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Necessary Conditions for Optimality

Lagrangian function L : Rn+m 7→ R: L(x, λ) = f(x) +
∑m
i=1 λihi(x)

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x? be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {∇h1(x

?), · · · ,∇hm(x)} are linearly independent. Then there
exists a unique vectors λ? = (λ?1 , · · · , λ?m) called Lagrange multiplier vector, s.t.

∇xL(x?, λ?) = 0.

If in addition f and h are twice continuously differentiable we have

y>∇xxL(x?, λ?)y > 0, ∀y ∈ V(x?)

where V(x?) is the space of first order feasible variations, i.e.,

V(x?) = {d ∈ Rn
∣∣ ∇hi(x?)>d = 0}.

h(x?) = 0⇔ ∇λL(x?, λ?) = 0.
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A Problem with no Lagrange Multipliers: regularity of optimal point

Regular point of a set of constraints: A feasible vector x for which the constraint
gradients {∇h1(x), · · · ,∇hm(x)} are linearly independent.

For a local minimum that is not regular, there may not exist Lagrange multipliers.

minimize f(x) = x1 + x2, s.t.

h1(x) = (x1 − 1)2 + x2
2 − 1 = 0, h2(x) = (x1 − 2)2 + x2

2 − 4 = 0.

x? is not regular. Therefore,
this problem cannot be solved
using Lagrange multiplier
theorem.

∇f(x?) cannot be written as
linear combination of ∇h1(x

?)
and ∇h2(x

?)
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Proofs for the Lagrange multiplier theorem

The elimination approach:
We view the constraints as a system of m equations with n unknowns (recall
that m < n).

We express m of the variables in terms of the remaining n−m to reduce the
problem to an unconstrained problem

Apply the corresponding first and second order necessary conditions for
unconstrained minima: the Lagrange multiplier theorem follows.

We use the implicit function theorem here.

The penalty approach:
We disregard the constraints, while adding to the cost a high penalty for
violating them.

By Writing the necessary conditions for the “penalized" unconstrained
problems, and by passing to the limit as the penalty increases we obtain the
Lagrange multiplier theorem.

The regularity condition is crucial for the proof
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Penalty approach for proof of necessary conditions for optimality
(C-OPT):{

minimize f(x) s.t.
h(x) = 0

Penalty approach:{
xk = argmin

x
Fk(x) = f(x)+ k

2 ‖h(x)‖
2+ α

2 ‖x− x?‖2, s.t.

x ∈ S =
{
x ∈ Rn

∣∣‖x− x?‖ 6 ε
}

k
2 ‖h(x)‖

2: imposes a penalty for violating the constraint h(x) = 0.
α
2 ‖x− x?‖2: introduced for technical related reasons (to ensure x? is a strict local
minimum of function f(x) + α

2 ‖x− x?‖2 subject to h(x) = 0.

ε > 0 is chosen to be small and also such that for all x ∈ S∩ {x ∈ Rn|h(x) = 0} we have
f(x) > f(x?)

Weierstrass theorem guarantees that xk exists for all k ∈ R>0.

Let x̄ be a limit point of {xk}:
Some observations:

Fk(xk) 6 Fk(x?) = f(x?):
f(xk) +

α
2
‖xk − x?‖2 6 f(x?)⇒ f(x̄) + α

2
‖x̄− x?‖2 6 f(x?)

limk→∞ ‖h(xk)‖ = 0 (since f(xk) is bounded in S):
every limit point x̄ of {xk} satisfies h(x̄) = 0

x̄ ∈ S and it feasible, we have f(x?) 6 f(x̄)‖x̄− x?‖ = 0⇒ x̄ = x?

x̄ = x? is an interior point of S (the constraint is not active), therefore x? is a local
minimizer of unconstrained optimization problem x? = argmin

x
Fk(x) when k→∞.
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Penalty approach for proof of necessary conditions for optimality

x? = argmin
x

Fk(x) when k→∞
FONC:

∇F(xk) = ∇f(xk) + k∇h(xk)h(xk) + α(xk − x?) = 0, k→∞
Under the assumption that x? is a regular point, i.e., ∇h(x?) is full column rank:
(∇h(x?)>∇h(x?)) is invertible

limk→∞ khi(xk) = λ?i
λ? = −(∇h(x?)>∇h(x?))−1∇h(x?)>∇f(x?)

