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Abstract—This paper deals with the problem of track-to-track
fusion under unknown correlations. We propose a novel method
to construct the correlation terms between tracks from two
sensors. We start by showing that the cross-covariance matrix of
any two tracks can be expressed as the product of square roots
of the tracks’ covariance matrices and a contraction matrix.
Then, we propose an optimization problem that obtains an
estimate of this contraction matrix in a way that the fused track
is less conservative than the one obtained by the well-known
Covariance Intersection (CI) method but, at the same time, it is
conservative in comparison with the optimal track obtained using
the exact cross-covariance between the tracks. Through rigorous
analysis we demonstrate our new fusion algorithm’s properties.
We also cast our design optimization problem as a difference of
convex (DC) programming problem, which can be solved in an
efficient manner using DC programming software solutions. We
demonstrate our results through Monte Carlo simulations.

Index Terms—Covariance Intersection, Difference of Convex Pro-
gramming, Estimation, Sensor Fusion, Sensor Networks

I. INTRODUCTION

NOWADAYS wireless sensors with embedded comput-
ing and communication capabilities play a vital role

in provisioning real-time monitoring and control in many
applications such as environmental monitoring, fire detection,
object tracking, vehicular Ad-Hoc networks, and body area
networks (see, e.g., [1] and references therein). The effective-
ness and the safe operation of these applications rely on the
accuracy of state estimates obtained from fusing information
of the sensor stations. However, because of limitations such
as network congestion and also energy constraint of wireless
sensors, which are mostly battery-operated, the transmission
of data from sensor stations to fusion centers is not usually
possible in a persistent manner. Distributed solutions in which
sensor stations maintain a local filter to process their local
measurements and then combine their local tracks with the
neighboring sensor stations are proposed as energy efficient
solutions for wireless sensor networks. Proper track-to-track
fusion is known to give more accurate estimates than using
the information from a single sensor [2]–[4].

Due to the common process model, the local estimates of
sensor stations are correlated [5], [6]. In earlier work on track-
to-track fusion, this correlation was ignored [7]. However,
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it turned out that disregarding correlations results in fused
estimates that tend to be too optimistic. This property is
referred to as the inconsistency phenomenon, which has been
shown to lead even to filter divergence [8], [9]. To overcome
the problem of inconsistency, the correlations between the
tracks should be taken into account in either explicit or
implicit manner. Explicit account increases the complexity of
distributed algorithms and require either multi-hop/all-to-all
in-network communication [10] or high frequency commu-
nication among neighboring agents as in distributed Kalman-
consensus algorithms (e.g. see [11], [12]). Consequently, there
has been a great interest in track-to-track fusion methods that
account for correlation terms in an implicit manner by con-
servatively bounding missing or discarded cross-covariance
information. The prime example of such techniques is the
Covariance Intersection (CI) method [13], [14]. CI has been
widely used in decentralized sensor network data fusion
algorithms (see e.g., [15]–[21]). However, CI often results
in highly conservative estimates with covariance much larger
than the actual one. Therefore, alternative approaches that
strive for fusion results with a smaller error covariance matrix
have been proposed in the literature. For example, the Largest
Ellipsoid method of [22] employs geometrical transformations
to find the largest ellipsoid inscribed within the intersection
region of the two local estimates. But, it does not provide
an efficient method to compute the mean of the fused track.
Ellipsoidal Intersection (EI) method of [23] intends to reduce
the conservatism of CI method by modifying its equations
to include parameters that take into account the maximum
possible common information shared by the tracks. However,
the parameters introduced in the EI method are not sufficient
to guarantee consistency. In a recent work, [24] has modified
the parameters of the EI method to devise a consistent fusion
algorithm called the Inverse Covariance Intersection (ICI)
method.

