Optimization Methods Lecture 12

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Consult: pages 276-297 (section 3.1 and 3.2) and sections 3.3, 3.3.1, 3.3.3 from $\operatorname{Ref}[1]$

Necessary Conditions for Optimality

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)
$$

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x^{\star} be a local minimum of f subject to $h(x)=0$ and assume that the constraint gradients $\left\{\nabla h_{1}\left(x^{\star}\right), \cdots, \nabla h_{m}(x)\right\}$ are linearly independent. Then there exists a unique vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{m}^{\star}\right)$ called Lagrange multiplier vector, s.t.

$$
\nabla_{\chi} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0
$$

If in addition f and h are twice continuously differentiable we have

$$
y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y \geqslant 0, \quad \forall y \in \mathrm{~V}\left(x^{\star}\right)
$$

where $V\left(x^{\star}\right)$ is the space of first order feasible variations, i.e.,

$$
\mathrm{V}\left(\mathrm{x}^{\star}\right)=\left\{\mathrm{d} \in \mathbb{R}^{\mathrm{n}} \mid \nabla \mathrm{h}_{\mathrm{i}}\left(\mathrm{x}^{\star}\right)^{\top} \mathrm{d}=0\right\}
$$

$$
h\left(x^{\star}\right)=0 \Leftrightarrow \nabla_{\lambda} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0 .
$$

A Problem with no Lagrange Multipliers: regularity of optimal point

- Regular point of a set of constraints: A feasible vector x for which the constraint gradients $\left\{\nabla \mathrm{h}_{1}(\mathrm{x}), \cdots, \nabla \mathrm{h}_{\mathrm{m}}(\mathrm{x})\right\}$ are linearly independent.
- For a local minimum that is not regular, there may not exist Lagrange multipliers.

$$
\begin{aligned}
\operatorname{minimize} & f(x)=x_{1}+x_{2}, \quad \text { s.t. } \\
& h_{1}(x)=\left(x_{1}-1\right)^{2}+x_{2}^{2}-1=0, \quad h_{2}(x)=\left(x_{1}-2\right)^{2}+x_{2}^{2}-4=0
\end{aligned}
$$

- x^{\star} is not regular. Therefore, this problem cannot be solved using Lagrange multiplier theorem.
- $\nabla f\left(x^{\star}\right)$ cannot be written as linear combination of $\nabla h_{1}\left(x^{\star}\right)$ and $\nabla \mathrm{h}_{2}\left(\mathrm{x}^{\star}\right)$

Proofs for the Lagrange multiplier theorem

- The elimination approach:
- We view the constraints as a system of m equations with n unknowns (recall that $\mathrm{m}<\mathrm{n}$).
- We express m of the variables in terms of the remaining $n-m$ to reduce the problem to an unconstrained problem
- Apply the corresponding first and second order necessary conditions for unconstrained minima: the Lagrange multiplier theorem follows.
- We use the implicit function theorem here.
- The penalty approach:
- We disregard the constraints, while adding to the cost a high penalty for violating them.
- By Writing the necessary conditions for the "penalized" unconstrained problems, and by passing to the limit as the penalty increases we obtain the Lagrange multiplier theorem.

> The regularity condition is crucial for the proof

Penalty approach for proof of necessary conditions for optimality

(C-OPT):

Penalty approach:

$$
\left\{\begin{array}{l}
x_{k}=\underset{x}{\operatorname{argmin}} F_{k}(x)=f(x)+\frac{k}{2}\|h(x)\|^{2}+\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}, \quad \text { s.t. } \\
\quad x \in S=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x^{\star}\right\| \leqslant \epsilon\right\}
\end{array}\right.
$$

- $\frac{k}{2}\|h(x)\|^{2}$: imposes a penalty for violating the constraint $h(x)=0$.
- $\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}$: introduced for technical related reasons (to ensure x^{\star} is a strict local minimum of function $f(x)+\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}$ subject to $h(x)=0$.
- $\epsilon>0$ is chosen to be small and also such that for all $x \in S \cap\left\{x \in \mathbb{R}^{n} \mid h(x)=0\right\}$ we have $f(x) \geqslant f\left(x^{\star}\right)$
- Weierstrass theorem guarantees that x_{k} exists for all $k \in \mathbb{R} \geqslant 0$.

