HOMEWORK 6

MAE 206- OPTIMIZATION METHODS INSTRUCTOR: PROF. SOLMAZ S. KIA

Problem 1. You have 10 ft of wire and you are going to cut it into two pieces. One piece you will bend into a circle, and one piece you will bend into a square. What ratio of the two pieces will maximize the combined area of the two shapes?

- Formulate this problem as an optimization problem.
- Solve the problems. Show your work.

What ratio of the two pieces will minimize the combined area of the two shapes?

- Formulate this problem as an optimization problem.
- Solve the problems. Show your work.

Problem 2. Consider the optimization problem below

$$
\begin{gathered}
\text { P1 :minimize } f(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right), \quad \text { subject to, } \\
x_{1}+x_{2}+x_{3}=3 .
\end{gathered}
$$

- Recall the minimizer of this optimization problem from homework 5 .
- Consider the penalty function form of this problem, i.e.,

$$
\mathrm{P} 2: \text { minimize } f_{c}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\frac{1}{2} c\left(x_{1}+x_{2}+x_{3}-3\right)^{2} .
$$

find ($x_{1}^{\star}, x_{2}^{\star}, x_{3}^{\star}$) in terms of c. For what values of c, the solutions of optimization P1 and P2 become equal. Plot $\left(c, x_{1}^{\star}(c)\right)$, $\left(c, x_{2}^{\star}(c)\right)$, and $\left(c, x_{3}^{\star}(c)\right)$.

Problem 3. Find the maximizer of the problem below

$$
\begin{aligned}
& \text { maximize } f(x)=14 x-x^{2}+6 y-y^{2}+7, \quad \text { subject to, } \\
& \quad x+y \leq 2 \\
& \quad x+2 y \leq 3 .
\end{aligned}
$$