In this paper, we revisit the problem of track-to-track fusion
in the absence of cross-covariance information. Due to the
importance of estimation accuracy in sensor networks, we
propose a novel fusion method that trades in extra compu-
tation for a better fusion performance. In our method, instead
of conservatively over-bounding the joint covariance matrix of
the tracks, we aim to construct the unknown cross-covariance
matrix. We start by observing that the cross-covariance matrix
of correlated tracks can be stated as the product of the square
root of the covariance matrices of the tracks and a contraction
matrix. We then propose an appropriate optimization problem
to obtain an estimate for this contraction matrix in a way that
the fused track is less conservative than the one obtained by
the CI method. Moreover, we show that our fused track, as



expected from an approximation technique, is conservative
than the optimal track that one can obtain by taking into
account the exact value of the cross-covariance between the
tracks. We validate our fusion algorithm’s properties through
rigorous analysis. Furthermore, we show that our design opti-
mization problem can be cast as a difference of convex (DC)
programming problem [25], which can be solved in an effi-
cient manner using DC programming software solutions [26].
Finally, we show parallels between the structure we use to
estimate the cross-covariance matrix and the estimated cross-
covariance that one can calculate using sigma points generated
via Unscented Kalman Filter (UKF) type [27] approach. We
compare the performance of our algorithm to the CI and the
ICI methods in a numerical simulation.

Notations: Sn+ and Sn++ are, respectively, the set of real
positive semi definite and positive definite matrices. For
M ∈ Sn+, its matrix square root is

√
M, i.e.,

√
M
>√

M = M.
A function f : Rn → R is a difference of convex function iff
there exist convex functions g, h : Rn → R such that f
can be decomposed as the difference between g and h, i.e.,
f(x) = g(x) − h(x) for x ∈ Rn (c.f. [25]). A matrix
C∈Rn×m is called a contraction matrix if its spectral norm
satisfies ‖C‖2 ≤ 1; it is a strict contraction if ‖C‖2 < 1.
The set of n ×m real strict contraction matrices is denoted
by Cn×m.

Lemma 1.1 (c.f. [28, page 207 and page 350]): Let A ∈
Rn×n and B ∈ Rm×m, and X ∈ Rm×n be given. Then,
the joint matrix

[
A X
X> B

]
is positive semi definite (positive

definite) if and only if A and B are positive semi definite
(positive definite) and there is a contraction (strict contraction)
matrix C such that X =

√
A
>
C
√
B.

II. PROBLEM DEFINITION AND OBJECTIVE STATEMENT

Consider sensor stations si and sj each with processing
and transmission capabilities. These stations at each time k
observe and compute a local estimate and its corresponding
error covariance (x̂r(k) ∈ Rn, Pr(k) ∈ Sn++), r ∈ {i, j},
of a time-varying target/process whose true state is denoted
by x(k) ∈ Rn. We assume that the tracks are synchronized.
The tracks are transmitted to a fusion center so that a better
estimate is generated by fusing them (in distributed estima-
tion problems, the tracks are transmitted to the neighboring
agents). To simplify the notation, in the following we drop the
time index k of the estimates. Since the tracks from stations
si and sj are originated from observing a common system
whose process noise is the same for both stations, these tracks
are correlated [6]. This means that the cross-covariance Pij
between the tracks is nonzero. The tracks are normally fused
by linearly combining them to obtain an improved estimate
(x̂c ∈ Rn, Pc ∈ Sn++), i.e., x̂c = Wix̂i + Wjx̂j , with error
covariance

Pc =E
[
(x− x̂c) (x− x̂c)

>] = WiPiW
>
i +WjPjW

>
j

+ WiPijW
>
j +WjP

>
ijW

>
i = WPJ W

>, (1)

where W ,
[
Wi Wj

]
and PJ ,

[
Pi Pij

P>ij Pj

]
is the joint co-

variance matrix. When the cross-covariance Pij is known,
the consistent minimum variance fused estimate is given
as follows.

Theorem 2.1 (c.f. [6], [13]): given (x̂r, Pr), r ∈ {i, j}, and
Pij , the solution of

W = argmin det
(
Pc
)

subject to W
[
In
In

]
= In, (2)

yields a consistent estimate x̂?c with covariance P?c as follows:

x̂?c = x̂i+(Pi−Pij)(Pi+Pj−Pij−P>ij )−1(x̂j−x̂i), (3a)

P?c =Pi−(Pi−Pij)(Pi+Pj−Pij−P>ij )−1(Pi−P>ij ). (3b)

�

The minimum variance fused estimate (3) requires exact
knowledge of the cross-covariance matrix Pij . The cross-
covariance propagation method for track-to-track fusion (c.f.
[29]) for a linear process with state x and measurements zr

x(k + 1)=F(k)x(k)+ω(k), ω(k) ∼ N (0n×1,Q(k))

zr(k)=Hr(k)x(k)+νr(k), ν(k) ∼ N (0n×1,Rr(k))

r={i, j}, E[νi(k)ν>j (k)] = 0n

gives the exact cross-covariance matrix Pij(k) as

Pij(k) = (In−Ki(k)Hi(k))
(
F(k−1)Pij(k−1)F>(k−1)