Then we get f(x?) + λ?∇h(x?) = 0

SONC:

∇2F(xk) = ∇2f(xk) + k∇h(xk)∇h(xk)> + k

m∑
i=1

hi(xk)∇2hi(xk) + αI

...

y>

(
∇2f(x?) +

m∑
i=1

λ?i∇2hi(x
?)

)
y > 0, y ∈ V(x?)
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Second Order Sufficiency Conditions for Optimality

Proposition (Second Order Sufficiency Conditions for Optimality)

Assume that f and h are twice continuously differentiable, and let x? ∈ Rn and
λ? ∈ Rm satisfy

∇xL(x?, λ?) = 0, ∇λL(x?, λ?) = 0,

y>∇xxL(x?, λ?)y > 0, ∀y 6= 0 with ∇h(x?)>y = 0.

Then x? is a strict local minimum of f subject to h(x) = 0. In fact, there exists
scalars γ > 0 and ε > 0 such that

f(x) > f(x?) +
γ

2
‖x− x?‖, ∀x with h(x) = 0 and ‖x− x?‖ < ε.
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Constrained optimization

x? =argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

gi(x) 6 0, i ∈ {1, · · · , r}

or
x? =argmin

x∈Rn
f(x) s.t.

h(x) = 0,

g(x) 6 0,

f,h,g: continuously differentiable function of x
e.g., f,h,g ∈ C1 continuously differentiable
e.g., f,h,g ∈ C2 both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x? is a local minimizer then

∇f(x?)>∆x > 0, for ∆x ∈ V(x?)

Set of first order feasible variations at x

V(x) = {d ∈ Rn
∣∣ ∇hi(x)>d = 0, ∇gj(x)>d 6 0, j ∈ A(x?)}

Active inequality constraints at x

A(x) = {j ∈ {1, · · · , r}
∣∣ gj(x) = 0}

A feasible vector x is said to be regular of the equality constraint gradients ∇hi(x),
i = 1, · · · ,m, and the active inequality constraint gradients ∇gj(x), j ∈ A(x), are linearly
independent. 8 / 16



Necessary Conditions for Optimality: equality and inequality conditions

x? = argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

gj(x) 6 0, j ∈ {1, · · · , r}

or
x? =argmin

x∈Rn
f(x) s.t.

h(x) = 0,

g(x) 6 0,

A simple approach relies on the theory for equality constraints:

Inactive constraints at x? do not matter, they can be ignored in the statement
of optimality conditions
Active inequality constraints can be treated to a large extent as equality
constraints

x? is also a local minimum of

x? = argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

gj(x) = 0, ∀j ∈A(x?)

If x? is regular for this equivalent optimization problem, then there exists Lagrange multipliers
λ?1 , · · · ,λ?, , and µ?

j , j ∈A(x?):

∇f(x?) +
m∑
i=1

λ?i∇hi(x?) +
∑

j∈A(x?)

µ?
j∇gj(x?) = 0.

But we need to require that µ?
j > 0 for j ∈A(x?).

This approach is limited by regularity condition!
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Necessary Conditions for Optimality: equality and inequality conditions

Lagrangian function L : Rn+m 7→ R: L(x,λ) = f(x) +
∑m
i=1 λihi(x) +

∑m
i=1 µjgj(x)

Proposition (Karush-Huhn-Tucker Necessary conditions)

Let x? be a local minimum of x? =argmin
x∈Rn

f(x) s.t.

h1(x) = 0, · · · ,hm(x) = 0

g1(x) 6 0, · · · ,gr(x) 6 0

where f, hi and gj are continuously differentiable functions from Rn to R. Assume the x? is
regular. Then there exists unique Lagrange multiplier vectors λ? = (λ?1 , · · · ,λ?m) and
µ? = (µ?

1 , · · · ,µ?
r), s.t.

∇xL(x?,λ?,µ?) = 0

µ?
j > 0, j = 1, · · · , r

µ?
j = 0, ∀ j /∈ A(x?)︸ ︷︷ ︸

active constraint set

.

