Optimization Method Solmaz Kia

Mechanical and Aerospace Eng. Dept., University of California Irvine

Lecture 14

Penalty Function Method

Solution methods for constrained optimization

- Idea: Seek the solution by replacing the original constrained problem by a sequence of unconstrained sub-problems
- Penalty method
- Barrier method
- Augmented Lagrangian method

Quadratic Penalty Method

Motivation:

- the original objective of the constrained optimization problem, plus
- one additional term for each constraint, which is positive when the current point x violates that constraint and zero otherwise.

Most approaches define a sequence of such penalty functions, in which the penalty terms for the constraint violations are multiplied by a positive coefficient. By making this coefficient larger, we penalize constraint violations more severely, thereby forcing the minimizer of the penalty function closer to the feasible region for the constrained problem. The simplest penalty function of this type is the quadratic penalty function, in which the penalty terms are the squares of the constraint violations.

Penalty Method

$$
\begin{gather*}
\text { Minimize } \tag{1}\\
f(x) \text { subject to } \\
x \in \Omega
\end{gather*}
$$

The idea of a penalty function method:
replace problem (1) by an unconstrained problem of the form

Minimize $f(x)+c P(x)$
where c is a positive constant (penalty weight) and P is a function on R^{n} satisfying: (i) P is continuous, (ii) $P(x)>0$ for all $x \in R^{n} / \Omega$, and (iii) $P(x)=0$ if and only if $x \in \Omega$.

Quadratic Penalty Method

minimize $f(x)$	subject to
$\mathrm{h}_{\mathrm{i}}(x)=0$,	$\mathrm{i}=1, \ldots, \mathrm{~m}$
$g_{\mathrm{j}}(x) \leq 0$,	$\mathrm{j}=1, \ldots, \mathrm{r}$

$$
\text { minimize } f(x)+\underbrace{\frac{\mathrm{c}}{2} \sum_{i=1}^{m} \mathrm{~h}_{\mathrm{i}}(x)^{2}+\frac{\mathrm{c}}{2} \sum_{j=1}^{r}\left(\max \left\{0, g_{j}(x)\right\}\right)^{2}}_{\mathrm{cP}(\mathrm{x})}
$$

Consider

$$
\begin{equation*}
\min x_{1}+x_{2} \quad \text { subject to } x_{1}^{2}+x_{2}^{2}-2=0 \tag{1}
\end{equation*}
$$

for which the solution is $(-1,-1)^{T}$ and the quadratic penalty function is

$$
\begin{equation*}
Q(x ; \mathrm{c})=x_{1}+x_{2}+\frac{\mathrm{c}}{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2} . \tag{2}
\end{equation*}
$$

We plot the contours of this function in Figures 2 and 3 . In Figure 2 we have $\mathrm{c}=1$, and we observe a minimizer of Q near the point $(-1.1,-1.1)^{T}$. (There is also a local maximizer near $x=(0.3,0.3)^{T}$.) In Figure 3 we have $\mathrm{c}=10$, so points that do not lie on the feasible circle defined by $x_{1}^{2}+x_{2}^{2}=2$ suffer a much greater penalty than in the first figure-the "trough" of low values of Q is clearly evident. The minimizer in this figure is much closer to the solution $(-1,-1)^{T}$ of the problem (1). A local maximum lies near $(0,0)^{T}$, and Q goes rapidly to ∞ outside the circle $x_{1}^{2}+x_{2}^{2}=2$.
$\min x_{1}+x_{2} \quad$ subject to $x_{1}^{2}+x_{2}^{2}-2=0$,

Figure 1

Figure 2

Figure 3

Penalty Method

The procedure for solving problem (1) by the penalty function method:

- Let $\left\{c_{k}\right\}, k=1,2, \ldots$, be a sequence tending to infinity such that for each $k, c_{k}>0$, and $c_{k+1}>c_{k}$.
- Define the function

$$
Q(x ; c)=f(x)+c P(x)
$$

- For each k solve the problem

Minimize $Q\left(x ; c_{k}\right)$
obtaining a solution c_{k}.

Convergence Guarantees of the Quadratic Penalty Method

Let \bar{x} be the global minimizer of minimize $f(x)$ subject to
$\mathrm{h}_{\mathrm{i}}(x)=0, \quad \mathrm{i}=1, \ldots, \mathrm{~m}$
Suppose that each x_{k} is the exact global minimizer of $Q\left(x ; \mathrm{c}_{k}\right)=f(x)+\frac{\mathrm{c}_{k}}{2} \sum_{i=1}^{m} \mathrm{~h}_{\mathrm{i}}(x)^{2}$
for positive and monotonically increasing sequence of $\left\{\mathrm{c}_{k}\right\}$ where $\mathrm{c}_{k} \uparrow \infty$.
Then every limit point x^{*} of the sequence $\left\{x_{k}\right\}$ is a global solution of the constrained optimization problem (3).