+ Q(k−1)
)
(In−Kj(k)Hj(k))>. (4)

Assuming that the initial measurements are uncorrelated, the
initial condition of (4) is set to zero. Although equation (4)
computes the exact cross-covariance Pij , the method is re-
stricted to applications that sensors implement the Kalman
filter. Also, note that to maintain Pij using (4), the Kalman
gains Ki(k) and Kj(k) of the sensor stations have to be trans-
mitted to the fusion center. Therefore, the cross-covariance
propagation method requires communication between sensor
stations or sensor stations to fusion center at all time steps
k. This requirement incurs a high communication cost on the
sensor stations and is vulnerable to communication failure.

CI method, as mentioned earlier, is a popular track-to-track
fusion algorithm that does not require an explicit knowledge
of the cross-covariance of the sensors’ tracks. For tracks
(x̂r,Pr), r ∈ {i, j} with unknown correlation, CI fused track
is

P−1
CI = ωP−1

i + (1− ω)P−1
j , (5a)

x̂CI = PCI

(
ωP−1

i x̂i + (1− ω)P−1
j x̂j

)
, (5b)

where 0 ≤ ω ≤ 1 is a weighting factor that can be used to
optimize the updates with respect to a performance criterion,
such as minimizing the trace or the determinant of PCI, e.g.,

ω? = argmin det
(
PCI
)
, subject to 0 ≤ ω ≤ 1. (6)

Given (5a), the optimization algorithm (6) produces a fused
estimate that satisfies det(PCI) ≤ min

(
det(Pi), det(Pj)

)
.

Moreover, for consistent estimates x̂i and x̂j , the fused



estimate x̂CI is guaranteed to be consistent [30]. However,
the CI fusion is a suboptimal fusion method compared to the
method (3), indeed, PCI ≥ Pc for all Pc satisfying (1). More
precisely, as shown in [29], the error ellipsoid corresponding
to Pc is located inside the intersection of the error ellipsoids
corresponding to Pi and Pj while the error ellipsoid corre-
sponding to PCI circumscribes the intersection of the error
ellipsoids corresponding to Pi and Pj , see Fig. 1 for some
numerical examples.

Our aim is to devise an alternative track-to-track fusion
algorithm which analogous to the CI method does not require
the exact knowledge of correlation information between the
tracks, however, it produces a fused track that is less conser-
vative.

III. MAXIMUM ALLOCATED COVARIANCE

In this section, we present a novel track-to-track fusion algo-
rithm, called Maximum Allocated Covariance (MAC) method,
for tracks with unknown correlations. The design of MAC is
based on the construction of the cross-covariance matrix in
a way that the determinant of the fused covariance matrix
acquires the maximum allocatable value. In doing so, we
guarantee that MAC’s estimate is always conservative than the
estimate one obtains when cross-covariance matrix is known.
In the result below, we show also that MAC out-preforms the
CI method by producing an estimate whose covariance matrix
is smaller than the one CI provides.

Theorem 3.1 (MAC track-to-track fusion): Consider two un-
biased and consistent tracks (x̂r ∈ Rn,Pr ∈ Sn++), r ∈
{i, j}, with an unknown correlation. Let

F(X) = Pi−(Pi−X)
(
Pi+Pj−X−X>

)−1
(Pi−X>), (7)

and X? =
√
Pi
>
C?
√
Pj where

C? = argmax
C∈Cn×n

det
(
F(
√
Pi
>
C
√
Pj )

)
. (8)

Then, the fused track (x̂MAC ,PMAC) given by x̂MAC =
Wix̂i + Wjx̂j and PMAC = F(X?), with

Wi = (Pj−X?>)
(
Pi+Pj−X?−X?>)−1

,

Wj = (Pi −X?)
(
Pi + Pj −X? −X?>)−1

,
(9)

satisfies

E[x− x̂MAC] = 0n×1, (10a)
0n ≤ PMAC ≤ Pr , r ∈ {i, j}, (10b)
0n ≤ PMAC ≤ PCI, 0 ≤ ω ≤ 1, (10c)
det(P?c) ≤ det(PMAC) ≤ det(PCI), 0 ≤ ω ≤ 1, (10d)

where P?c and PCI are given by (3b) and (5a), respectively.