If in addition f g and h are twice continuously differentiable we have

y>∇xxL(x?,λ?,µ?)y > 0,

for all
y ∈ V(x?) = {y ∈ Rn|hi(x?)>y = 0, ∀i = 1, · · · ,m, ∇gj(x?)>y = 0, j ∈A(x?)}.
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Penalty approach for proof of necessary conditions for optimality
(C-OPT):{
minimize f(x) s.t.

h(x) = 0

Penalty approach:xk = argmin
x

Fk(x)=f(x)+
k
2 ‖h(x)‖

2+ k
2

r∑
j=1

(g+
j (x))

2+ α
2 ‖x− x?‖2, s.t.

x ∈ S =
{
x ∈ Rn

∣∣‖x− x?‖ 6 ε
}

k
2 ‖h(x)‖

2: imposes a penalty for violating the constraint h(x) = 0.

g+
j (x) = max{0,gj(x)}, j = 1, · · · , r: penalizes violating the constraint gj(x) 6 0.

α
2 ‖x− x?‖2: introduced for technical related reasons (to ensure x? is a strict local
minimum of function f(x) + α

2 ‖x− x?‖2 subject to h(x) = 0.

ε > 0 is chosen to be small and also such that for all
x ∈ S∩ {x ∈ Rn|h(x) = 0,g(x) 6 0} we have f(x) > f(x?)

Weierstrass theorem guarantees that xk exists for all k ∈ R>0.

Analysis results are similar to the one for the equality constraint in the earlier slides.

x? being regular is essential for proof

λ?i = lim
t→∞khi(xk), i = 1, · · · ,m,

µ?
j = lim

t→∞kg+
j (xk), i = j, · · · , r.

Since g+
j (x) > 0, we obtain µ?

j > 0 for all j.
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Sufficiency Conditions for Optimality

Lagrangian function L : Rn+m 7→ R: L(x,λ) = f(x) +
∑m
i=1 λihi(x) +

∑m
i=1 µjgj(x)

Second Order Sufficiency Conditions

Assume that f, hi and gj are twice continuously differentiable f, and let x? ∈ Rn,
λ? = (λ?1 , · · · ,λ?m) and µ? = (µ?

1 , · · · ,µ?
r) satisfy

∇xL(x?,λ?,µ?) = 0, h(x?) = 0m,

µ?
j > 0, j = 1, · · · , r,

µ?
j = 0, ∀ j /∈A(x?),

y>∇xxL(x?,λ?,µ?)y > 0,

for all y ∈ Rn such that hi(x?)>y = 0, ∀i = 1, · · · ,m, ∇gj(x?)>y = 0, j ∈A(x?).
Assume also that

µ?
j > 0, ∀j ∈A(x?).

Then x? is a strict local minimum of

min
x∈Rn

f(x) s.t.

h1(x) = 0, · · · ,hm(x) = 0

g1(x) 6 0, · · · ,gr(x) 6 0
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Solution approach

One approach for using necessary conditions to solve inequality constrained
problems is to consider separately all the possible combinations of constraints
being active or inactive.
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Constrained optimization: numerical example

minimize f(x) = x1 + x2 subject to

g(x) = (x1 − 1)2 + x2
2 − 1 6 0

H1: Constraint is active. To validate H1, we should have µ > 0.

L(x,µ) = x1 + x2 +µ(x1 − 1)2 + x2
2 6 1

FONC:

∇x1
L(x,µ) = 1 + 2µ(x1 − 1) = 0

∇x2
L(x,µ) = 1 + 2µ(x2) = 0

∇µL(x,µ) = (x1 − 1)2 + x2
2 − 1 = 0

⇒{
x1 = 1,x2 = 1,µ = − 1

2 since µ < 0 this solution is not acceptable
x?1 = 1,x?2 = −1,µ? = 1

2 since µ? > 0 this solution is a candidate for local minimizer

SONC:

y∇xxL(x?,µ?)y > 0 for y ∈ V(x?) =
{
y ∈ R2|∇g(x?)>y = 0

}
=
{
y ∈ R2|

[
0 −2

]
y = 0

}
Since ∇xxL(x?,µ?) =

[
2µ? 0

0 2µ?