Let $\bar{\chi}$ be a limit point of $\left\{x_{k}\right\}$: Some observations:

- $\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}\right) \leqslant \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}^{\star}\right)=\mathrm{f}\left(\mathrm{x}^{\star}\right):$
- $f\left(x_{k}\right)+\frac{\alpha}{2}\left\|x_{k}-x^{\star}\right\|^{2} \leqslant f\left(x^{\star}\right) \Rightarrow f(\bar{x})+\frac{\alpha}{2}\left\|\bar{x}-x^{\star}\right\|^{2} \leqslant f\left(x^{\star}\right)$
- $\lim _{k \rightarrow \infty}\left\|h\left(x_{k}\right)\right\|=0$ (since $f\left(x_{k}\right)$ is bounded in S):
- every limit point \bar{x} of $\left\{x_{k}\right\}$ satisfies $h(\bar{x})=0$
- $\bar{x} \in S$ and it feasible, we have $f\left(x^{\star}\right) \leqslant f(\bar{x})\left\|\bar{x}-x^{\star}\right\|=0 \Rightarrow \bar{x}=x^{\star}$
- $\bar{x}=x^{\star}$ is an interior point of S (the constraint is not active), therefore x^{\star} is a local minimizer of unconstrained optimization problem $x^{\star}=\operatorname{argminF}_{k}(x)$ when $k \rightarrow \infty$.

Penalty approach for proof of necessary conditions for optimality

$$
x^{\star}=\underset{x}{\operatorname{argmin}} F_{k}(x) \text { when } k \rightarrow \infty
$$

FONC:

$$
\nabla F\left(x_{k}\right)=\nabla f\left(x_{k}\right)+k \nabla h\left(x_{k}\right) h\left(x_{k}\right)+\alpha\left(x_{k}-x^{\star}\right)=0, \quad k \rightarrow \infty
$$

- Under the assumption that χ^{\star} is a regular point, i.e., $\nabla h\left(x^{\star}\right)$ is full column rank: $\left(\nabla h\left(x^{\star}\right)^{\top} \nabla h\left(x^{\star}\right)\right)$ is invertible
- $\lim _{k \rightarrow \infty} k h_{i}\left(x_{k}\right)=\lambda_{i}^{\star}$
- $\lambda^{\star}=-\left(\nabla h\left(x^{\star}\right)^{\top} \nabla h\left(x^{\star}\right)\right)^{-1} \nabla h\left(x^{\star}\right)^{\top} \nabla f\left(x^{\star}\right)$

Then we get $f\left(x^{\star}\right)+\lambda^{\star} \nabla h\left(x^{\star}\right)=0$
SONC:

$$
\begin{aligned}
& \nabla^{2} \mathrm{~F}\left(\mathrm{x}_{\mathrm{k}}\right)=\nabla^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)+\mathrm{k} \nabla \mathrm{~h}\left(\mathrm{x}_{\mathrm{k}}\right) \nabla \mathrm{h}\left(\mathrm{x}_{\mathrm{k}}\right)^{\top}+\mathrm{k} \sum_{i=1}^{m} h_{i}\left(x_{k}\right) \nabla^{2} h_{i}\left(x_{k}\right)+\alpha \mathrm{I} \\
& y^{\top}\left(\nabla^{2} f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla^{2} h_{i}\left(x^{\star}\right)\right) y \geqslant 0, \quad y \in V\left(x^{\star}\right)
\end{aligned}
$$

Second Order Sufficiency Conditions for Optimality

Proposition (Second Order Sufficiency Conditions for Optimality)

Assume that f and h are twice continuously differentiable, and let $\chi^{\star} \in \mathbb{R}^{n}$ and $\lambda^{\star} \in \mathbb{R}^{m}$ satisfy

$$
\begin{aligned}
& \nabla_{\chi} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0, \quad \nabla_{\lambda} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0, \\
& y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y>0, \quad \forall y \neq 0 \text { with } \nabla h\left(x^{\star}\right)^{\top} y=0 .
\end{aligned}
$$