Proof: (10a) is satisfied, because the tracks from sensor
stations si and sj are unbiased and also the gains in (9) satisfy
Wi+Wj = In resulting in E[x−x̂MAC] = E[(Wi+Wj)x−
(Wix̂i+Wjx̂j)] = WiE[x− x̂i]+WjE[x− x̂j ] = 0n×1 +

0n×1 = 0n×1. Next, we show the validity of statement (10b).
Let J++(Pi ,Pj) =

{
X ∈Rn×n

∣∣∣ [ Pi X

X> Pj

]
∈ S2n

++

}
. For

any X ∈ J++(Pi ,Pj), using a congruent transformation
with non-singular transformation matrix T =

[
In In
0n −In

]
we

obtain

P̄=T>
[
Pi X
X> Pj

]
T =

[
Pi Pi−X

Pi−X> Pi+Pj−X−X>
]
> 02n,

(11)

which by virtue of the Schur complement (c.f. [31, page 495])
of a block positive definite matrix we have the guarantees that

Pi + Pj −X−X> > 0n, (12a)

F(X)=Pi−(Pi−X)
(
Pi+Pj−X−X>

)−1
(Pi−X>) > 0n.

(12b)

By virtue of Lemma 1.1, any X ∈ J++(Pi ,Pj) can be
written as X =

√
Pi
>
C
√

Pj for a C ∈ Cn×n. Therefore, we
have X? ∈ J++(Pi ,Pj), and as a result PMAC = F(X?) >
0n follows from (12b). Subsequently, from (12a) we have
(Pi − X?)

(
Pi + Pj − X? − X?>

)−1
(Pi − X?>) ≥ 0n,

which gives us Pi − PMAC = (Pi −X?)(Pi + Pj −X? −
X?>)−1(Pi −X?>) ≥ 0n, or equivalently PMAC ≤ Pi. To
complete our proof of statement (10b), remark that we can
also write PMAC as PMAC = Pj − (Pj −X?>)

(
Pi + Pj −

X? −X?>)−1
(Pj −X?).

Therefore, following the similar steps as above but with
congruent transformation matrix

[−In 0n

In In

]
, we can show that

PMAC −Pj ≤ 0n or PMAC ≤ Pj .

Next, we show (10c) and (10d) hold. Since PMAC ≤ Pr, r ∈
{i, j}, we have P−1

r ≤ P−1
MAC, r ∈ {i, j}. Therefore, for 0 ≤

ω ≤ 1, we can write P−1
CI = ωP−1

i +(1−ω)P−1
j ≤ ωP−1

MAC+

(1−ω)P−1
MAC = P−1

MAC. As a result, PMAC ≤ PCI for any 0 ≤
ω ≤ 1. Subsequently, we conclude also that det(PMAC) ≤
det(PCI) for all 0 ≤ ω ≤ 1. To prove det(P?c) ≤ det(PMAC),
notice that the true cross-covariance matrix satisfies Pij ∈
J++(Pi ,Pj). Therefore, there exists Cc ∈ Cn×n such that
Pij =

√
Pi
>
Cc

√
Pj . Since P?c = F(Pij), then from (8) we

have that det(P?c) ≤ det(PMAC).

(10a) ensures that x̂MAC is unbiased, while (10b) guarantees
that MAC fusion produces a better estimate than the individual
tracks of the sensor stations si and sj . Because of (10c), MAC
also guarantees that its fused track is less conservative than the
track obtained from the CI fusion regardless of the value of
ω ∈ [0, 1]. The lower bound in (10d) ensures that the fused
track is not optimistic in comparison to the optimal fused
track, while the upper bound is an obvious outcome of (10c).
Here, we used det(P) as the scalar measure to compare the
total uncertainty of MAC fusion to others. The relationships
described in (10b), (10c), and (10d) are evident in Fig. 1 for
three numerical examples.

Our next result shows that the optimization problem (8) can
be cast in an equivalent DC programming optimization form,



enabling us to obtain MAC track-to-track fusion in an efficient
manner using DC programming software solutions.

