HOMEWORK 2 MAE 206- OPTIMIZATION METHODS INSTRUCTOR: PROF. SOLMAZ S. KIA

Problem 1. This problem is a practice on computing the admissible range of a fixed stepsize for the steepest descent algorithm. Consider the unconstrained optimization problem with cost function below, which we given in problem 4 of homework 1. For this problem find the valid range of fixed stepsize for the steepest descent algorithm.

$$f(x) = 2x_1^2 + x_1x_2 + x_2^2 + x_2x_3 + x_3^2 - 6x_1 - 7x_2 - 8x_3 + 9.$$

Use the range you obtained to justify the observation that you made about the convergence of the algorithm for constant stepsizes that were given in homework 1 (i.e., $\alpha = 0.1$, $\alpha = 0.5$, $\alpha = 1$).

Problem 2. This problem is a practice on line search methods.

Consider the unconstrained optimization problem

$$f(x) = \frac{x^2 + 3x}{x^2 + 3x + 5},$$

- Compute the stationary point(s) of the function from the first order necessary conditions
- Find a valid range of x that brackets the minimum.
- Confirm that the range [-3, 1] brackets the minimizer x^* (assume that you do not know the value of x^*). Starting from bracket [-3, 1] preform 4 steps of the Golden Section and quadratic fit algorithms to find the minimizer (by hand or use a Matlab code). For the quadratic fit algorithm choose the third point you need to initialize the algorithm x = 0. Report your steps. Compare the size of your forth bracket for each of these algorithms

Problem 3. This problem is a practice on line search methods.

Consider the unconstrained optimization problem

$$f(x) = x^2 + 2x + 1,$$

- Compute the stationary point of the function from the first order necessary conditions
- Let $x_0 = 4$, preform 2 steps of steepest descent algorithm with
 - (a) exact line search
 - (b) Armijo backtracking line search with parameters ($\sigma = 0.1, \beta = 0.5$ and starting at $\alpha = 1.6$)
 - (c) Armijo backtracking line search with parameters ($\sigma = 0.05$, $\beta = 0.1$ and starting at $\alpha = 1.6$).

Compute and compare $E(x_2) = f(x_2) - f(x^*)$ of the cases above.

-----Sample Code ------

Find the minimizer of

$f(x) = \frac{1}{2}x^\top \; \bigg \;$	70	2]	$x - \left[\right]$	[1]	x
	2	2		$\lfloor 2 \rfloor$	

A simple code for steepest descent with exact line search for a quadratic cost function (see problem 3 of HW 1) :

close all
Q=[70 2
 2 2];
b=[1 2]';

x_s=inv(Q)*b; %exact value of the minimizer

```
plot(x_s(1),x_s(2),'g*')
hold on
x1 = -1:0.01:1.2;
x2 = -1:0.01:4;
[X1, X2] = meshgrid(x1, x2);
v = [0.1, 0.1, 0.5, 0.5, 1, 1, 5, 5, 10, 10, 15, 15, 20, 20, 25, 25, 30, 30, 40, 40, 50, 50, 60, 60];
Z = 0.5*(Q(1,1)*X1.*X1+2*Q(1,2)*X1.*X2+Q(2,2)*X2.*X2)-b(1)*X1-b(2)*X2;
contour(X1,X2,Z,v,'ShowText','on')
x_sol(:,1)=[1 4]';
plot(x_sol(1,1),x_sol(2,1),'r+')
for k=1:5
    g(:,k)=Q*x_sol(:,k)-b;
    alpha(k)=(g(:,k)'*g(:,k))/(g(:,k)'*Q*g(:,k));
    x_sol(:,k+1)=x_sol(:,k)-alpha(k)*g(:,k);
    plot(x_sol(1,k+1),x_sol(2,k+1),'r+')
end
plot(x_sol(1,:),x_sol(2,:),'r')
```

Golden Section method

 $\label{eq:canonical} \mbox{You can find } x^\star \in \mathbb{R} \mbox{ in } \qquad x^\star = \underset{x \in \mathbb{R}}{\mbox{argminf}(x)} \qquad \mbox{using Golden section method}.$

Given $[x_k, \bar{x}_k]$, determine $[x_{k+1}, \bar{x}_{k+1}]$ such that 0.6 $x^* \in [x_{k+1}, \bar{x}_{k+1}].$ 0.4 0.2 **Initialization**: $[x_0, \bar{x}_0]$ (in you HW problem ۰ × $[x_0, \bar{x}_0] = [-3, 1]$ • Step k: $\begin{cases} b_k = x_k + \tau \, (\bar{x}_k - x_k), \\ \bar{b}_k = \bar{x}_k - \tau \, (\bar{x}_k - x_k), \end{cases}$ -0.4 -0.6 -0.8 -3 compute f(b_k) and f(b

k) (1) If $f(b_k) < f(\bar{b}_k)$: $\begin{cases} x_{k+1} = x_k, \quad \bar{x}_{k+1} = b_k \quad \text{if } f(x_k) \leq f(b_k) \\ x_{k+1} = x_k, \quad \bar{x}_{k+1} = \bar{b}_k \quad \text{if } f(x_k) > f(b_k) \end{cases}$ $(2) If f(b_k) > f(\bar{b}_k): \begin{cases} x_{k+1} = \bar{b}_k, \ \bar{x}_{k+1} = \bar{x}_k & \text{if } f(\bar{b}_k) \geqslant f(\bar{x}_k) \\ x_{k+1} = b_k, \ \bar{x}_{k+1} = \bar{x}_k & \text{if } f(\bar{b}_k) < f(\bar{x}_k) \end{cases}$ (3) If $f(b_k) = f(\bar{b}_k)$: $x_{k+1} = b_k$, $\bar{x}_{k+1} = \bar{b}_k$. • Stop: If $(\bar{\mathbf{x}}_{\nu} - \mathbf{x}_{\nu}) < \epsilon$

Strictly unimodal f: the interval $[x_k,\bar{x}_k]$ contains x^\star and $(\bar{x}_k-x_k)\to 0$