Then x^{\star} is a strict local minimum of f subject to $h(x)=0$. In fact, there exists scalars $\gamma>0$ and $\epsilon>0$ such that

$$
f(x) \geqslant f\left(x^{\star}\right)+\frac{\gamma}{2}\left\|x-x^{\star}\right\|, \quad \forall x \text { with } h(x)=0 \text { and }\left\|x-x^{\star}\right\|<\epsilon .
$$

Constrained optimization

$$
\begin{array}{ccc}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) & \text { s.t. } & x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \\
& \text { s.t. } \\
h_{i}(x)=0, \quad i \in\{1, \cdots, m\} & h(x)=0, \\
& g_{i}(x) \leqslant 0, \quad i \in\{1, \cdots, r\} & \\
& & \\
& & \text { or }(x) \leqslant 0,
\end{array}
$$

$\mathrm{f}, \mathrm{h}, \mathrm{g}$: continuously differentiable function of x
e.g., $f, h, g \in C^{1}$ continuously differentiable
e.g., $f, h, g \in C^{2}$ both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x^{\star} is a local minimizer then

$$
\nabla f\left(x^{\star}\right)^{\top} \Delta x \geqslant 0, \quad \text { for } \quad \Delta x \in V\left(x^{\star}\right)
$$

- Set of first order feasible variations at χ

$$
\mathrm{V}(\mathrm{x})=\left\{\mathrm{d} \in \mathbb{R}^{\mathrm{n}} \mid \nabla \mathrm{h}_{\mathrm{i}}(\mathrm{x})^{\top} \mathrm{d}=0, \quad \nabla \mathrm{~g}_{j}(\mathrm{x})^{\top} \mathrm{d} \leqslant 0, \quad j \in \mathrm{~A}\left(\mathrm{x}^{\star}\right)\right\}
$$

- Active inequality constraints at χ

$$
A(x)=\left\{j \in\{1, \cdots, r\} \mid g_{j}(x)=0\right\}
$$

A feasible vector x is said to be regular of the equality constraint gradients $\nabla h_{i}(x)$, $\mathfrak{i}=1, \cdots, m$, and the active inequality constraint gradients $\nabla g_{j}(x), j \in A(x)$, are linearly independent.

Necessary Conditions for Optimality: equality and inequality conditions

$$
\begin{array}{lc}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \text { s.t. } & x^{\star} \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \text { s.t. } \\
h_{i}(x)=0, \quad i \in\{1, \cdots, m\} & h(x)=0 \\
g_{j}(x) \leqslant 0, \quad j \in\{1, \cdots, r\} & g(x) \leqslant 0
\end{array}
$$

- A simple approach relies on the theory for equality constraints:
- Inactive constraints at χ^{\star} do not matter, they can be ignored in the statement of optimality conditions
- Active inequality constraints can be treated to a large extent as equality constraints
x^{\star} is also a local minimum of

$$
\begin{aligned}
& x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \quad \text { s.t. } \\
& h_{i}(x)=0, \quad i \in\{1, \cdots, m\} \\
& g_{j}(x)=0, \quad \forall j \in A\left(x^{\star}\right)
\end{aligned}
$$

If x^{\star} is regular for this equivalent optimization problem, then there exists Lagrange multipliers $\lambda_{1}^{\star}, \cdots, \lambda^{\star}$, and $\mu_{j}^{\star}, j \in A\left(x^{\star}\right)$:

$$
\nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)+\sum_{j \in A\left(x^{\star}\right)} \mu_{j}^{\star} \nabla g_{j}\left(x^{\star}\right)=0
$$

But we need to require that $\mu_{j}^{\star} \geqslant 0$ for $j \in A\left(x^{\star}\right)$.

Necessary Conditions for Optimality: equality and inequality conditions

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{m} \mu_{j} g_{j}(x)
$$

Proposition (Karush-Huhn-Tucker Necessary conditions)

Let x^{\star} be a local minimum of $x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)$ s.t.

$$
\begin{aligned}
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

where f, h_{i} and g_{j} are continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}. Assume the x^{\star} is regular. Then there exists unique Lagrange multiplier vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}\right)$, s.t.

$$
\begin{aligned}
& \nabla_{x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0 \\
& \mu_{j}^{\star} \geqslant 0, \quad j=1, \cdots, r \\
& \mu_{j}^{\star}=0, \quad \forall j \notin \underbrace{A\left(x^{\star}\right)}_{\text {active constraint set }}
\end{aligned}
$$

If in addition $f g$ and h are twice continuously differentiable we have

$$
y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right) y \geqslant 0
$$

for all
$y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{n} \mid h_{i}\left(x^{\star}\right)^{\top} y=0, \quad \forall i=1, \cdots, m, \quad \nabla g_{j}\left(x^{\star}\right)^{\top} y=0, \quad j \in A\left(x^{\star}\right)\right\}$.