Theorem 3.2 (MAC is a DC programming problem): The
optimization problem (8) as defined in Theorem 3.1 is
equivalent to the DC programming problem below

C? = argmin
C∈Cn×n

(
− Log det(

[
In C

C> In

] )
+ (13)

Log
(
det(Pi+Pj−

√
Pi
>
C
√
Pj−

√
Pj
>
C>
√

Pi )
))
.

Proof: Recall that for C ∈ Cn×n by definition we have[
In C

C> In

]
> 0n. Also we already showed that for C ∈ Cn×n

we have (Pi+Pj −
√
Pi
>
C
√
Pj −

√
Pj
>
C>
√
Pi ) > 0n.

Since Log of determinant of positive definite matrices is a
concave function (c.f. [31, page 488]) and negative of a
concave function is convex, the optimization problem (13) is a
DC programming problem. Next, we show that optimization
problem (8) is equivalent to (13). For X ∈ J++(Pi ,Pj),
from the proof of Theorem 3.1 recall that matrix P in (11)
is positive definite and its Schur complement components
are (12). Using Schur complement and its determinant for-
mula (c.f. [31, page 24]), det(P) 6= 0 can be written as
det(P) = det(F(X))det(Pi + Pj −X−X>). Therefore,

det(F(X)) = det(P) det(Pi + Pj −X−X>)−1. (14)

Note that det(P) = det(T>)det(
[ Pi X

X> Pj

]
)det(T) =

det(
[ Pi X

X> Pj

]
). Recall that any X ∈ J++(Pi ,Pj)

can be written as X =
√
Pi
>
C
√
Pj where C ∈

Cn×n. Because
[

Pi X

X> Pj

]
=
[ √

Pi
>√

Pi

√
Pi
>
C
√

Pj√
Pj
>
C>
√
Pi

√
Pj
>√

Pj

]
=[√

Pi
>

0n

0n

√
Pj
>

] [
In C

C> In

][√
Pi 0n

0n

√
Pj

]
, we can write det(P) =

det(
√
Pi
>√

Pi) det(
√

Pj
>√

Pj)det(
[

In C

C> In

]
). As a result,

for C ∈ Cn×n from (14), we obtain

Log(det(F(
√
Pi
>
C
√
Pj))) = Log(det(Pi))+ (15)

Log(det(Pj)) + Log(det(
[

In C

C> In

]
)

− Log(det(Pi+Pj−
√

Pi
>
C
√
Pj−

√
Pj
>
C>
√
Pi)).

Recall that
[

In C

C> In

]
> 0n and (Pi+Pj−

√
Pi
>
C
√

Pj−√
Pj
>
C>
√
Pi) > 0n. As a result, since Log is a strictly

increasing function over positive real numbers, we can write
the maximization problem (8) in the equivalent DC program-
ming minimization problem (13). This completes our proof.

Next, we point out an interesting relationship between the
estimated cross-covariance matrix that MAC generates and
the estimate that one can obtain by generating sigma points
around the mean and applying a method similar to UKF [27].
Following the UKF approach, 2n + 1 sigma points for the
sensor stations sr, r ∈ {i, j} are given as x

(0)
r = x̂r, x

(`)
r =

x̂r + (
√

(n+ λ)Pr
)>
`

, and x
(`+n)
r = x̂r − (

√
(n+ λ)Pr

)>
`

for ` ∈ {1, . . . , n}, where
(√

(n+ λ)Pr
)>
`

is the `-th
row of matrix square root of (n + λ)Pr. The weighting
coefficients are defined as w(0) = λ

n+λ + 1 − α2 + β

and w(`) = 1
2(n+λ) , for ` = 1, . . . , 2n, where α, β, and

λ are constant tuning parameters. The cross-covariance of
two local estimates at stations si and sj then can be cal-
culated as Pij =

∑2n
`=1 w

(`)E[
(
x̂i − x

(`)
i

)(
x̂j − x

(`)
j

)>
] =

2
∑n
`=1 w

(`)E[
(
x̂i−x(`)

i

)(
x̂j−x(`)

j

)>
], (here we used x

(`)
r =

−x(`+n)
r , r ∈ {i, j}). Given the definition of the sigma points,

then, the estimated cross-covariance by sigma points is Pij=∑n
`=1

(√
Pi
)>
`

(√
Pj
)
`

=
√
Pi
>√

Pj . This cross-covariance
guarantees the positive semi-definiteness of joint covariance
matrix but it over-estimates the estimates’ correlation.

