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Constrained optimization (review)

We consider the following standard form:

x? =argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

gi(x) 6 0, i ∈ {1, · · · , r}

hi : Rn → R, gi : Rn → R

or

x? =argmin
x∈Rn

f(x) s.t.

h(x) = 0,

g(x) 6 0,

h : Rn → Rm, g : Rn → Rr

f,h,g: continuously differentiable function of x
e.g., f,h,g ∈ C1 continuously differentiable
e.g., f,h,g ∈ C2 both f and its first derivative are continuously differentiable
the equality constraints are underdetermined. It is usually assume that m 6 n
no restriction on r

Feasible set: set up points that satisfy the constraints

Ω = {x ∈ Rn|h(x) = 0, g(x) 6 0}.

The constrained optimization can also be written as

x? =argmin
x∈Ω

f(x)
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First order necessary condition for optimality (review)

x? is a local minimizer:

f(x) > f(x?), ∀x ∈ Ω s.t. ‖x− x?‖ 6 ε

Fitst order necessary condition analysis: consider x ∈ Ω that are in small neighborhood
of a local minimum x?: x = x? + ∆x

f(x+ ∆x) ≈ f(x?) +∇f(x?)>∆x+H.O.T f(x)>f(x
?)

=⇒ ∇f(x?)>∆x > 0

x = x? + ∆x ∈ Ω:

h(x+∆x) = 0⇒ h(x+∆x)≈h(x?)+∇h(x?)>∆x=0
h(x?)=0
=⇒ ∇h(x?)>∆x = 0

g(x+∆x) 6 0⇒ g(x+∆x)≈g(x?)+∇g(x?)>∆x=0
gi(x

?)60
=⇒

{
∇gi(x?)>∆ 6 0 gi(x

?) = 0

none gi(x
?) < 0

Active inequality set at x: A(x) =
{
i ∈ {1, · · · , r}

∣∣ gi(x) = 0
}

Set of first order feasible variations at x:

V(x) =
{
d ∈ Rn

∣∣ ∇hi(x)>d = 0, ∇gj(x)>d 6 0, j ∈ A(x?)
}

FONC for optimality : ∇f(x?)>∆x > 0, for ∆x ∈ V(x?)
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Constrained optimization: equality constraints (review)

x? =argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

or x? =argmin
x∈Rn

f(x) s.t.

h(x) = 0,

f,h,g: continuously differentiable function of x
e.g., f,h ∈ C1 continuously differentiable
e.g., f,h ∈ C2 both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x? is a local minimizer then

∇f(x?)>∆x > 0, for ∆x ∈ V(x?)

Set of first order feasible variations at x

V(x) = {d ∈ Rn
∣∣ ∇hi(x)>d = 0}
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Geometric Interpretation of Lagrange Multipliers

∇f(x?) = −λ∇h(x?)

The methods I set forth require neither constructions nor geometric or
mechanical considerations. They require only algebraic operations subject
to a systematic and uniform course. -Lagrange 5 / 14



Lagrange Multipliers

For a given local minimizer x? there exists scalars λ1, · · · , λm︸ ︷︷ ︸
Lagrange Multipliers

such that

∇f(x?) +
m∑
i=1

λi∇hi(x?) = 0. (LM-1)

∇f(x?) belongs to the sub space spanned by the constraint gradients at x?:

∇f(x?) = −λ1∇h1(x?) − · · ·− λm∇hm(x?)

∇f(x?) is orthogonal to the subspace of first order feasible variants
V(x?) = {d ∈ Rn

∣∣ ∇hi(x?)>d = 0}

∇f(x?)>∆x = (−λ1∇h1(x?) − · · ·− λm∇hm(x?))>∆x⇒
∇f(x?)>∆x = 0, for ∆x ∈ V(x?)

Thus, according to the Largrange multiplier condition (LM-1), at the local
minimum x?, the first order cost variation ∇f(x?)∆x is zero for all variations
∆x in V(x?). This statement is analogous to the "zero gradient condition
∇f(x?) of the unconstrained optimization.