Penalty approach for proof of necessary conditions for optimality

(C-OPT):
$\left\{\begin{array}{c}\operatorname{minimize} f(x) \text { s.t. } \\ h(x)=0\end{array}\right.$

Penalty approach:

$$
\left\{\begin{array}{l}
x_{k}=\underset{x}{\operatorname{argmin}} F_{k}(x)=f(x)+\frac{k}{2}\|h(x)\|^{2}+\frac{k}{2} \sum_{j=1}^{r}\left(g_{j}^{+}(x)\right)^{2}+\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}, \\
\quad x \in S=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x^{\star}\right\| \leqslant \epsilon\right\}
\end{array}\right.
$$

- $\frac{k}{2}\|h(x)\|^{2}$: imposes a penalty for violating the constraint $h(x)=0$.
- $g_{j}^{+}(x)=\max \left\{0, g_{j}(x)\right\}, j=1, \cdots, r$: penalizes violating the constraint $g_{j}(x) \leqslant 0$.
- $\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}$: introduced for technical related reasons (to ensure x^{\star} is a strict local minimum of function $f(x)+\frac{\alpha}{2}\left\|x-x^{\star}\right\|^{2}$ subject to $h(x)=0$.
- $\epsilon>0$ is chosen to be small and also such that for all $x \in S \cap\left\{x \in \mathbb{R}^{n} \mid h(x)=0, g(x) \leqslant 0\right\}$ we have $f(x) \geqslant f\left(x^{\star}\right)$
- Weierstrass theorem guarantees that x_{k} exists for all $k \in \mathbb{R} \geqslant 0$.

Analysis results are similar to the one for the equality constraint in the earlier slides.

- x^{\star} being regular is essential for proof

$$
\begin{aligned}
\lambda_{i}^{\star} & =\lim _{t \rightarrow \infty} k h_{i}\left(x_{k}\right), \quad i=1, \cdots, m \\
\mu_{j}^{\star} & =\lim _{t \rightarrow \infty} k g_{j}^{+}\left(x_{k}\right), \quad i=j, \cdots, r .
\end{aligned}
$$

Since $g_{j}^{+}(x) \geqslant 0$, we obtain $\mu_{j}^{\star} \geqslant 0$ for all j.

Sufficiency Conditions for Optimality

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{i=1}^{m} \mu_{j} g_{j}(x)
$$

Second Order Sufficiency Conditions

Assume that f, h_{i} and g_{j} are twice continuously differentiable f, and let $\chi^{\star} \in \mathbb{R}^{n}$, $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{m}^{\star}\right)$ and $\mu^{\star}=\left(\mu_{1}^{\star}, \cdots, \mu_{\mathrm{r}}^{\star}\right)$ satisfy

$$
\begin{aligned}
& \nabla_{x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0, \quad h\left(x^{\star}\right)=0_{m}, \\
& \mu_{j}^{\star} \geqslant 0, \quad j=1, \cdots, r, \\
& \mu_{j}^{\star}=0, \quad \forall j \notin A\left(x^{\star}\right), \\
& y^{\top} \nabla_{x x} L\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right) y>0,
\end{aligned}
$$

for all $y \in \mathbb{R}^{n}$ such that $h_{i}\left(x^{\star}\right)^{\top} y=0, \quad \forall i=1, \cdots, m, \quad \nabla g_{j}\left(x^{\star}\right)^{\top} y=0, \quad j \in A\left(x^{\star}\right)$. Assume also that

$$
\mu_{\mathrm{j}}^{\star}>0, \quad \forall \mathrm{j} \in A\left(x^{\star}\right)
$$

Then x^{\star} is a strict local minimum of

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \text { s.t. } \\
& h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leqslant 0, \cdots, g_{r}(x) \leqslant 0
\end{aligned}
$$

Solution approach

One approach for using necessary conditions to solve inequality constrained problems is to consider separately all the possible combinations of constraints being active or inactive.