Theorem
consider
min $f(x)$ s.t.

$$
h_{i}(x)=0 \quad i=1, \ldots, m
$$

* Let x^{+}be the global minimizer
consider the unconstrained pernliged form

$$
Q\left(x, c_{k}\right)=f(x)+\frac{c_{k}}{2} \sum_{i=1}^{m} h_{i}(x)^{2} \quad c_{k}>0
$$

suppose that each x_{k} is the exact global minimizer of $Q\left(x, c_{k}\right)$, and that $c_{k} \rightarrow \infty$. Then ever g limit point \bar{x} of sequence $\left\{x_{k}\right\}$ is a global solution of the problem *
proof

$$
x_{k}=\operatorname{argmin} Q\left(x, c_{k}\right) \Rightarrow\left\{x_{k}\right\} \rightarrow \bar{x}=x^{k}
$$

x^{*} is a global minimizer of $(*)$

$$
f\left(x^{*}\right) \leqslant f(x) \quad x \in \Omega=\left\{x \in R^{n} \left\lvert\, \begin{array}{l}
h_{i}(x)=0 \\
i=1, \ldots, m
\end{array}\right.\right\}
$$

x_{k} is a global minimizer of $Q\left(x, c_{k}\right)$

$$
\begin{gathered}
Q\left(x_{k}, c_{k}\right) \leqslant Q\left(x^{*}, c_{k}\right) \\
f\left(x_{k}\right)+\frac{c_{k}}{2} \sum_{i=1}^{m} h_{i}\left(x_{k}\right)^{2} \leqslant f\left(x^{*}\right)+\frac{c_{k}}{2} \sum_{i=1}^{m} h /\left(x^{*}\right) \\
\sum_{i=1}^{m} h_{i}\left(x_{k}\right)^{2} \leqslant \frac{2}{c_{k}}\left(f\left(x^{*}\right)-f\left(x_{k}\right)\right) \\
c_{k} \rightarrow \infty \Rightarrow \sum_{i=1}^{m} h_{i}\left(x_{k}\right)^{2} \leqslant 0 \Rightarrow h_{i}(\bar{x})=0 \\
\left\langle x_{0}\right\} \rightarrow \bar{x} \quad i=1, \ldots m
\end{gathered}
$$

$$
\begin{aligned}
& C_{k} \rightarrow^{\infty}(* *) \downarrow \\
& f(\bar{x})+\frac{c_{k}}{2} \sum h_{1}(\bar{x})^{2} \leqslant f\left(x^{+}\right) \\
& \left\{\begin{array}{ll}
f(\bar{x}) \leqslant f\left(x^{*}\right) \\
h_{i}(\bar{x})=0 \quad i=1, \ldots, m
\end{array} \quad \Rightarrow \quad \bar{x}\right. \text { is a } \\
& \bar{x} \in \Omega \\
& \text { of the construint }
\end{aligned}
$$ optimijation problem

ALGORITHMIC FRAMEWORK

A general framework for algorithms based on the quadratic penalty function can be specified as follows.
(Quadratic Penalty Method).
Given $\mathrm{C}_{0}>0$, a nonnegative sequence $\left\{\tau_{k}\right\}$ with $\tau_{k} \rightarrow 0$, and a starting point x_{0}^{s}; for $k=0,1,2, \ldots$

Find an approximate minimizer x_{k} of $Q\left(\cdot ; \mathrm{c}_{k}\right)$, starting at x_{k}^{s}, and terminating when $\left\|\nabla_{x} Q\left(x ; \mathrm{c}_{k}\right)\right\| \leq \tau_{k}$;
if final convergence test satisfied stop with approximate solution x_{k};
end (if)
Choose new penalty parameter $\mathrm{c}_{k+1}>\mathrm{c}_{k}$;
Choose new starting point x_{k+1}^{s};
end (for)
The starting point $x^{s}{ }_{k+1}$ usually is selected to be x_{k}

