Optimization Methods Lecture 10

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

Consult: pages 276-297 (section 3.1 and 3.2) from Ref[1]. The slides are only part of Lecture 10; consult your class notes for complete discussion.

Constrained optimization (review)

We consider the following standard form:

$$
\begin{array}{llr}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) & \text { s.t. } & x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \\
& h_{i}(x)=0, \quad i \in\{1, \cdots, m\} & \text { s.t. } \\
& g_{i}(x) \leqslant 0, \quad i \in\{1, \cdots, r)=0, \\
h^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, g^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} & g(x) \leqslant 0, \\
\text { - } f, h, g: \text { continuously differentiable function of } x & \\
\text { e.g., } f, h, g \in C^{1} \text { continuously differentiable } \\
\text { e.g., } f, h, g \in C^{2} \text { both } f \text { and its first derivative are continuously differentiable } \\
\text { - the equality constraints are underdetermined. It is usually assume that } m \leqslant n \\
\text { on restriction on } r
\end{array}
$$

Feasible set: set up points that satisfy the constraints

$$
\Omega=\left\{x \in \mathbb{R}^{n} \mid h(x)=0, g(x) \leqslant 0\right\} .
$$

The constrained optimization can also be written as

$$
x^{\star}=\underset{x \in \Omega}{\operatorname{argmin}} f(x)
$$

First order necessary condition for optimality (review)

χ^{\star} is a local minimizer:

$$
f(x) \geqslant f\left(x^{\star}\right), \forall x \in \Omega \text { s.t. }\left\|x-x^{\star}\right\| \leqslant \epsilon
$$

Fitst order necessary condition analysis: consider $x \in \Omega$ that are in small neighborhood of a local minimum $x^{\star}: x=x^{\star}+\Delta x$

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \approx \mathrm{f}\left(\mathrm{x}^{\star}\right)+\nabla \mathrm{f}\left(\mathrm{x}^{\star}\right)^{\top} \Delta \mathrm{x}+\text { H.O. } \mathrm{T}^{\mathrm{f}(\mathrm{x}) \geqslant \mathrm{f}\left(\mathrm{x}^{\star}\right)} \stackrel{\Longrightarrow}{\Longrightarrow}\left(\mathrm{x}^{\star}\right)^{\top} \Delta \mathrm{x} \geqslant 0
$$

$x=x^{\star}+\Delta x \in \Omega:$
$h(x+\Delta x)=0 \Rightarrow h(x+\Delta x) \approx h\left(x^{\star}\right)+\nabla h\left(x^{\star}\right)^{\top} \Delta x=0 \stackrel{h\left(x^{\star}\right)=0}{\Longrightarrow} \nabla h\left(x^{\star}\right)^{\top} \Delta x=0$
$\mathrm{g}(\mathrm{x}+\Delta \mathrm{x}) \leqslant 0 \Rightarrow \mathrm{~g}(\mathrm{x}+\Delta \mathrm{x}) \approx \mathrm{g}\left(\mathrm{x}^{\star}\right)+\nabla \mathrm{g}\left(\mathrm{x}^{\star}\right)^{\top} \Delta \mathrm{x}=0 \stackrel{g_{\mathrm{i}}\left({ }^{\left({ }^{\star}\right)} \leqslant 0\right.}{\Longrightarrow} \begin{cases}\nabla \mathrm{g}_{\mathrm{i}}\left(\mathrm{x}^{\star}\right)^{\top} \Delta \leqslant 0 & \mathrm{~g}_{\mathrm{i}}\left(x^{\star}\right)=0 \\ \text { none } & \mathrm{g}_{\mathrm{i}}\left(\mathrm{x}^{\star}\right)<0\end{cases}$

- Active inequality set at $x: \mathcal{A}(x)=\left\{i \in\{1, \cdots, r\} \mid g_{i}(x)=0\right\}$
- Set of first order feasible variations at x :

$$
\mathrm{V}(\mathrm{x})=\left\{\mathrm{d} \in \mathbb{R}^{\mathrm{n}} \mid \nabla \mathrm{h}_{\mathrm{i}}(\mathrm{x})^{\top} \mathrm{d}=0, \quad \nabla \mathrm{~g}_{j}(\mathrm{x})^{\top} \mathrm{d} \leqslant 0, \quad j \in A\left(x^{\star}\right)\right\}
$$

$$
\text { FONC for optimality: } \nabla f\left(x^{\star}\right)^{\top} \Delta x \geqslant 0, \quad \text { for } \Delta x \in V\left(x^{\star}\right)
$$

