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Abstract— This paper reports on the use of a cooperative 

localization augmentation to increase the localization accuracy of 

human agents in an opportunistic fashion by processing inter-

agent relative measurements. The main challenge in the 

decentralized cooperative localization algorithm design is how to 

account for the strong correlations, which the relative 

measurement updates create between the state estimates of the 

agents, with a reasonable communication cost. To keep track of 

the correlations agents need to communicate with each other 

through some form of a network-wide communication topology, 

which is hard to maintain for human agent localization 

applications. In this paper, we discuss a cooperative localization 

method that, instead of maintaining the correlations, accounts for 

them in an implicit manner by using conservative upper-bound 

estimates on the joint correlation matrix of the agents. This 

provably consistent loosely coupled cooperative localization 

method requires only the two agents involved in a relative range 

measurement to communicate with each other. Our results include 

the use of this algorithm for human agent localization via UWB 

ranging sensors. We demonstrate our results in simulation and 

experiments. 

Keywords—cooperative localization; human agent; coupling; 

communication; UWB ranging 

I.  INTRODUCTION 

Location is a vital dimension of situation awareness for any 
mobile agent, including humans. Human tracking and geo-
localization are in high demand in applications such as 
monitoring patients in hospitals and senior citizens in nursing 
homes, detecting miners in underground mines, tracking soldiers 
in battlefield and locating firefighters [1-2]. For indoor 
applications Global Positioning System (GPS) fails to provide 
accurate localization information due to obstructed line of sight 
to satellites and weak signal strength. To compensate for lack of 
GPS, robotic community has relied on fixed feature-based 
Simultaneous Localization and Mapping (SLAM) algorithms 
[3]. SLAM allows autonomous agents to create a map of the 
environment and localize themselves in that map. Such a 
solution, which uses vision for detecting features in the 
environment, is not necessarily effective for geo-localization 
and  tracking  of  human  agents  in  a  global  frame,  when  the  

 

Fig. 1. Components of a relative measurement update process in cooperative 

localization. zi

j
is the real relative measurement (in this paper taken by an UWB 

ranging sensor), ẑi

j
is the estimated measurement, ˆbel ( , )l l lx− − −= P is the belief of 

agent { , }l i j  about its location prior to the relative measurement update, and 

ˆbel ( , )l l lx+ + += P  is the belief of agent { , }l i j  after the relative measurement 

update. 

environment is not fixed (e.g., fireground), the lighting is poor 
(underground) or the features are not revisited. 

Popular solutions for human agent localization are (a) 
pedestrian dead reckoning (PDR) and (b) wireless indoor 
localization. In PDR, acceleration and angular velocity 
measurements via foot-mounted inertial measurement unit 
(IMU) sensors are used to propagate the equations of motion of 
human agents to localize them. However, navigation based 
solely on inertial sensors is subject to unbounded growth of 
position error over time. To reduce the growth rate of the error, 
the Zero Velocity Update (ZUPTing) approach is introduced, 
which uses human legged locomotion and detection of the steps 
to re-calibrate inertial sensors during the rest phases of the foot 
[4]. Despite its help in improving the accuracy of the PDR 
methods, ZUPTing does not fully bound the error. In recent 
years, wireless signal assisted indoor localization techniques 
have also emerged to improve the localization accuracy. These 
techniques typically utilize pre-installed devices (beacons) with 
known locations [5]. That is, they use time-of-arrival (TOA) and 
received-signal strength (RSS) measurements to obtain relative 
distance of human agents from the pre-installed beacons and use 
this relative range measurement and the known location of the 
beacons to improve localization accuracy of the agents. Even 
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though these solutions are proven effective, they are not suitable 
for every application, especially for those that take place in a 
priori inaccessible areas and also in disaster stricken areas, e.g. 
firegrounds. For such applications, a technique that can have 
promising prospect is cooperative localization (c.f. [6] for an 
overview of CL approaches). 

