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Constrained optimization (review)

We consider the following standard form:

x* =argmin f(x) s.t. x* =argmin f(x) s.t.
xER™ xXER™
hi(x) =0, ie{l,---,m} or h(x) =0,
gi(x) <0, ie{l,--- 1} g(x) <0,
ht:R™ =R, g':R" - R h:R™ - R™, g:R™ - R"

e f,h,g: continuously differentiable function of x

e.g., f,h, g € C! continuously differentiable

e.g., f,h,g € C? both f and its first derivative are continuously differentiable
@ the equality constraints are underdetermined. It is usually assume that m < n

@ no restriction on 1
Feasible set: set up points that satisfy the constraints
Q ={xeR"h(x) =0, g(x) <0}

The constrained optimization can also be written as

x* =argmin f(x)
xeQ



First order necessary condition for optimality (review)

*

x* is a local minimizer:

f(x) > f(x*), ¥x € Q s.t. |[x —x*[| < e
Fitst order necessary condition analysis: consider x € Q that are in small neighborhood

of a local minimum x*: x = x* + Ax

x*)

f(x 4+ Ax) ~ f(x*) + Vf(x*) TAx + H.O.T flel2f(
x=x*+Ax € Q:

VEx*)TAx >0

h(x+Ax) = 0 = h(x+Ax)~h(x*)+Vh(x*) TAx=0 = Vh(x*) Ax =

g(x+Ax) < 0= g(x+Ax)=g(x*)+Vg(x*) T Ax=0 iy {

@ Active inequality set at x: A(x) ={ie{l,--- 1} | gi(x) =0}
@ Set of first order feasible variations at x:

V(x) ={deR" | Vhi(x)'d =0, Vgj(x)"d<0, jeAK")}

‘ FONC for optimality : VFf(x*)TAx >0, for Ax € V(x*)




Constrained optimization: equality constraints (review)

x* =argmin f(x) s.t. or x* =argmin f(x) s.t.
xeR™ xER™
hi(x) =0, ie{l,---,m} h(x) =0,

f,h,g: continuously differentiable function of x
e.g., f,h € C! continuously differentiable
e.g., . h € C? both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x* is a local minimizer then

Vi(x*)TAx >0, for Ax € V(x*)

@ Set of first order feasible variations at x

V(x) ={d € R™ | Vhi(x)"d =0}



Geometric Interpretation of Lagrange Multipliers

I(z,y) =0

f=cs

f=c
cs>cp>c3>c >0
Vi(x*) = —AVh(x*)

The methods | set forth require neither constructions nor geometric or
mechanical considerations. They require only algebraic operations subject
to a systematic and uniform course. -Lagrange



Lagrange Multipliers

For a given local minimizer x* there exists scalars A1,--- , A, such that
H—/

Lagrange Multipliers

V) + ) AVhi(x*) =0.  (LM-1)
i=1

@ V{(x*) belongs to the sub space spanned by the constraint gradients at x*:
VI(x*) = =A1Vhy(x*) — -+ = A Vhi (x*)
@ Vf(x*) is orthogonal to the subspace of first order feasible variants
V(x*) ={d € R™ | Vhi(x*)"d =0}
VE(x*)TAx = (M Vhi (x*) — - = AV (x*)) T Ax =
Vi(x*)TAx =0, for Ax € V(x¥)

Thus, according to the Largrange multiplier condition (LM-1), at the local
minimum x*, the first order cost variation Vf(x*)Ax is zero for all variations
Ax in V(x*). This statement is analogous to the "zero gradient condition
V1(x*) of the unconstrained optimization.



Necessary Conditions for Optimality

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x* be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {Vh;(x*), ,Vhu(x)} are linearly independent. Then there
exists a unique vectors A* = (A}, --- ,AX ) called Lagrange multiplier vector, s.t.

VE(x*) + ) M Vhi(x*) =0.
i=1
If in addition f and h are twice continuously differentiable we have
y ' (V2(x*) + Z)\’{Vzhi(x*))y >0, VyeVkx)
i=1

where V(x*) is the space of first order feasible variations, i.e.,

V(x*) ={d e R™ | Vhy(x*)"d = 0}.




A Problem with no Lagrange Multipliers: regularity of optimal point

@ Regular point of a set of constraints: A feasible vector x for which the constraint
gradients {Vh;(x),- -+, Vh,(x)} are linearly independent.

@ For a local minimum that is not regular, there may not exist Lagrange multipliers.

minimize f(x) = x; +x», s.t.

h(x)=(x1 —1)2+x3—1=0, hy(x)=(x;1—2)>+x3—4=0.

X2

@ x* is not regular. Therefore,
this problem cannot be solved
using Lagrange multiplier S i
theorem. ENUIBLEURN /7

X =(0.0)

. i) = (400
@ Vf(x*) cannot be written as o

linear combination of Vhy(x*)
and Vhy(x*)




Necessary Conditions for Optimality

Lagrangian function L: R™ ™ — R: L(x,A) = f(x) + >_{; Ahi(x)

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x* be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {Vhy(x*), ,Vh.(x)} are linearly independent. Then there
exists a unique vectors A* = (A}, - -+ ,AX ) called Lagrange multiplier vector, s.t.