Constrained optimization: equality constraints (review)

$$
\begin{array}{ccc}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) & \text { s.t. } & \text { or } \\
& x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)=0, \quad i \in\{1, \cdots, m\} & \\
h_{i}(x) & \text { s.t. } \\
\end{array}
$$

f, h, g : continuously differentiable function of x e.g., $f, h \in C^{1}$ continuously differentiable e.g., $f, h \in C^{2}$ both f and its first derivative are continuously differentiable First Order Necessary Condition for Optimality: x^{\star} is a local minimizer then

$$
\nabla f\left(x^{\star}\right)^{\top} \Delta x \geqslant 0, \quad \text { for } \quad \Delta x \in V\left(x^{\star}\right)
$$

- Set of first order feasible variations at χ

$$
\mathrm{V}(\mathrm{x})=\left\{\mathrm{d} \in \mathbb{R}^{\mathrm{n}} \mid \nabla \mathrm{h}_{\mathrm{i}}(\mathrm{x})^{\top} \mathrm{d}=0\right\}
$$

Geometric Interpretation of Lagrange Multipliers

$$
\nabla f\left(x^{\star}\right)=-\lambda \nabla h\left(x^{\star}\right)
$$

The methods I set forth require neither constructions nor geometric or mechanical considerations. They require only algebraic operations subject to a systematic and uniform course.
-Lagrange

Lagrange Multipliers

For a given local minimizer χ^{\star} there exists scalars $\underbrace{\lambda_{1}, \cdots, \lambda_{m}}_{\text {Lagrange Multipliers }}$ such that

$$
\begin{equation*}
\nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}\left(x^{\star}\right)=0 \tag{LM-1}
\end{equation*}
$$

- $\nabla f\left(x^{\star}\right)$ belongs to the sub space spanned by the constraint gradients at x^{\star} :

$$
\nabla f\left(x^{\star}\right)=-\lambda_{1} \nabla h_{1}\left(x^{\star}\right)-\cdots-\lambda_{m} \nabla h_{m}\left(x^{\star}\right)
$$

- $\nabla f\left(x^{\star}\right)$ is orthogonal to the subspace of first order feasible variants $V\left(x^{\star}\right)=\left\{d \in \mathbb{R}^{n} \mid \nabla h_{i}\left(x^{\star}\right)^{\top} d=0\right\}$

$$
\begin{aligned}
& \nabla \mathrm{f}\left(x^{\star}\right)^{\top} \Delta x=\left(-\lambda_{1} \nabla \mathrm{~h}_{1}\left(x^{\star}\right)-\cdots-\lambda_{\mathrm{m}} \nabla \mathrm{~h}_{\mathrm{m}}\left(x^{\star}\right)\right)^{\top} \Delta x \Rightarrow \\
& \nabla \mathrm{f}\left(\mathrm{x}^{\star}\right)^{\top} \Delta \mathrm{x}=0, \quad \text { for } \Delta \mathrm{x} \in \mathrm{~V}\left(\mathrm{x}^{\star}\right)
\end{aligned}
$$

Thus, according to the Largrange multiplier condition (LM-1), at the local minimum x^{\star}, the first order cost variation $\nabla f\left(x^{\star}\right) \Delta x$ is zero for all variations Δx in $\mathrm{V}\left(x^{\star}\right)$. This statement is analogous to the "zero gradient condition $\nabla f\left(x^{\star}\right)$ of the unconstrained optimization.