In CL, mobile agents in a team improve their local pose 
estimates using inter-agent relative measurement feedbacks (see 
Fig. 1). Despite offering the appealing advantage of an 
infrastructure-free localization in GPS and land-marked 
challenged environments, integration of CL algorithms in real 
world applications, especially in uncoordinated smart mobile 
applications such as human agent localization, has been 
challenging. In this paper, we explore a CL algorithm for a team 
of human agents. 

The main challenge in design of a decentralized CL 
algorithm arises from the strong correlations that relative 
measurement updates create among the pose estimates of the 
participating agents. The correlation reflects itself in coupling 
terms that appear in the estimation equations of the agents. 
Similar to any estimation filter, the correlation terms cannot be 
ignored, because it will cause the rumor propagation 
phenomenon that can lead to overconfidence and even to 
estimate divergence as reported in [7]. To maintain the 
correlation terms, agents need to communicate with each other 
on a persistent manner at each time-step of the algorithm. 
Decentralized solutions that use decomposition techniques to 
decouple the propagation and update equation of the joint CL 
via various estimation filters such as extended Kalman filter or 
unscented Kalman filter have been proposed in the literature 
[6,8-10]. Despite reducing the communication incidences, these 
approaches still require some form of inter-agent connectivity 
among the team members. In applications involving human 
agents, especially for first responders and firefighters, 
maintaining multi-agent connectivity is challenging, if not 
impossible. 

To remove network-wide connectivity conditions, literature 
(see e.g. [7,11-13]) has proposed methods that instead of 
maintaining the prior agent-to-agent correlations, they account 
for it in an implicit manner using Covariance Intersection fusion 
(CIF) method (for CIF methods c.f. [14-15]). In CIF  two or 
more tracks from same process in the absence of correlation 
information are fused together in an implicit manner. In CL, 
however, we are updating the local pose estimates of two agents 
(two different processes) by joint processing of the relative inter-
agent measurement feedbacks. Consequently, CL techniques 
that use CIF approach require each agent to keep a copy of the 
state estimate of the entire team locally, see e.g., [7]. To avoid 
this requirement, [11-13] propose algorithms in which the agent 
taking a relative pose (relative position and relative orientation) 
measurement uses this measurement and its current pose 
estimate to obtain and broadcast a pose and the associated error 
covariance of its landmark agent (the landmark agent is the agent 
the relative measurement is taken from). Then, the landmark 
agent uses the CIF method to fuse the newly acquired pose 
estimate with its own current estimate to increase its estimation 
accuracy. The downside of these algorithms is their crucial 
dependence on  

 

Fig. 2. Cooperative localization as an augmentation system gets activated 

whenever there is a relative measurement between two agents. Other agents can 

carry out their localization using their own local filter, without any effect on 
them. Once the relative measurement update is concluded, CL augmentation 

service goes to sleep until the next relative measurement takes place. No form 

of network-wide connectivity is needed. 

relative pose measurements. That is, they cannot be used if the 
relative measurement is range only, which is the form of the 
measurement normally we have for human agents. 