Constrained optimization: numerical example

$$
\begin{array}{r}
\operatorname{minimize} f(x)=x_{1}+x_{2} \text { subject to } \\
g(x)=\left(x_{1}-1\right)^{2}+x_{2}^{2}-1 \leqslant 0
\end{array}
$$

- H1: Constraint is active. To validate H 1 , we should have $\mu \geqslant 0$.

$$
\mathrm{L}(\mathrm{x}, \mu)=\mathrm{x}_{1}+\mathrm{x}_{2}+\mu\left(\mathrm{x}_{1}-1\right)^{2}+\mathrm{x}_{2}^{2} \leqslant 1
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(\mathrm{x}, \mu)=1+2 \mu\left(\mathrm{x}_{1}-1\right)=0 \\
\nabla_{x_{2}} \mathrm{~L}(\mathrm{x}, \mu)=1+2 \mu\left(\mathrm{x}_{2}\right)=0 \\
\nabla_{\mu} \mathrm{L}(\mathrm{x}, \mu)=\left(\mathrm{x}_{1}-1\right)^{2}+\mathrm{x}_{2}^{2}-1=0
\end{array}\right\} \Rightarrow \mathrm{f} \begin{aligned}
& \begin{cases}\mathrm{x}_{1}=1, \mathrm{x}_{2}=1, \mu=-\frac{1}{2} & \text { since } \mu<0 \text { this solution is not acceptable } \\
x_{1}^{\star}=1, x_{2}^{\star}=-1, \mu^{\star}=\frac{1}{2} & \text { since } \mu^{\star}>0 \text { this solution is a candidate for local minimizer }\end{cases}
\end{aligned}
$$

SONC:

$$
y \nabla_{x x} L\left(x^{\star}, \mu^{\star}\right) y \geqslant 0 \text { for } y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{2} \mid \nabla g\left(x^{\star}\right)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
0 & -2
\end{array}\right] y=0\right.\right\}
$$

Since $\nabla_{x x} \mathrm{~L}\left(x^{\star}, \mu^{\star}\right)=\left[\begin{array}{cc}2 \mu^{\star} & 0 \\ 0 & 2 \mu^{\star}\end{array}\right]>0\left(\mu^{\star}=\frac{1}{2}\right)$, then SONC condition is definitely satisfied.
Also since the condition holds for strict >0, then the second order sufficiency condition is satisfied and $x_{1}^{\star}=1, x_{2}^{\star}=-1$ is a local minimizer.

- H2: Constraint is not active. To validate H 2 , we should check that the identified stationary points x^{\star} satisfy $g\left(x^{\star}\right)<0$.

$$
\left.\begin{array}{c}
\nabla_{x_{1}} f(x)=1=0 \\
\nabla_{x_{2}} f(x)=1=0
\end{array}\right\} \Rightarrow \text { there is no solution in this case }
$$

Constrained optimization: numerical example

$$
\operatorname{minimize} f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2} \text { subject to }
$$

$$
\begin{aligned}
& g_{1}(x)=x_{1}^{2}+x_{2}^{2}-5 \leqslant 0 \\
& g_{2}(x)=3 x_{1}+x_{2}-6 \leqslant 0
\end{aligned}
$$

$$
\nabla_{x} f(x)=\left[\begin{array}{l}
4 x_{1}+2 x_{2}-10 \\
2 x_{1}+2 x_{2}-10
\end{array}\right], \quad \nabla_{x} g_{1}(x)=\left[\begin{array}{c}
2 x_{1} \\
3
\end{array}\right], \quad \nabla_{x} g_{2}(x)=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right]
$$

- H 1 : both constraints are inactive: $\mathrm{g}_{1}<0, \mathrm{~g}_{2}<0$ and $\mu_{1}=\mu_{2}=0$.