We close this section with few remarks regarding the consis-
tency analysis of MAC. Given a process with random state
x, a state estimator which produces an estimate x̂ with the
associated error covariance P is said to be consistent if it is
unbiased, i.e., E[x−x̂] = 0n×1, and its estimates satisfy P =
E[(x− x̂)(x− x̂)>] (see e.g., [29], [32], [33]). The definition
of estimator consistency sometimes is relaxed from covariance
matching to P ≥ E[(x − x̂)(x − x̂)>] (see e.g., [13]). In
Theorem 3.1, we have shown that when the local tracks
are unbiased, MAC generates an unbiased fused track. Next,
we examine the covariance consistency of the MAC. Given
MAC’s fusion gains in (9), with appropriate manipulations, we
can write PMAC = WiPiW

>
i +WiX

?W>
j +WjX

?>W>
i +

WjPjW
>
j . On the other hand, using the same gains, we have

(recall Wi + Wj = In)

E[(x− x̂MAC)(x− x̂MAC)>] = (16)
E[
(
Wi(x−x̂i)+Wj(x−x̂j)

)(
Wi(x−x̂i)+Wj(x−x̂j)

)>]

= WiPiW
>
i + WiPijW

>
j + WjP

>
ijW

>
i + WjPjW

>
j .

As a result, we can write PMAC − E[(x − x̂MAC)(x −
x̂MAC)>] = WMW>, where W ,

[
Wi Wj

]
, and M ,[ 0n X?−Pij

(X?−Pij)> 0n

]
. For X? 6= Pij , matrix M is an in-

definite matrix (neither positive (semi-) definite nor negative
(semi-) definite) whose eigenvalues are real and symmetric
around origin (c.f. [34]). Although matrix M is indefinite,
the product matrix WMW> is not necessarily indefinite,
i.e., depending on the numerical values of W and X?−Pij ,
PMAC − E[(x − x̂MAC)(x − x̂MAC)>] = WMW> can be
positive/negative (semi-) definite or indefinite. For example,
the table in Fig. 1 lists PMAC and E[(x− x̂MAC)(x− x̂MAC)>]
for three numerical examples. Fig. 1 also depicts the corre-
sponding 1σ error ellipses of these examples. As shown, in
the cases (a) and (b), MAC produces consistent estimates but
in case (c) the covariance consistency condition is slightly vi-
olated.

Consistency of state estimation filters is measured also by
statistical consistency tests such as the Average Normalized
Estimation Error Squared (ANEES) [33]. These tests are
based on Monte Carlo simulations which provide M inde-
pendent samples of estimation error e`(k) = x`(k) − x̂`(k),



Case Pi Pj Pij PMAC E[(x−x̂MAC)(...)
>]

(a)
[

20 0
0 9

] [
10 0
0 18

] [
5.66 0.95
0.47 −6.36

] [
9.96 0.29
0.29 8.96

] [
9.6 −0.12
−0.12 7.43

]
(b)
[

20 6.5
6.5 9

][
10 3.3
3.3 18

][
5.66 1.87
1.84 −4.79

][
10.00 3.26
3.26 7.95

] [
10.00 3.26
3.26 7.95

]
(c)

[
20 6
6 9

] [
10 4
4 18

] [
5.66 3.17
2.12 −4.31

] [
9.94 3.26
3.26 8.26

] [
10.09 4.29
4.29 8.81

]

(a)

(b) (c)

Fig. 1: 1σ ellipses for the fused error covariance matrix
computed by MAC, CI and OPT (the optimal filter (3)) fusion
methods. In comparison to OPT, MAC and CI fusions are both
conservative, but MAC algorithm produces better results. The
plots also depict how PMAC compares to E[(x− x̂MAC)(x−
x̂MAC)>] given in (16): plot (a) demonstrates an example
in which PMAC is larger than E[(x − x̂MAC)(x − x̂MAC)>];
plot (b) demonstrates a case where PMAC almost matches
E[(x− x̂MAC)(x− x̂MAC)>], and plot (c) demonstrates a case
that PMAC intersects E[(x− x̂MAC)(x− x̂MAC)>].

where x`(k) ∈ Rn is the true state and x̂`(k) ∈ Rn is the filter
estimate with the associated error covariance P`(k) ∈ Sn++
at the Monte Carlo run ` ∈ {1, · · · ,M}. In the ANEES test,
the consistency measure is

ε̄(k) =
1

nM

∑M

`=1
e>` (k)P−1

` (k)e`(k).

