mathcal{C}_{0}=10, \omega_{0}=1 / \mathcal{C}_{0}$, and $\eta_{0}=1 / C_{0}^{0.1}$; for $k=0,1,2, \ldots$

Find an approximate solution x_{k} of the subproblem $\min \mathcal{L}_{A}\left(x, \lambda_{;} ; \mathcal{C}_{k}\right) \quad$ subject to $l \leq x \leq u$ such that
P here is the projection operator for boxed inequality (check your notes on gradient projection method for further details)

An efficient technique for solving the nonlinear program with bound constraints (for fixed μ and λ) is the (nonlinear) gradient projection method (see your notes from lectures on primal methods)

$$
\left\|x_{k}-P\left(x_{k}-\nabla_{x} \mathcal{L}_{A}\left(x_{k}, \lambda^{k} ; C_{k}\right), l, \pi\right)\right\| \leq \omega_{k} ;
$$

$$
\text { if }\left\|\mathrm{h}\left(x_{k}\right)\right\| \leq \eta_{\mathbb{N}}
$$

(* test for convergence*)

$$
\text { if }\left\|\mathrm{h}\left(x_{k}\right)\right\| \leq \eta_{*} \text { and }\left\|x_{k}-P\left(x_{k}-\nabla_{x} \mathcal{L}_{A}\left(x_{k}, \lambda^{k} ; \mathcal{C}_{k}\right), l, u\right)\right\| \leq \omega_{*}
$$ stop with approximate solution x_{k};

end (if)
(* update multipliers, tighten tolerances *)
$\lambda^{k+1}=\lambda^{k}+c_{k} \mathrm{~h}\left(x_{k}\right)$;
$\hat{c}_{k+1}=\varepsilon_{k} ;$
$\eta_{k+1}=\eta_{k} / \mathbb{C}_{k+1}^{0.9} ;$
$\omega_{k+1}=\omega_{k} / C_{k+1} ;$
else
(* increase penalty parameter, tighten tolerances *
$\lambda^{k+1}=\lambda^{k}$;
$6_{k+1}=1006_{k} ;$
$\eta_{k+1}=1 / ⿷_{k+1}^{0.1}$;
$\omega_{k+1}=1 / \mathbb{Q}_{k+1} ;$
end (if)
end (for)

If this condition holds, the penalty parameter is not changed for the next iteration because the current value of μ_{k} is producing an acceptable level of constraint violation. The Lagrange multiplier estimates are updated according to the update formula and the tolerances ω_{k} and η_{k} are tightened in advance of the next iteration. If, on the other hand, this condition does not hold, then we increase the penalty parameter to ensure that the next subproblem will place more emphasis on decreasing the constraint violations. The Lagrange multiplier estimates are not updated in this case; the focus is on improving feasibility.

> The constants 100, 0.1, 1 appearing here are to some extent arbitrary; other values can be used without compromising theoretical convergence properties.