In this paper, we investigate the effectiveness of our 
previously proposed CL algorithm [16] as an augmentation 
service to improve localization accuracy of human agents via 
Ultra-wideband (UWB) relative range measurements.  Our CL 
algorithm of interest uses an upper bound on the joint covariance 
matrix of the agents to account for the unknown inter-agent 
cross-covariance terms. This bound is reminiscent of the bound 
used in the CIF method, however, our method is different as it 
takes a direct approach to process relative measurement 
feedbacks, without requiring to reconstruct a state estimate from 
the relative pose measurement. Consequently, no assumption on 
the type of the inter-agent relative measurements is needed and 
this algorithm can be used for relative range measurement 
updates via an UWB ranging sensor.  The framework we study 
consists of (a) a local filter for each agent that uses an IMU 
system for dead reckoning and also can process occasional 
absolute measurements to improve localization accuracy of the 
agent (b) a CL augmentation that gets activated when there is a 
relative measurement between two agents. In our setting the 
coupling between CL and the local filter is loose, in a sense that 
when a relative measurement update is completed, the CL filter 
goes to sleep until the next relative measurement takes place, 
(see Fig. 2). As such no restrictive network-wide connectivity is 
needed to implement our CL algorithm. Therefore, one can use 
our CL algorithm as an augmentation service on top of any 
existing localization filter to increase self-localization accuracy 
of a human agent through opportunistic collaboration with other 
agents. This augmentation is agnostic to the type of the local 
localization filter as well as to the type of the relative 
measurement sensor on-board of the mobile agents. Lastly, this 
augmentation system can be integrated in the existing systems 
with minimum overhead. To demonstrate our loosely coupled 
CL augmentation's effectiveness, we built a human agent 
localization device capable of on-board computation, 
communication and UWB ranging. We use several experiments 
and simulations via this portable localization device to gain 
insight on effectiveness of our CL augmentation. Our results 
point to promising prospects. 
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Fig. 3. The mechanization of strapdown inertial navigation system. 

II. A LOOSELY COUPLED COOPERATIVE LOCALIZATION 

AUGMENTATION SYSTEM 

A. Local Filter 

We consider an indoor CL method based on UWB ranging 
for an infrastructure-free human agent localization. We consider 
an operation where human agents are equipped with a portable 

localization device with computation and communication 
capabilities. We assume that each agent has a PDR system 
powered by a body mounted IMU. Let the state of each agent be 

[ , , ]i i i i Tx p v  , which includes, respectively, position, velocity 

and attitude that defines the body orientation. The self-motion 

measurement obtained from an IMU unit is [ , ]i i i T

b bu f w  where 
i

bf  is the specific force measured by the accelerometers and i

bw  

is the angular velocity of the body measured by the gyroscopes. 
The mechanization of the inertial navigation system (INS) is 
shown in Fig. 3. The motion of each agent is independent from 

others and is described by ( 1) ( ( ), ( ) )i i i i i

u xx t f x t u t  + = + + , 

where the iu  is the self-motion measurement command 

obtained from IMU measurements. Here, i

u  is the self-motion 

measurement noise and i

x  is the process noise. The noises are 

assumed to be uncorrelated zero-mean white Gaussian with 

covariance matrices given by [ ( ) ( ) ] ( ) 0i i T i

u u uE t t Q t  =  and 

[ ( ) ( ) ] ( ) 0i i T i

x x xE t t Q t  =  . 

Each agent uses an INS to obtain an estimate of its own state 

ˆ ( )
ii nx t−  and corresponding error covariance matrix ( ) 0i t− P

at each time step t + . This state estimate can be enhanced via 

other means such as ZUPTing, and occasional access to signals 
of opportunity (SOP) or GPS. In what follows, we use 

ˆbel ( ) ( ( ), ( ))i i it x t t− − −= P as the belief of agent i at time t prior to a 

relative measurement update. Because of inherent noises in the 
self-motion measurements, process noises and also unreliable 
access to SoP and GPS, relying only on the local filter to obtain 
pose estimates can result in poor estimation accuracy. To bound 
the error and improve the estimation accuracy of the agents, 
processing of occasional inter-agent relative measurements 
taken by body-mounted UWB ranging sensors is used. 