VL(x*,A*) =0.
If in addition f and h are twice continuously differentiable we have
yTle_(x’,N]y >0, VyeVHx

where V(x*) is the space of first order feasible variations, i.e.,

V(x*) ={d e R™ | Vhy(x*)"d =0}

h(x*) =0« V,L(x*,A*) =0.



Second Order Sufficiency Conditions for Optimality

Proposition (Second Order Sufficiency Conditions for Optimality)

Assume that f and h are twice continuously differentiable, and let x* € R™ and
A* € R™ satisfy

ViL(x*,A*) =0, ViL(x*,A*) =0,
Yy Vi L(x*, A*)y >0, Vy#0 with Vh(x*) 'y =0.

Then x* is a strict local minimum of f subject to h(x) = 0. In fact, there exists
scalars vy > 0 and € > 0 such that

f(x) > f(x*) + %||x—x*||, Vx with h(x) =0 and ||x —x*|| < €.




Second order necessary and sufficient conditions

SONC: yTV2L(x* A*Jy >0, Wy € V(x*)
SOSC: y'V2L(x*,A")y >0, Wy € V(x*)

where V(x*) = {g € R“‘Vxh(x)Ty = O} Because (Vyhi(x), -, Vixhmn(x)) are
linearly independent, then

rank(Vih(x)") = rank ([Vxhi(x) -+ Vihp(x)]) =m<n.
Therefore,
V(x*) = {y € R”‘Vxh(x)Ty = 0} = {y € ]R“‘Nz =0, Vz € ]R“*m} where

columns of N span the null-space of Vih(x)T.

SONC: zT NTV2L(x*,A*)Nz>0, VzeR™™ & SONC:M >0
—_———

M
SOSC: zT NTV2L(x*, A*)Nz>0, VzeR™™ <& SOSC:M>0
_\/—/

M



Numerical example: maximum volume cardboard box with given area.

Problem: Construct a cardboard box of maximum volume, given a fixed area
c € R.g of cardboard.

Solution: Denote the dimensions of the box by x, y and z. Then the problem
becomes
minimize — xyz (equivalent to maximize xyz)

, c
subject to (xy +yz+xz) = 5

L(x,y,z,A) = —xyz + A(xy + yz + xz — %)

Vil(x,y,z,A) =0= —yz+A(y+z)=0
FONC: Vyl(x,y,2,A) =0= —xz+Ax+2z) =0
VZL(X,U,Z,)\):O:> —xy +)\(X+U):0
Valx,y,zA) =0=xy+yz+xz—§ =0

X=yr=z"= \/% and A* = %\/% is the unique solution.



Numerical example: maximum volume cardboard box with given area.

0 —z¥AY —yrA* 0 1 1
Vilysz(x*,y*,z*,?\*): —z*FA* 0 —x* A" = % €)|r o 1
—UPAR xXF A 0 110
0o 1 1
Note that Viyyl]_(x*,y*,z*, A*) is indefinite because eig 1 0 1 ={-1,-1,2}
1 1 0
Recall that you do not necessarily need Vivgyzl_(x*,y*, z*, A\*) to be positive semi-definite for

(x*,y*, z*, A*) to be a minimizer.

’ SONC: pTV2, L(x*,y* 2", A")p > 0 Vp € V(x*,y*, ")

P1
V(x*y*zh) = p€R3Hy*+Z* X*+z* 24 y*] [p2| =0 :{P€R3(p1+m+p3:0}
P3
P1 0 1 1| (p1
pTvi,y,zL(X*vy*vZ*v)\*)p:(_% %) P2 1 0 1 P2| =
ps] [1 1 0] |ps
(=3 (p2+p3)p1+ (P1+P3)p2+ (P1+P2)pa=—(—2/S) (P2 +p3+p3) >0

Because p € V(x*,y*, z*), we used p2+Pp3= —pi1, p1+pP3= —p2 and p1+p2= —ps.
Since the Second Order Sufficiency Condition is satisfied: (x* = /€, y* = /5,2 =/€) is

the unique global minimizer (note that the cost function is bounded over the feasible set,

therefore we have a global minimizer).



Numerical example: maximum volume cardboard box with given area.

@ Alternative way to check for second order optimality condition:

’ SONC: p V2, L(x*,y*, 2", A" )p >0 Vp € V(x*,y*,2*)

P1
V(x5 y*z¥) = p€R3My*+z* x*+z* z¥+y*]|p2| =0;=
P3
{p € R3)p =Nz, Vze R2} where N is a matrix whose columns span the null-space of
1 0
Vh(x*,y*,z*): N=|—-1 1
0o -1
0 1 1 1 0
— 1
pTVi'ysz(x*'g*'Z*')\*)p:Z{(1) 11 701} (,5 %) 1 0 1|(-1 1|z
1 1 0/]|]0 -1
- 2 1
M=(-3 3][ 1 —2]

Since matrix M is positive definite, we conclude that in fact the Second Order Sufficiency

Condition is satisfied: (x* = \/§,y* = /€, z* = /&) is the unique global minimizer (note
that the cost function is bounded over the feasible set, therefore we have a global minimizer).