Necessary Conditions for Optimality

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x^{\star} be a local minimum of f subject to $h(x)=0$ and assume that the constraint gradients $\left\{\nabla \mathrm{h}_{1}\left(\mathrm{x}^{\star}\right), \quad \nabla \mathrm{h}_{\mathrm{m}}(\mathrm{x})\right\}$ are linearly independent. Then there exists a unique vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ called Lagrange multiplier vector, s.t.

$$
\nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0 .
$$

If in addition f and h are twice continuously differentiable we have

$$
y^{\top}\left(\nabla^{2} f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla^{2} h_{i}\left(x^{\star}\right)\right) y \geqslant 0, \quad \forall y \in V\left(x^{\star}\right)
$$

where $V\left(x^{\star}\right)$ is the space of first order feasible variations, i.e.,

$$
V\left(x^{\star}\right)=\left\{d \in \mathbb{R}^{n} \mid \nabla h_{i}\left(x^{\star}\right)^{\top} d=0\right\} .
$$

A Problem with no Lagrange Multipliers: regularity of optimal point

- Regular point of a set of constraints: A feasible vector x for which the constraint gradients $\left\{\nabla \mathrm{h}_{1}(\mathrm{x}), \cdots, \nabla \mathrm{h}_{\mathrm{m}}(\mathrm{x})\right\}$ are linearly independent.
- For a local minimum that is not regular, there may not exist Lagrange multipliers.

$$
\begin{aligned}
\operatorname{minimize} & f(x)=x_{1}+x_{2}, \quad \text { s.t. } \\
& h_{1}(x)=\left(x_{1}-1\right)^{2}+x_{2}^{2}-1=0, \quad h_{2}(x)=\left(x_{1}-2\right)^{2}+x_{2}^{2}-4=0
\end{aligned}
$$

- x^{\star} is not regular. Therefore, this problem cannot be solved using Lagrange multiplier theorem.
- $\nabla f\left(x^{\star}\right)$ cannot be written as linear combination of $\nabla h_{1}\left(x^{\star}\right)$ and $\nabla \mathrm{h}_{2}\left(\mathrm{x}^{\star}\right)$

Necessary Conditions for Optimality

$$
\text { Lagrangian function } L: \mathbb{R}^{n+m} \mapsto \mathbb{R}: L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)
$$

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x^{\star} be a local minimum of f subject to $h(x)=0$ and assume that the constraint gradients $\left\{\nabla \mathrm{h}_{1}\left(\mathrm{x}^{\star}\right), \quad, \nabla \mathrm{h}_{\mathfrak{m}}(\mathrm{x})\right\}$ are linearly independent. Then there exists a unique vectors $\lambda^{\star}=\left(\lambda_{1}^{\star}, \cdots, \lambda_{\mathrm{m}}^{\star}\right)$ called Lagrange multiplier vector, s.t.

$$
\nabla_{x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right)=0 .
$$

If in addition f and h are twice continuously differentiable we have

$$
y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y \geqslant 0, \quad \forall y \in \mathrm{~V}\left(x^{\star}\right)
$$

where $V\left(x^{\star}\right)$ is the space of first order feasible variations, i.e.,

$$
V\left(x^{\star}\right)=\left\{d \in \mathbb{R}^{n} \mid \nabla h_{i}\left(x^{\star}\right)^{\top} d=0\right\} .
$$

$$
h\left(x^{\star}\right)=0 \Leftrightarrow \nabla_{\lambda} L\left(x^{\star}, \lambda^{\star}\right)=0 .
$$

Second Order Sufficiency Conditions for Optimality

Proposition (Second Order Sufficiency Conditions for Optimality)

Assume that f and h are twice continuously differentiable, and let $\chi^{\star} \in \mathbb{R}^{n}$ and $\lambda^{\star} \in \mathbb{R}^{m}$ satisfy

$$
\begin{aligned}
& \nabla_{\chi} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0, \quad \nabla_{\lambda} \mathrm{L}\left(x^{\star}, \lambda^{\star}\right)=0, \\
& y^{\top} \nabla_{x x} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y>0, \quad \forall y \neq 0 \text { with } \nabla h\left(x^{\star}\right)^{\top} y=0 .
\end{aligned}
$$

Then x^{\star} is a strict local minimum of f subject to $h(x)=0$. In fact, there exists scalars $\gamma>0$ and $\epsilon>0$ such that

$$
f(x) \geqslant f\left(x^{\star}\right)+\frac{\gamma}{2}\left\|x-x^{\star}\right\|, \quad \forall x \text { with } h(x)=0 \text { and }\left\|x-x^{\star}\right\|<\epsilon .
$$