B. Relative measurement for cooperative localization 

Suppose each agent has an exteroceptive sensor with limited 
sensing zone to detect, uniquely, the other agents in the team and 
to take relative measurements with respect to them. In this paper, 
we use relative range obtained via an UWB ranging sensor. Let 
the relative measurement taken by agent i from agent j at time t 

be denoted by ti j⎯⎯→  and described by 

 

 

 

 

 

 

 

 

 h( ( ), ( )) ( ), ,
i
rzni i j i i

j jx t x t t= + z z  (1) 

e.g., for relative range in a two-dimensional space, we have 
2 2h( ( ), ( )) ( ) ( )i j i j i jx t x t x x y y= − + − . We assume that the sensor 

measurements are mutually independent and synchronized. The 

measurement noise 
i is assumed to be white and Gaussian with 

[ ( ) ( ) ] 0i i T iE t t  = R , and [ ( ) ( ) ] 0i i TE t l  = for k l . When at 

any time step t agent i takes relative measurement from agent j, 
we take a sequential updating approach (c.f. [17]) to process this 
relative measurement to correct the belief 

ˆbel ( ) ( ( ), ( ))l l lt x t t− − −= P  of the local filter of agents { , }l i j . We 

use the superscript −  and +  to indicate, respectively, beliefs 
before and after relative measurement update. As mentioned, the 
inherent noises accumulate as the beliefs propagate based only 
on the self-motion measurements taken by the IMU along with 
unreliable access to SoP or absolute measurement via GPS under 
indoor environment, which result in poor localization accuracy. 
To bound the error and improve the localization accuracy, 
relative range measurements can be used to update the local 
beliefs. After a relative measurement update a correlation is 
generated among the state-estimate of the agents. Naively 
ignoring the correlations will lead to inconsistent estimate while 
keeping track of the correlations require all-to-all 
communication at all times. It is expensive and hard to satisfy 
the connectivity requirement for all-to-all communication under 
indoor environments. Therefore the challenge of designing 
relative measurement update is how to account for the 
correlations without all-to-all communication to make sure the 
estimate is consistent. 

C. A loosely coupled cooperative localization augmentation 

Our proposed cooperative localization framework is 
described in Algorithm 1. In this framework, functions 
predictBelief denotes the self-motion measurement based 
localization function of the local filter of agent i while  
abscorrectBelief denotes the component due to occasional 
access to, for example, GPS and as a result absolute 
measurement update. Function relcorrectBelief denotes the 
consistent relative measurement update method below. This 
function consists of the novel relative measurement update 
procedure that we introduced in our previous work [16], and 
described below. In what follows, to simplify notation, we drop 
variables' time index when timing information is clear from the 
context. 
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Suppose each agent { , }l i j  has a consistent but correlated 

local belief ˆbel ( ) ( ( ), ( ))l l lt x t t− − −= P . Let ( )i

j tz  be the relative 

range measurement taken by agent i from agent j at time t. Based 
on the measurement model given in (1), the first-order expansion 

of h ( , )i i j

j x x  about the ˆ ix −  and ˆ jx −  be 

 
h ( , )

ˆ ˆ ˆ ˆh ( , ) ( ) ( ),

i i j

j
i i j i i i i j j

j i j

x x

x x x x x x− − − −= + − + −H H
 (2) 

where ˆ ˆ= h ( , )/i i i j i

i j x x x− − H  and ˆ ˆ= h ( , )/i i i j j

j j x x x− − H .  

Agent i wants to update its belief using this relative 

measurement. Agent i knows the relative measurement ( )i

j tz , its 

associated linearized measurement model ( i

iH  and i

jH ), the 

measurement covariance matrix i
R , and its own local belief. 

Assume that agent i obtains the local belief of agent j at time t 
prior to the measurement update (agent j sends its belief via 
communication). Then, the updated belief 

ˆbel ( ) ( ( ), ( ))i i it x t t+ + += P  of agent i is given by the corresponding 

components of the joint update 

 

ˆ( ) ( ) ( ( ) ( )),i i

J J j jx t x t t t+ −= + −K z z  

( ) ( )
( )

( ) ( )

( ) ( )
        ( ) ( )

( ) ( )

            ,

i

ij
T jJ

ij

i
Tij

T j

ij
i T

t t
t

t t

t t

t t

+ +
+

+ +

− −

− −

 
=  
 

 
= − − 

 
+

P P
P

P P

P P
I KH I KH

P P

KR K

 