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} f(x)=4 x_{1}+2 x_{2}-10=0 \\
\nabla_{x_{2}} f(x)=2 x_{1}+2 x_{2}-10=0
\end{array}\right\} \Rightarrow x_{1}=0, x_{2}=5
$$

$g_{1}\left(x_{1}=0, x_{2}=5\right)=20>0$ and $g_{2}\left(x_{1}=0, x_{2}=-1<0\right.$. Since $H 1$ is not correct, this case is not possible.

- H 2 : both constraints are active: $\mathrm{g}_{1}=0, \mathrm{~g}_{2}=0$ and $\mu_{1}, \mu_{2} \geqslant 0$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{1}\left(x_{1}^{2}+x_{2}^{2}-5\right)+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+2 \mu_{1} x_{1}+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+2 \mu_{2} x_{2}+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=x_{1}^{2}+x_{2}^{2}-5=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow \text { since } \mu_{1}<0 \text { this solution is not acceptable. } \quad\left\{\begin{array}{l}
x=\left[\begin{array}{c}
2.1742 \\
-0.5225
\end{array}\right], \mu=\left[\begin{array}{c}
-2.37 \\
4.22
\end{array}\right] \quad \text { since } \mu_{2}<0 \text { this solution is not acceptable. } \\
x=\left[\begin{array}{c}
1.4258 \\
1.7228
\end{array}\right], \mu=\left[\begin{array}{c}
1.37 \\
-1.02
\end{array}\right] \quad
\end{array}\right.
$$

Constrained optimization: numerical example

- H3: g_{1} is inactive $\left(g_{1}<0, \mu_{1}=0\right)$, and g_{2} is active $\left(\mu_{2} \geqslant 0\right)$.

$$
\mathrm{L}(x, \mu)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}+\mu_{2}\left(3 x_{1}+x_{2}-6\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(x, \mu)=4 x_{1}+2 x_{2}-10+3 \mu_{2}=0 \\
\nabla_{x_{2}} \mathrm{~L}(x, \mu)=2 x_{1}+2 x_{2}-10+\mu_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(x, \mu)=3 x_{1}+x_{2}-6=0
\end{array}\right\} \Rightarrow x=\left[\begin{array}{l}
0.4 \\
0.8
\end{array}\right\}, \mu_{2}=-0.4
$$

$$
\text { since } \mu_{2}<0 \text { this solution is not acceptable. }
$$

- H4: g_{2} is inactive $\left(g_{2}<0, \mu_{2}=0\right)$, and g_{1} is inactive $\left(\mu_{1} \geqslant 0\right)$.

$$
\mathrm{L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}^{2}-10 \mathrm{x}_{1}-10 \mathrm{x}_{2}+\mu_{1}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5\right)
$$

FONC:

$$
\left.\begin{array}{l}
\nabla_{x_{1}} \mathrm{~L}(\mathrm{x}, \mu)=4 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{1}=0 \\
\nabla_{x_{2}} \mathrm{~L}(\mathrm{x}, \mu)=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}-10+2 \mu_{1} \mathrm{x}_{2}=0 \\
\nabla_{\mu_{1}} \mathrm{~L}(\mathrm{x}, \mu)=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-5=0
\end{array}\right\} \Rightarrow x^{\star}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mu_{1}^{\star}=1
$$

since $\mu_{1} \geqslant 0$ this solution is qualified as KKT solution.
Now we need to validate $\mathrm{H} 4: \mathrm{g}_{2}\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=2\right)=-1<0$, therefore H 4 is correct. SONC:

$$
y \nabla_{x x} L\left(x^{\star}, \mu^{\star}\right) y \geqslant 0 \text { for } y \in V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{2} \mid \nabla g_{1}\left(x^{\star}\right)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
2 & 4
\end{array}\right] y=0\right.\right\}
$$

Since $\nabla_{x x} \mathrm{~L}\left(x^{\star}, \mu^{\star}\right)=\left[\begin{array}{cc}4+2 \mu_{1}^{\star} & 2 \\ 2 & 2+2 \mu_{1}^{\star}\end{array}\right]>0\left(\mu^{\star}=1\right)$, then SONC condition is definitely satisfied. Also since the condition holds for strict >0, then the second order sufficiency condition is satisfied and $x_{1}^{\star}=1, x_{2}^{\star}=2$ is a local minimizer.