Second order necessary and sufficient conditions

$$
\begin{array}{ll}
\text { SONC: } y^{\top} \nabla_{x}^{2} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y \geqslant 0, & \forall y \in V\left(x^{\star}\right) \\
\text { SOSC: } y^{\top} \nabla_{x}^{2} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) y>0, & \forall y \in \mathrm{~V}\left(x^{\star}\right)
\end{array}
$$

where $V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{n} \mid \nabla_{x} h(x)^{\top} y=0\right\}$ Because $\left(\nabla_{x} h_{1}(x), \cdots, \nabla_{x} h_{m}(x)\right)$ are linearly independent, then

$$
\operatorname{rank}\left(\nabla_{x} h(x)^{\top}\right)=\operatorname{rank}\left(\left[\begin{array}{lll}
\nabla_{x} h_{1}(x) & \cdots & \nabla_{x} h_{m}(x)
\end{array}\right]\right)=m<n .
$$

Therefore,
$V\left(x^{\star}\right)=\left\{y \in \mathbb{R}^{n} \mid \nabla_{x} h(x)^{\top} y=0\right\}=\left\{y \in \mathbb{R}^{n} \mid N z=0, \forall z \in \mathbb{R}^{n-m}\right\}$ where columns of N span the null-space of $\nabla_{x} h(x)^{\top}$.

SONC: $z^{\top} \underbrace{N^{\top} \nabla_{x}^{2} \mathrm{~L}\left(x^{\star}, \lambda^{\star}\right) \mathrm{N}}_{M} z \geqslant 0, \quad \forall z \in \mathbb{R}^{n-m} \quad \Leftrightarrow \quad$ SONC: $M \geqslant 0$
SOSC: $z^{\top} \underbrace{N^{\top} \nabla_{x}^{2} \mathrm{~L}\left(\chi^{\star}, \lambda^{\star}\right) \mathrm{N}}_{M} z>0, \quad \forall z \in \mathbb{R}^{n-m} \quad \Leftrightarrow \quad$ SOSC: $M>0$

Numerical example: maximum volume cardboard box with given area.

Problem: Construct a cardboard box of maximum volume, given a fixed area $c \in \mathbb{R}_{>0}$ of cardboard.
Solution: Denote the dimensions of the box by x, y and z. Then the problem becomes

$$
\begin{gathered}
\text { minimize }-x y z \quad(\text { equivalent to maximize } x y z) \\
\text { subject to }(x y+y z+x z)=\frac{c}{2} \\
-------- \\
L(x, y, z, \lambda)=-x y z+\lambda\left(x y+y z+x z-\frac{c}{2}\right)
\end{gathered}
$$

FONC: $\left\{\begin{array}{l}\nabla_{x} \mathrm{~L}(x, y, z, \lambda)=0 \Rightarrow-y z+\lambda(y+z)=0 \\ \nabla_{y} \mathrm{~L}(x, y, z, \lambda)=0 \Rightarrow-x z+\lambda(x+z)=0 \\ \nabla_{z} \mathrm{~L}(x, y, z, \lambda)=0 \Rightarrow-x y+\lambda(x+y)=0 \\ \nabla_{\lambda} \mathrm{L}(x, y, z, \lambda)=0 \Rightarrow x y+y z+x z-\frac{c}{2}=0\end{array}\right.$
$x^{\star}=y^{\star}=z^{\star}=\sqrt{\frac{c}{6}}$ and $\lambda^{\star}=\frac{1}{2} \sqrt{\frac{c}{6}}$ is the unique solution.

Numerical example: maximum volume cardboard box with given area.

$\nabla_{x, y, z}^{2} \mathrm{~L}\left(x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}\right)=\left[\begin{array}{ccc}0 & -z^{\star}+\lambda^{\star} & -y^{\star}+\lambda^{\star} \\ -z^{\star}+\lambda^{\star} & 0 & -x^{\star}+\lambda^{\star} \\ -y^{\star}+\lambda^{\star} & -x^{\star}+\lambda^{\star} & 0\end{array}\right]=\left(-\frac{1}{2} \sqrt{\frac{\mathrm{c}}{6}}\right)\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
Note that $\nabla_{x, y, z}^{2} \mathrm{~L}\left(x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}\right)$ is indefinite because eig $\left(\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\right)=\{-1,-1,2\}$.
Recall that you do not necessarily need $\nabla_{x, y, z}^{2} \mathrm{~L}\left(x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}\right)$ to be positive semi-definite for ($x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}$) to be a minimizer.