6 / 14



Necessary Conditions for Optimality

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x? be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {∇h1(x?), ,∇hm(x)} are linearly independent. Then there
exists a unique vectors λ? = (λ?1 , · · · , λ?m) called Lagrange multiplier vector, s.t.

∇f(x?) +
m∑
i=1

λ?i∇hi(x?) = 0.

If in addition f and h are twice continuously differentiable we have

y>
(
∇2f(x?) +

m∑
i=1

λ?i∇2hi(x
?)
)
y > 0, ∀y ∈ V(x?)

where V(x?) is the space of first order feasible variations, i.e.,

V(x?) = {d ∈ Rn
∣∣ ∇hi(x?)>d = 0}.
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A Problem with no Lagrange Multipliers: regularity of optimal point

Regular point of a set of constraints: A feasible vector x for which the constraint
gradients {∇h1(x), · · · ,∇hm(x)} are linearly independent.

For a local minimum that is not regular, there may not exist Lagrange multipliers.

minimize f(x) = x1 + x2, s.t.

h1(x) = (x1 − 1)2 + x22 − 1 = 0, h2(x) = (x1 − 2)2 + x22 − 4 = 0.

x? is not regular. Therefore,
this problem cannot be solved
using Lagrange multiplier
theorem.

∇f(x?) cannot be written as
linear combination of ∇h1(x

?)
and ∇h2(x

?)
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Necessary Conditions for Optimality

Lagrangian function L : Rn+m 7→ R: L(x, λ) = f(x) +
∑m
i=1 λihi(x)

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x? be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {∇h1(x?), ,∇hm(x)} are linearly independent. Then there
exists a unique vectors λ? = (λ?1 , · · · , λ?m) called Lagrange multiplier vector, s.t.

∇xL(x?, λ?) = 0.

If in addition f and h are twice continuously differentiable we have

y>∇xxL(x?, λ?)y > 0, ∀y ∈ V(x?)

where V(x?) is the space of first order feasible variations, i.e.,

V(x?) = {d ∈ Rn
∣∣ ∇hi(x?)>d = 0}.

h(x?) = 0⇔ ∇λL(x?, λ?) = 0.
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Second Order Sufficiency Conditions for Optimality

Proposition (Second Order Sufficiency Conditions for Optimality)

Assume that f and h are twice continuously differentiable, and let x? ∈ Rn and
λ? ∈ Rm satisfy

∇xL(x?, λ?) = 0, ∇λL(x?, λ?) = 0,

y>∇xxL(x?, λ?)y > 0, ∀y 6= 0 with ∇h(x?)>y = 0.

Then x? is a strict local minimum of f subject to h(x) = 0. In fact, there exists
scalars γ > 0 and ε > 0 such that

f(x) > f(x?) +
γ

2
‖x− x?‖, ∀x with h(x) = 0 and ‖x− x?‖ < ε.
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Second order necessary and sufficient conditions

SONC: y>∇2
xL(x

?, λ?)y > 0, ∀y ∈ V(x?)
SOSC: y>∇2

xL(x
?, λ?)y > 0, ∀y ∈ V(x?)

where V(x?) =
{
y ∈ Rn

∣∣∣∇xh(x)>y = 0
}

Because (∇xh1(x), · · · ,∇xhm(x)) are
linearly independent, then

rank(∇xh(x)>) = rank
([
∇xh1(x) · · · ∇xhm(x)

])
= m < n.

Therefore,
V(x?) =

{
y ∈ Rn

∣∣∣∇xh(x)>y = 0
}
=
{
y ∈ Rn

∣∣∣Nz = 0, ∀z ∈ Rn−m
}

where

columns of N span the null-space of ∇xh(x)>.

SONC: z>N>∇2
xL(x

?, λ?)N︸ ︷︷ ︸
M

z > 0, ∀z ∈ Rn−m

SOSC: z>N>∇2
xL(x

?, λ?)N︸ ︷︷ ︸
M

z > 0, ∀z ∈ Rn−m

⇔ SONC: M > 0

⇔ SOSC: M > 0

11 / 14



Numerical example: maximum volume cardboard box with given area.