]
> 0 (µ? = 1

2 ), then SONC condition is definitely satisfied.

Also since the condition holds for strict > 0, then the second order sufficiency condition is satisfied
and x?1 = 1,x?2 = −1 is a local minimizer.

H2: Constraint is not active. To validate H2, we should check that the identified stationary points
x? satisfy g(x?) < 0.

∇x1
f(x) = 1 = 0

∇x2
f(x) = 1 = 0

}
⇒ there is no solution in this case
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Constrained optimization: numerical example

minimize f(x) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 subject to

g1(x) = x2
1 + x2

2 − 5 6 0

g2(x) = 3x1 + x2 − 6 6 0

∇xf(x) =

[
4x1 + 2x2 − 10
2x1 + 2x2 − 10

]
, ∇xg1(x) =

[
2x1

3

]
, ∇xg2(x) =

[
2x2

1

]
H1: both constraints are inactive: g1 < 0, g2 < 0 and µ1 = µ2 = 0.
FONC:

∇x1
f(x) = 4x1 + 2x2 − 10 = 0

∇x2
f(x) = 2x1 + 2x2 − 10 = 0

}
⇒ x1 = 0,x2 = 5

g1(x1 = 0,x2 = 5) = 20 > 0 and g2(x1 = 0,x2 = −1 < 0. Since H1 is not correct, this case is not
possible.

H2: both constraints are active: g1 = 0, g2 = 0 and µ1,µ2 > 0.

L(x,µ) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 +µ1(x
2
1 + x2

2 − 5) +µ2(3x1 + x2 − 6)

FONC: ∇x1
L(x,µ) = 4x1 + 2x2 − 10 + 2µ1x1 + 3µ2 = 0

∇x2
L(x,µ) = 2x1 + 2x2 − 10 + 2µ2x2 +µ2 = 0

∇µ1
L(x,µ) = x2

1 + x2
2 − 5 = 0

∇µ1
L(x,µ) = 3x1 + x2 − 6 = 0

⇒
x =

[
2.1742

−0.5225

]
,µ =

[
−2.37

4.22

]
since µ1 < 0 this solution is not acceptable.

x =

[
1.4258

1.7228

]
,µ =

[
1.37

−1.02

]
since µ2 < 0 this solution is not acceptable.

15 / 16



Constrained optimization: numerical example

H3: g1 is inactive (g1 < 0, µ1 = 0), and g2 is active (µ2 > 0).

L(x,µ) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 +µ2(3x1 + x2 − 6)

FONC:

∇x1
L(x,µ) = 4x1 + 2x2 − 10 + 3µ2 = 0

∇x2
L(x,µ) = 2x1 + 2x2 − 10 +µ2 = 0

∇µ1
L(x,µ) = 3x1 + x2 − 6 = 0

⇒ x =

[
0.4
0.8

]
, µ2 = −0.4.

since µ2 < 0 this solution is not acceptable.

H4: g2 is inactive (g2 < 0, µ2 = 0), and g1 is inactive (µ1 > 0).

L(x,µ) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 +µ1(x
2
1 + x2

2 − 5)

FONC:

∇x1
L(x,µ) = 4x1 + 2x2 − 10 + 2µ1x1 = 0

∇x2
L(x,µ) = 2x1 + 2x2 − 10 + 2µ1x2 = 0

∇µ1
L(x,µ) = x2

1 + x2
2 − 5 = 0

⇒ x? =

[
1
2

]
, µ?

1 = 1.

since µ1 > 0 this solution is qualified as KKT solution.

Now we need to validate H4: g2(x1 = 1,x2 = 2) = −1 < 0, therefore H4 is correct.
SONC:

y∇xxL(x?,µ?)y > 0 for y ∈ V(x?) =
{
y ∈ R2|∇g1(x

?)>y = 0
}
=
{
y ∈ R2|

[
2 4

]
y = 0

}
Since ∇xxL(x?,µ?) =

[
4 + 2µ?

1 2
2 2 + 2µ?

1

]
> 0 (µ? = 1), then SONC condition is definitely

satisfied. Also since the condition holds for strict > 0, then the second order sufficiency condition is
satisfied and x?1 = 1,x?2 = 2 is a local minimizer.
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