 

where 

 [ ( ), ( )].i i

i jt t=H H H  (3) 

The update gain can be obtained from argmin Tr( )J

+=K P . If 

there is no relative measurement between agents in the past, then 

0ij

− =P . But it is evident in (3), after a relative measurement 

update, ij

+
P  is non-zero. To avoid the necessity to maintain this 

correlation, which incurs a huge communication cost on the 
agents, the authors in their previous work [15] have proposed to 
account for the cross covariance matrix in an implicit manner by 
taking advantage of a known matrix inequality fact (c.f. [18]) 
that guarantees  

 

1 ( ) 0
( )

0 1 1 ( )

( ) ( )
         ,    [0,1],

( ) ( )

i

jJ

i

ij
T j

ij

t
t

t

t t

t t






−
−

−

− −

− −

 
=  − 
 

   
 

P
P

P

P P

P P

 (4) 

for any unknown value of ij

−
P . Given this observation the 

cooperative localization augmentation that we use (function 
relcorrectBelief) is described as follows 

 ˆ( ) ( ) ( )( ( ) ( )),i i

J J j jx t x t t t+ −= + −K z z  (5a) 

 

1 ( ) 0
( ) ( )

0 1 (1 ) ( )

             ( ) .
J

i

jJ

T i T

t
t

t




−

−
+

−

 
= −  − 

− +
P

P
P I KH

P

I KH KR K

 (5b) 

The update gain is obtained from 

 
1

1

1

( )
argminTr(( ) ( ) )

=

1 ( )
= ,

1 (1 ) ( )

T i T

J

Ti
J ij

j

i iT

i ij
j i T

j ij

t

t







−

− −

− −

− −

= − − +

 
=  

 
 − 

K

I KH P I KH KR K
K

P H S
K

P H S

P H S

 (6) 

where 

 
     =1 1 (1 )

T i

ij J
i i iT i j i T i

i i j j 

−

− −

= +

+ − +

S HP H R

H P H H P H R
 (7) 

       The optimal value of [0,1]  minimizes the total 

uncertainty of joint updated belief is given by  

 
 1

[0,1]

argmax  det( ),J


 + −



= P  (8) 

which can be cast in an equivalent convex optimization problem 
form 

 

 1

[0,1]
 1  -1

[0,1]

argmin  -logdet( )

     =argmin  -logdet( + ),

J

T i

J





 + −


− −



= P

P H R H
 (9) 

The updated belief of agent i is then the corresponding 

component of ( , )J Jx+ +
P  evaluated at  . As shown in [16] this 

estimate is consistent in the first order approximate sense, i.e., 

E[(x -x )(x -x ) ]i i i i i T+ + +P . Agent i can send the components of 

( , )J Jx+ +
P  that corresponds to agent j to that agent, so that agent j 

can benefit also from the relative measurement update. This is 
the approach that is described in Algorithm 1 and we use in our 
experiments. Another option for agent j is to obtain its own range 
measurement from processing the UWB ranging signal and 
proceed with similar calculations in the update equations (5)-(9) 
to obtain its updated state estimate locally.  

Notice here that the update equations (5)-(9) of this relative 
measurement update procedure are only loosely coupled with 
the local filter’s equations. By loosely, what we mean is that the 
relative measurement update procedure only needs the local 
beliefs generated by the local filters at the time of taking the 
relative measurement. Once the relative measurement update is 
done, agents can proceed with their local filter localization until 
the next relative measurement takes place. As such one can look 
at our cooperative localization scheme as an augmentation 
service, which agents can take advantage of to opportunistically 
improve their localization accuracy with least amount of 
communication cost. 