Convergence Guarantees of the Practical Quadratic Penalty Method

Theorem- Suppose that the tolerances $\left\{\tau_{k}\right\}$ and penalty parameters $\left\{\mathrm{c}_{k}\right\}$ satisfy $\tau_{k} \rightarrow 0$ and $\mathrm{c}_{k} \uparrow \infty$. Then if a limit point x^{*} of the sequence $\left\{x_{k}\right\}$ is infeasible, it is a stationary point of the function $\|h(x)\|^{2}$. On the other hand, if a limit point x^{*} is feasible and the constraint gradients $\nabla h_{i}(x)$ are linearly independent, then x^{*} is a KKT point for the problem

$$
\begin{cases}\operatorname{minimize} f(x) & \text { subject to } \\ \mathrm{h}_{\mathrm{i}}(x)=0, & \mathrm{i}=1, \ldots, \mathrm{~m}\end{cases}
$$

For such points, we have for any infinite subsequence K such that $\lim _{k \in K} x_{k}=x^{*}$ that

$$
\lim _{k \in K} \mathrm{c}_{k} h_{i}\left(x_{k}\right)=\lambda_{i}^{*} \quad i=1, \ldots, m
$$

where λ_{i}^{*} is the multiplier vector that satisfies the KKT conditions (first order necessery conditions for optimality) for the equality constrained problem.

Exact Penalty functions

It is possible to construct penalty functions that are exact in the sense that

- the solution of the penalty problem yields the exact solution to the original problem for a finite value of the penalty parameter.
- With these functions it is not necessary to solve an infinite sequence of penalty problems to obtain the correct solution.
- Difficulty: these penalty functions are nondifferentiable.

Exact Penalty functions

minimize $f(x)$	subject to
$\mathrm{h}_{\mathrm{i}}(x)=0$,	$\mathrm{i}=1, \ldots, \mathrm{~m}$
$g_{\mathrm{j}}(x) \leq 0$,	$\mathrm{j}=1, \ldots, \mathrm{r}$

Here, the solution of the penalty problem yields the exact solution to the original problem for a finite value of the penalty parameter c.

Exact penalty function theorem: Suppose the point x^{*} satisfies the secand-order sufficiency conditions for a local minimum of the constant problem. Let λ and μ be corresponding Lagrange multiplier rectors then for

$$
c \geqslant \sum^{\operatorname{ma}^{x}}\left(\operatorname{rax}\left\{\left|\lambda_{i}\right|\right\}_{i=1}^{m}, \max \left\{j_{j}^{\mu}\right\}_{j=1}^{N}\right)
$$$x^{*}$ is also a local minimum of the absolute-value penalty objective is $f(x)+c f(x)$

Example $\min 2 x^{2}+2 x y+y^{2}-2 y / \min y^{2}-2 y$

$x^{*}=0, y^{*}=1$,

$$
\begin{aligned}
& \text { * } Q(x, c)=2 x^{2}+2 x y+y^{2}-2 y+c x^{2} \\
& \left(x_{c}^{*}=-\frac{2}{2+c}, y_{c}^{*}=1-\frac{2}{2+c}\right) \stackrel{c \rightarrow \infty}{\Rightarrow} \\
& \left(x_{c}^{*} \rightarrow 0, y_{c}^{*} \Rightarrow 1\right) \\
& A Q_{e}(x, c)=2 x^{2}+2 x y+y^{2}-2 y+c|x| \\
& \underbrace{x^{2}}+\underbrace{(2 x+c|x|)}_{c \geqslant 2}+(y-1+x)^{2}-1 \\
& x^{*}=0 \\
& y^{*}=1
\end{aligned}
$$

for any $C \geqslant 2$ the opstian minimizer of $Q_{e}(x, c)$ and the origional problem are the same

$$
c \geqslant\left\|\lambda^{*}\right\|_{\infty}=\max \left\{\left|\lambda_{i}\right|\right\}_{i=1}^{m}
$$

Barrier Methodo
$\min f(x)$
subject to $x \in \Omega$
Ω : has a non-empty interior point.
L the set has an interior and it is possible to get to any boundary point by approandic it from the interior.

V Robust set

Not robust

Robust
not robust

$$
f(x)+C \underset{\sim}{B(x)} \text { Barrier }
$$

Example: Let $\Omega=\left\{x \mid g_{i}(x) \leqslant 0 \quad i=1, \ldots, r\right\}$

$$
B(x)=-\sum_{i=1}^{r} \frac{1}{g_{i}(x)}
$$

Logarithmic utility function

$$
B(x)=-\sum_{i=1}^{r} \log \left[-g_{i}(x)\right]
$$

