Optimization Methods Lecture 13

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Consult: pages 276-297 (section 3.1 and 3.2) and sections 3.3, 3.3.1, 3.3.3 from $\operatorname{Ref}[1]$

Necessary Conditions for Optimality: equality and inequality conditions

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{r} \mu_{j} g_{j}(x)
$$

Proposition (Karush-Huhn-Tucker Necessary conditions)

Let x^{\star} be a local minimum of $x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)$ s.t.

$$
\begin{aligned}
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

where f, h_{i} and g_{j} are continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}. Assume the x^{\star} is regular. Then there exists unique Lagrange multiplier vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}\right)$, s.t.

$$
\begin{aligned}
& \nabla_{x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0 \\
& \mu_{j}^{\star} \geqslant 0, \quad j=1, \cdots, r \\
& \mu_{j}^{\star}=0, \quad \forall j \notin \underbrace{A\left(x^{\star}\right)}_{\text {active constraint set }}
\end{aligned}
$$

If in addition $f g$ and h are twice continuously differentiable we have

$$
y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right) y \geqslant 0
$$

for all
$y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{n} \mid h_{i}\left(x^{\star}\right)^{\top} y=0, \quad \forall i=1, \cdots, m, \quad \nabla g_{j}\left(x^{\star}\right)^{\top} y=0, \quad j \in A\left(x^{\star}\right)\right\}$.

Solution approach

One approach for using necessary conditions to solve inequality constrained problems is to consider separately all the possible combinations of constraints being active or inactive.

Constrained optimization: numerical example

$$
\operatorname{minimize} f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2} \text { subject to }
$$

$$
\begin{aligned}
& g_{1}(x)=x_{1}^{2}+x_{2}^{2}-5 \leqslant 0 \\
& g_{2}(x)=3 x_{1}+x_{2}-6 \leqslant 0
\end{aligned}
$$

$$
\nabla_{x} f(x)=\left[\begin{array}{l}
4 x_{1}+2 x_{2}-10 \\
2 x_{1}+2 x_{2}-10
\end{array}\right], \quad \nabla_{x} g_{1}(x)=\left[\begin{array}{c}
2 x_{1} \\
3
\end{array}\right], \quad \nabla_{x} g_{2}(x)=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right]
$$

- H 1 : both constraints are inactive: $\mathrm{g}_{1}<0, \mathrm{~g}_{2}<0$ and $\mu_{1}=\mu_{2}=0$.

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} f(x)=4 x_{1}+2 x_{2}-10=0 \\
\nabla_{x_{2}} f(x)=2 x_{1}+2 x_{2}-10=0
\end{array}\right\} \Rightarrow x_{1}=0, x_{2}=5
$$

$g_{1}\left(x_{1}=0, x_{2}=5\right)=20>0$ and $g_{2}\left(x_{1}=0, x_{2}=-1<0\right.$. Since $H 1$ is not correct, this case is not possible.

- H 2 : both constraints are active: $\mathrm{g}_{1}=0, \mathrm{~g}_{2}=0$ and $\mu_{1}, \mu_{2} \geqslant 0$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{1}\left(x_{1}^{2}+x_{2}^{2}-5\right)+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+2 \mu_{1} x_{1}+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+2 \mu_{2} x_{2}+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=x_{1}^{2}+x_{2}^{2}-5=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow \text { since } \mu_{1}<0 \text { this solution is not acceptable. } \quad\left\{\begin{array}{l}
x=\left[\begin{array}{c}
2.1742 \\
-0.5225
\end{array}\right], \mu=\left[\begin{array}{c}
-2.37 \\
4.22
\end{array}\right] \quad \text { since } \mu_{2}<0 \text { this solution is not acceptable. } \\
x=\left[\begin{array}{c}
1.4258 \\
1.7228
\end{array}\right], \mu=\left[\begin{array}{c}
1.37 \\
-1.02
\end{array}\right] \quad
\end{array}\right.
$$

Constrained optimization: numerical example

- H3: g_{1} is inactive $\left(g_{1}<0, \mu_{1}=0\right)$, and g_{2} is active $\left(\mu_{2} \geqslant 0\right)$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow x=\left[\begin{array}{l}
0.4 \\
0.8
\end{array}\right\}, \mu_{2}=-0.4
$$

$$
\text { since } \mu_{2}<0 \text { this solution is not acceptable. }
$$

- H4: g_{2} is inactive $\left(g_{2}<0, \mu_{2}=0\right)$, and g_{1} is inactive $\left(\mu_{1} \geqslant 0\right)$.