III. UWB SYSTEM 

In our proposed CL algorithm, the assumption is that each 
agent in the team is capable of sensing and communicating with 
others. Relative range measurements are used as a feedback to 
update the prior belief produced by agent's local filter (via INS 
and occasional absolute measurements) and prior belief is 
communicated between the two agents involved in the relative 
measurement. In indoor human agent localization problems, 
especially  in  first-responder  environments, indoor or  covered  
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Fig. 4. UWB ranging sensor: (a) DWM1000 Module, (b) Teensy 3.2, (c) our 

UWB ranging sensor and communication module. 

outdoor environments are considered as dense multipath and 
non-line-of-sight conditions. For such environments traditional 
interference of radio signals. Recently, UWB radio has gained a 
lot of attention. UWB is a radio technology with a wide 
bandwidth. The short impulse of UWB signal makes it less 
susceptible to interfere with each other and with other coexisting 
radio signals such as WIFI and Bluetooth in complicated 
applications. Because of its wide bandwidth, another approach 
is to split a very wide band into sub-bands which will also avoid 
interference. In addition, the low power emission of UWB signal 
makes it energy-efficient. Hence, UWB is a promising 
technology that can be used effectively as ranging sensor and 
communication module for challenging human agent 
localization problems such as firefighter localization. 

A. UWB device 

In our experiments, we use DWM1000 developed by 
DecaWave as our both relative ranging sensor and 
communication module. We have used a Teensy 3.2 micro-
controller as data acquisition interface. The ranging and 
communication software is mounted on this micro-controller. 
Fig. 4 shows the prototype of the ranging sensor that we have 
built in our lab. 

B. Time-of-arrival based UWB ranging 

The common UWB ranging is based on time-of-arrival 
(TOA) algorithms, which measure the propagation time of an 
impulse that travels from  transmitter to  the  receiver. Then, the  

 

Fig. 5. Time-of-flight based ranging algorithms: (a) single-sided two-way 

ranging, and (b) symmetric double-sided two-way ranging. 

distance will be known because the speed of propagation of 
radio signal in the air is a known constant. In practice, the time 
is derived from the difference of the two time-stamps when the 
signal is sent and received, which are based on the local clock of 
transmitter and receiver, respectively. This requires clock 
synchronization of each sensor node to achieve high ranging 
accuracy, which can be problematic. To eliminate the error 
caused by lack of synchronization, two-way ranging (TWR) as 
in Fig. 5(a) is used ([19]). In TWR, the TOA is given by 

 ( ) 2.p roundA replyBt t t= −  (10) 

Here round time is used instead of absolute time stamps so that 
the requirement of clock synchronization is relaxed. However, 
frequency offsets of crystal oscillators, which provides clock 
signal for electronic devices, can still result in measurement 
errors. If the frequency offset of device A and B are denoted as 

Ae  and Be  respectively, the resultant TOA error in fact is given 

by 

 ˆ ( ) 2.p p p replyB A Bt t t t e e= − = −  (11) 

The frequency offset of crystal oscillators is normally 
represented in parts per million (ppm). Even small frequency 
offsets can lead to non-negligible ranging errors because of the 
high speed of radio signal propagation. For instance, a 1 ppm 
frequency with 1 ms reply time will lead to 15 centimeters 
ranging error. Therefore, mitigation of the ranging error caused 
by crystal oscillator frequency offset is important for UWB 
ranging based localization. The symmetric double-sided TWR 
[20] is shown to mitigate the error significantly. In symmetric 
double-sided TWR, radio signal is sent from one node to another 
back and forth twice as Fig. 5(b). The TOA for this method is 

 ( ) 4,p roundA replyA roundB replyBt t t t t= − + −  (12) 

and the corresponding TOA error caused by frequency offset Ae  

and Be  will become 

 
ˆ

   ( ) 2 ( )( ) 4,
p p p

p A B replyB replyA A B

t t t

t e e t t e e

= −

 − + − −
 (13) 

which can be significantly reduced by setting replyA replyBt t=  

comparing with single-sided TWR since the second term in the 

error will be close to zero and pt  which is the propagation time 

between transceivers in the first term is much smaller than the 
reply time. 