An estimator is consistent, if ANEES measure ε(k) converges
to 1. If ANEES measure ε(k)� 1, the estimator is optimistic
which implies the actual estimation error is much larger
than what the estimator believes, while ε(k) � 1 indicates
the actual estimation error is much smaller than what the
estimator believes i.e., the estimator is too pessimistic [35].
A simulation study demonstrating the ANEES measure for
MAC fusion is given in Section IV, see Fig. 2(c).

IV. SIMULATION

We demonstrate the performance of the MAC track-to-track
fusion algorithm in a simulation study for two sensor stations.
The process and sensor measurement models of these stations,
taken from [36], are described in Fig. 2(a). Each sensor station
uses a local Kalman filter to generate its local track at a

Station si

zi =
[

1 0
0 1

]
x + vi

vi ∼ N (0,Ri)

Ri = 100
[

1 0
0
√

2

]
Pi(0) = 50

[
1 0
0 10

]

Station sj

zj =
[

1 0
0 1

]
x + vj

vj ∼ N (0,Rj)

Rj = 100
[

2 0
0
√

2

]
Pj(0) = 50

[
10 0
0 1

]

Process Model

x(k+1)=
[

1 −∆t
∆t 1

]
x(k) +

[
∆t 0
0 ∆t

]
ω(k)

ω∼N (0,Q), Q=25 I2,

x(0)=[15 − 10]>

(a) Process and sensor stations (b) Total RMSE

(c) ANEES (d) Normalized Determinant

Fig. 2: A comparison study: OPT fusion rate is 1
∆t = 50Hz,

while MAC, CI, ICI, and NF methods’ fusion rate is 10Hz.

rate 1
∆t = 50Hz. We use an optimal fusion algorithm (OPT

fusion) consisted of the optimal track-to-track fusion (3) and
the cross-covariance propagation (4) to create the optimal
reference fusion results. For the OPT fusion, the fusion
center needs to communicate with the sensor stations at
50Hz rate. We also implement MAC, CI, and a Naive Fusion
(NF) methods to perform fusion at 10Hz. NF is a track-to-
track fusion method which uses (3) with Pij = 0n, i.e.,
it disregards the correlation between the tracks. We also
compare MAC to the ICI method of [24]. Our simulation
results in Fig. 2 are generated from 1000 Monte Carlo runs.
Fig. 2(b) demonstrates the total RMSE plot of the fusion
methods. As expected, OPT has the best performance. We
can see also that MAC and ICI preform better than CI. NF
appears to preform better than CI, ICI and MAC but as we
can see in the ANEES test results (see Fig. 2(c)) this method
is not consistent. Whereas, MAC’s ANEES is comparable
with OPT and CI, demonstrating a consistent behavior with
an ANEES measure near 1. Fig. 2(d) shows the averaged
(over Monte Carol runs) of the normalized (with respect to
OPT fusion results) total uncertainty of the fused tracks. The
total uncertainty is measured in terms of the determinant of
the covariance of the fused tracks. This plot shows the trend
described in Theorem 3.1, i.e., the total uncertainty of MAC
fusion is larger than the OPT fusion but smaller than the CI
fusion. In Fig. 2(d), we can see also that NF is too optimistic
and therefore, unreliable. Furthermore, MAC is preforming
better than ICI.

V. CONCLUDING REMARKS

This paper considered the problem of track-to-track fusion
under unknown correlations. We proposed a novel fusion



method to deliver estimates that are (a) less conservative
than the ones obtained by the well-known CI method; (b) as
expected from a proper fusion algorithm, conservative than
the optimal estimate under known correlations. Our fusion
method uses a more complex optimization problem than the
CI method to obtain its fused track. However, the impact of
extra computational effort of our algorithm should be assessed
in the context of performance recovery while maintaining the
same communication cost of CI. In this paper, due to the space
limitation, we only discussed track-to-track fusion between
two sensor stations. For multiple tracks, a sequential fusion
method similar to the one proposed for CI fusion in [37] can
be used.
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