Problem: Construct a cardboard box of maximum volume, given a fixed area
c ∈ R>0 of cardboard.
Solution: Denote the dimensions of the box by x, y and z. Then the problem
becomes

minimize − xyz (equivalent to maximize xyz)

subject to (xy+ yz+ xz) =
c

2

−−−−−−−−−

L(x,y, z, λ) = −xyz+ λ(xy+ yz+ xz−
c

2
)

FONC:


∇xL(x,y, z, λ) = 0⇒ −yz+ λ(y+ z) = 0

∇yL(x,y, z, λ) = 0⇒ −xz+ λ(x+ z) = 0

∇zL(x,y, z, λ) = 0⇒ −xy+ λ(x+ y) = 0

∇λL(x,y, z, λ) = 0⇒ xy+ yz+ xz− c
2 = 0

x? = y? = z? =
√
c
6 and λ? = 1

2

√
c
6 is the unique solution.
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Numerical example: maximum volume cardboard box with given area.

∇2
x,y,zL(x

?,y?,z?,λ?)=

 0 −z?+λ? −y?+λ?

−z?+λ? 0 −x?+λ?

−y?+λ? −x?+λ? 0

=(− 1
2

√
c
6 )

0 1 1
1 0 1
1 1 0


Note that ∇2

x,y,zL(x
?,y?,z?,λ?) is indefinite because eig

0 1 1
1 0 1
1 1 0

 = {−1,−1, 2}.

Recall that you do not necessarily need ∇2
x,y,zL(x

?,y?,z?,λ?) to be positive semi-definite for
(x?,y?,z?,λ?) to be a minimizer.

SONC: p>∇2
x,y,zL(x

?,y?,z?,λ?)p > 0 ∀p ∈ V(x?,y?,z?)

V(x?,y?,z?)=

p ∈ R3
∣∣∣ [y?+z? x?+z? z?+ y?

]p1

p2

p3

=0

=
{
p ∈ R3

∣∣∣p1+p2+p3=0
}

p>∇2
x,y,zL(x

?,y?,z?,λ?)p=(− 1
2

√
c
6 )

p1

p2

p3

>0 1 1
1 0 1
1 1 0

p1

p2

p3

=
(− 1

2

√
c
6 )(p2 + p3)p1 + (p1 + p3)p2 + (p1 + p2)p3=−(− 1

2

√
c
6 )(p

2
1 + p

2
2 + p

2
3) > 0

Because p ∈ V(x?,y?,z?), we used p2+p3= −p1, p1+p3= −p2 and p1+p2= −p3.

Since the Second Order Sufficiency Condition is satisfied: (x? =
√
c
6 ,y

? =
√
c
6 ,z

? =
√
c
6 ) is

the unique global minimizer (note that the cost function is bounded over the feasible set,
therefore we have a global minimizer). 13 / 14



Numerical example: maximum volume cardboard box with given area.

Alternative way to check for second order optimality condition:

SONC: p>∇2
x,y,zL(x

?,y?,z?,λ?)p > 0 ∀p ∈ V(x?,y?,z?)

V(x?,y?,z?)=

p ∈ R3
∣∣∣ [y?+z? x?+z? z?+ y?

]p1

p2

p3

=0

={
p ∈ R3

∣∣∣p =Nz, ∀z ∈ R2
}
where N is a matrix whose columns span the null-space of

∇h(x?,y?,z?): N =

 1 0
−1 1
0 −1

.
p>∇2

x,y,zL(x
?,y?,z?,λ?)p=z

[
1 −1 0
0 1 −1

]
(−

1

2

√
c

6
)

0 1 1
1 0 1
1 1 0

 1 0
−1 1
0 −1


︸ ︷︷ ︸

M=(− 1
2

√
c
6 )

[
−2 1
1 −2

]
z.

Since matrixM is positive definite, we conclude that in fact the Second Order Sufficiency
Condition is satisfied: (x? =

√
c
6 ,y

? =
√
c
6 ,z

? =
√
c
6 ) is the unique global minimizer (note

that the cost function is bounded over the feasible set, therefore we have a global minimizer).
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