C. UWB ranging tests and results 

The performance of the two ranging algorithms described 
above was tested using our sensors in the Engineering Gateway 
Building of UC Irvine under indoor line-of-sight condition. Test 
cases are described using the actual distance between a 
transmitter and a receiver node for the following two cases of 
true ranges: 
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(c) 

Fig. 6. Test results of set 1 ranging accuracy: (a) bias, (b) standard 
deviation for each case (blue plot is for single-sided TWR and red 

plot is for double-sided TWR), and (c) histograms of ranging error 

corresponding to 
1

14Case  (left is for single-sided TWR and right is 

for double-sided TWR 

1

2

Case { },    {0.5m,1m,...,10m}

Case { },    {1m,3m,...,50m}
i i i

i i i

d d

d d

= 

= 
 

To guarantee the validity of the measurement results, over 500 
samples are obtained for each measurement point. The results 
for first case study is shown Fig. 6. As seen in Fig. 6(a) andFig.6 
(b) symmetric double-sided two-way ranging (DS-TWR) 
ranging method producing a better measurement model with 
considerably smaller bias in the measurements. The plots in 
Fig.6 (c) are the histograms of the collected samples for one of 
our cases. These histograms point to the Gaussian nature of the 
measurement noises. Fig. 7(a) and Fig. 7(b) show the bias ad the 
standard deviation of the DS-TWR ranging measurement for 
case 2 (distance from 1m up to 50m, which is about the 
maximum ranging capability of our current UWB sensors). As 
these plot shows, the performance of the DS-TWR ranging is 
reliable up to around 25m. The ranging performance can be 
improved by increasing the number of the two way signal 
exchanges. However, this increase comes with the increase in 
the energy consumption of the UWB sensors. 

D. UWB communication 

As mentioned previously, to process a relative measurement, 
the agents involved need to exchange their local beliefs with 
each other. Considering the environments firefighters working 
in, UWB is the technology that  has the potential to provide a 

 

(a) 

 
(b) 

Fig. 7. The bias and the standard deviation in the DS-TWR ranging model of 

the test case 2.  

 

 

Fig. 8. UWB ranging and communication in proposed cooperative localization 

algorithm. 

 

Fig. 9. UWB communication framework: symmetric double-sided TWR 

followed by communication between two agents. 

robust communication. The DWM1000 transceiver is capable of 
communication at a maximum data transmission rate of 6.8 
Mbps. During symmetric double-sided TWR, the message 
containing corresponding time stamps are transmitted four time 
between two agents to get the relative range measurement. As in 
Fig. 7, the agent takes relative measurement need to acquire the 
prior belief of the other one in order to update the prior beliefs 
in our proposed cooperative localization algorithm. Once the  
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Fig. 10. Initial prototype of a stand-alone portable localization device: (a) a 

single board computer with IMU (b) UWB ranging sensor (c) the portable 

localization device. 

prior beliefs are updated, the updated belief will be sent back. In 
Fig. 8, ranging process is followed by two more times of 
message transmission and each message contains the 
corresponding prior belief and updated belief that are shared. To 
realize robust communication, the maximum data size for each  

message has to been large enough to contain all the data 
exchanged. For DWM1000, data size is up to 127 coded octets 
based on IEEE standard and could be extended up to 1023 coded 
octets which is more than enough. Real-time implementation of 
UWB communication has been achieved using the developed 
devices as in Fig. 4.  