$$
\text { SONC: } \mathrm{p}^{\top} \nabla_{x, y, z}^{2} \mathrm{~L}\left(\mathrm{x}^{\star}, \mathrm{y}^{\star}, z^{\star}, \lambda^{\star}\right) \mathrm{p} \geqslant 0 \forall \mathrm{p} \in \mathrm{~V}\left(\mathrm{x}^{\star}, \mathrm{y}^{\star}, z^{\star}\right)
$$

$\mathrm{V}\left(x^{\star}, y^{\star}, z^{\star}\right)=\left\{p \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{lll}y^{\star}+z^{\star} & x^{\star}+z^{\star} & z^{\star}+y^{\star}\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]=0\right.\right\}=\left\{p \in \mathbb{R}^{3} \mid p_{1}+p_{2}+p_{3}=0\right\}$
$p^{\top} \nabla_{x, y, z}^{2} L\left(x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}\right) p=\left(-\frac{1}{2} \sqrt{\frac{c}{6}}\right)\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]^{\top}\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]=$ $\left(-\frac{1}{2} \sqrt{\frac{c}{6}}\right)\left(p_{2}+p_{3}\right) p_{1}+\left(p_{1}+p_{3}\right) p_{2}+\left(p_{1}+p_{2}\right) p_{3}=-\left(-\frac{1}{2} \sqrt{\frac{c}{6}}\right)\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)>0$ Because $p \in V\left(x^{\star}, y^{\star}, z^{\star}\right)$, we used $p_{2}+p_{3}=-p_{1}, p_{1}+p_{3}=-p_{2}$ and $p_{1}+p_{2}=-p_{3}$. Since the Second Order Sufficiency Condition is satisfied: $\left(x^{\star}=\sqrt{\frac{c}{6}}, y^{\star}=\sqrt{\frac{c}{6}}, z^{\star}=\sqrt{\frac{c}{6}}\right)$ is the unique global minimizer (note that the cost function is bounded over the feasible set, therefore we have a global minimizer).

Numerical example: maximum volume cardboard box with given area.

- Alternative way to check for second order optimality condition:

$$
\text { SONC: } \mathrm{p}^{\top} \nabla_{x, y, z}^{2} \mathrm{~L}\left(\mathrm{x}^{\star}, \mathrm{y}^{\star}, z^{\star}, \lambda^{\star}\right) \mathrm{p} \geqslant 0 \forall \mathrm{p} \in \mathrm{~V}\left(\mathrm{x}^{\star}, \mathrm{y}^{\star}, z^{\star}\right)
$$

$V\left(x^{\star}, y^{\star}, z^{\star}\right)=\left\{p \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{lll}y^{\star}+z^{\star} & x^{\star}+z^{\star} & z^{\star}+y^{\star}\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]=0\right.\right\}=$
$\left\{p \in \mathbb{R}^{3} \mid \mathrm{p}=\mathrm{N} z, \forall z \in \mathbb{R}^{2}\right\}$ where N is a matrix whose columns span the null-space of
$\nabla h\left(x^{\star}, y^{\star}, z^{\star}\right): N=\left[\begin{array}{cc}1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right]$.
$p^{\top} \nabla_{x, y, z}^{2} \mathrm{~L}\left(x^{\star}, y^{\star}, z^{\star}, \lambda^{\star}\right) p=\underbrace{z}_{M=\left(-\frac{1}{2} \sqrt{\frac{c}{6}}\right)}\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right]\left(-\frac{1}{2} \sqrt{\frac{c}{6}}\right)\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right]$.
Since matrix M is positive definite, we conclude that in fact the Second Order Sufficiency Condition is satisfied: $\left(x^{\star}=\sqrt{\frac{c}{6}}, y^{\star}=\sqrt{\frac{c}{6}}, z^{\star}=\sqrt{\frac{c}{6}}\right)$ is the unique global minimizer (note that the cost function is bounded over the feasible set, therefore we have a global minimizer).