$$
\mathrm{L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}^{2}-10 \mathrm{x}_{1}-10 \mathrm{x}_{2}+\mu_{1}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(\mathrm{x}, \mu)=4 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{1}=0 \\
\nabla_{x_{2}} \mathrm{~L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(\mathrm{x}, \mu)=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5=0
\end{array}\right\} \Rightarrow x^{\star}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mu_{1}^{\star}=1
$$

since $\mu_{1} \geqslant 0$ this solution is qualified as KKT solution.
Now we need to validate $\mathrm{H} 4: \mathrm{g}_{2}\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=2\right)=-1<0$, therefore H 4 is correct. SONC:

$$
y \nabla_{x x} L\left(x^{\star}, \mu^{\star}\right) y \geqslant 0 \text { for } y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{2} \mid \nabla g_{1}\left(x^{\star}\right)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
2 & 4
\end{array}\right] y=0\right.\right\}
$$

Since $\nabla_{x x} \mathrm{~L}\left(x^{\star}, \mu^{\star}\right)=\left[\begin{array}{cc}4+2 \mu_{1}^{\star} & 2 \\ 2 & 2+2 \mu_{1}^{\star}\end{array}\right]>0\left(\mu^{\star}=1\right)$, then SONC condition is definitely satisfied. Also since the condition holds for strict >0, then the second order sufficiency condition is satisfied and $x_{1}^{\star}=1, x_{2}^{\star}=2$ is a local minimizer.

Fritz Jonh Necessary Conditions for Optimality

Lagrangian function $L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{r} \mu_{j} g_{j}(x)$

Proposition (Fritz Jonh Necessary Conditions for Optimality)

Let x^{\star} be a local minimum of $x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)$ s.t.

$$
\begin{aligned}
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

where f, h_{i} and g_{j} are continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}. Then there exist a scalar μ_{0}^{\star} and Lagrange multiplier vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots\right.$, $\left.\mu_{\mathrm{r}}^{\star}\right)$, s.t.
(i) $\mu_{0}^{\star} \nabla_{\chi} f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla_{x} h_{i}\left(x^{\star}\right)+\sum_{i=1}^{m} \mu_{j}^{\star} \nabla_{\chi} g_{j}\left(x^{\star}\right)=0$
(ii) $\mu_{\mathrm{j}}^{\star} \geqslant 0, \quad \mathrm{j}=1, \cdots, \mathrm{r}$
(iii) $\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}, \mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}$ and μ_{0}^{\star} are not all equal to zero
(iv) In every neighborhood N of x^{\star} there is an $x \in N$ such that $\lambda_{i}^{\star} h_{i}(x)>0$ for all i with $\lambda_{i}^{\star} \neq 0$ and $\mu_{j}^{\star} g_{j}(x)>0$ for all j with μ_{j}^{\star}.

Numerical example: use of Fritz Jonh condition

- Regular point of a set of constraints: A feasible vector x for which the constraint gradients $\left\{\nabla \mathrm{h}_{1}(\mathrm{x}), \cdots, \nabla \mathrm{h}_{\mathrm{m}}(\mathrm{x})\right\}$ are linearly independent.
- For a local minimum that is not regular, the KKT condition does not apply

$$
\operatorname{minimize} f(x)=x_{1}+x_{2}, \quad \text { s.t. }
$$

$$
g_{1}(x)=\left(x_{1}-1\right)^{2}+x_{2}^{2}-1 \leqslant 0, \quad g_{2}(x)=-\left(x_{1}-2\right)^{2}-x_{2}^{2}+4 \leqslant 0
$$

- x^{\star} is not regular. Therefore, this problem cannot be solved using Lagrange multiplier theorem (KKT condition).
- $\nabla f\left(x^{\star}\right)$ cannot be written as linear combination of $\nabla \mathrm{g}_{1}\left(\mathrm{x}^{\star}\right)$ and $\nabla \mathrm{g}_{2}\left(\mathrm{x}^{\star}\right)$

Fritz Jonh Necessary Conditions for Optimality:

$$
\mu_{0} \nabla_{x} f(x)+\mu_{1} \nabla g_{1}(x)+\mu_{2} \nabla h_{2}(x)=0 \Rightarrow\left\{\begin{array}{l}
\mu_{0}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\mu_{1}\left[\begin{array}{c}
2\left(x_{1}-1\right) \\
2 x_{2}
\end{array}\right]+\mu_{2}\left[\begin{array}{c}
-2\left(x_{1}-2\right) \\
-2 x_{2}
\end{array}\right]=0 \\
\left(x_{1}-1\right)^{2}+x_{2}^{2}-1=0 \\
-\left(x_{1}-2\right)^{2}-x_{2}^{2}-4=0
\end{array}\right.
$$

$x_{1}^{\star}=0, \quad x_{2}^{\star}=0, \mu_{0}^{\star}=0, \quad$ for any $\mu_{1}^{\star}, \mu_{2}^{\star} \geqslant 0$ such that $\mu_{1}^{\star}=2 \mu_{2}^{\star}$ condition (i)-(iii) of Fritz Jonh necessary condition is satisfied. Since From the geometry of the problem, it can be verified that condition