IV. DEMONSTRATIONS 

In this section, we demonstrate the effectiveness of the 
loosely coupled cooperative localization algorithm described in 
previous sections in simulation and experiments. To test the 
performance of the proposed CL augmentation service based on 
UWB relative ranging measurements and communications, an 
indoor experiment via two human agents was conducted in one  

 

Fig. 11. Experimental setup with human agents: (a) Engineering Gateway 
Building at UC Irvine (from Google Earth Pro), (b) experiment scenario, and 

(c) planned trajectory in the hallway. 

of the hallways of the Engineering Gateway Building at UC 
Irvine, see Fig. 9.  Each agent carries a portable hand-held 
localization unit that is shown in Fig. 8. This unit consists of an 
INFORCE 6410PLUS single board computer powered by a 
portable battery, a commercial IMU (SparkFun 9DoF Razor 
IMU) and our UWB ranging/communication sensor shown in 
Fig. 4. The computations are carried out on the single board 
computer and communication between agents are done via the 
UWB sensor. In this paper, our focus is on demonstrating our 
loosely coupled cooperative localization augmentation's 
effectiveness in improving state estimates obtained by a local 
filter. Once we validated our algorithm, we will test it on a 
system that uses foot-mounted IMU system along with 
ZUPTing.  

The experimental test is shown in Fig. 11 for two agents. The 
results corresponding to agent 1 are shown on the top and for 
agent 2 in the bottom.  The true trajectory of each agent is shown 
in black with the starting point marked via the black  . INS only 
localization is shown by the dashed blue lines. The relative 
measurement update times are marked by circles and numbered 
according to their occurrence. The best benefit from CL happens 
when one of the agents has better localization accuracy. To 
emulate a situation in which agent 1 has a higher localization 
accuracy, we have conducted 5 absolute measurement updates 

with respect to a beacon with a known location at occasions that 
are marked with the green squares on the trajectories of agent 1. 
As we can see by use of our loosely coupled CL augmentation 
agents can improve their localization accuracy.  This benefit is 
more pronounced for agent 2, which gets a considerable 
localization improvement by implementing CL with respect to 
agent 1 that has a better localization accuracy due to 5 absolute 
measurement update occasions (marked by green squares). A 
simulation results corresponding to a case with higher accuracy 
IMU is shown in Fig. 12. In this simulation we can see far more 
benefits from CL updates. In our future work, we will consider 
foot-mounted IMU systems with ZUPTing which deliver better 
localization accuracy for local filters. 

V. CONCLUSION 

In this paper, we studied the effectiveness of our cooperative  

 

Fig. 12. The estimated trajectories based on our experiment. The results 

corresponding to agent 1 are shown on the top and for agent 2 in the bottom. 
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Fig. 13. The estimated trajectories from a simulation study in which we use a 

higher grade IMU unit. The results corresponding to agent 1 are shown on the 

top and for agent 2 in the bottom. 

localization algorithm in [16] for human agent localization via 

inter-agent UWB relative ranging. This algorithm serves as an 

augmentation service that gets activated whenever there is a 

relative measurement between two agents. Once the relative 

measurement is done the augmentation goes to sleep until the 

next relative measurement. Since this algorithm does not require 

any form of network wide connectivity it can serve as an 

effective method to increase localization accuracy of human 

agents via opportunistic relative measurement updates with least 

amount of communication and computation overhead. 

Our experiments show that indeed our cooperative 
localization can result in improving the agents accuracy. In this 
paper our focus was on proof of concept and validation aspect 
of our cooperative localization augmentation service. Our future 
work focuses on implementing our algorithm over local filters 
with foot-mounted IMU systems with ZUPTing capability. We 
will focus also on non-line-of-sight UWB measurement 
modeling and its utilization in CL updates. 

Nevertheless, our concluding remark from our experiments 
is that a local filter plus CL augmentation is not enough to 
achieve high accuracy localization. In operational scenarios, it 
makes sense to assume that from time to time one of the agents 
can obtain high localization accuracy via opportunistic GPS 
access or measurements with respect to beacons mounted in 
outside the building. In such cases, the other agents in the team 
can increase their localization accuracy by taking relative 
measurements from that agent. 
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