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Abstract— For a group of mobile robots with communication
and computation capabilities, we consider a cooperative local-
ization algorithm based on Unscented Kalman filtering. We
present a server-client paradigm to distribute the computational
cost of this algorithm among team members. The highest
computational cost of the Unscented Kalamn filter comes from
calculating the collective covariance matrix of the team and
its square root, normally obtained by Cholesky decomposition.
Our server-client based computationally distributed algorithm
is centered on identifying an appropriate Cholesky decomposi-
tion algorithm which allows a coordinated computational task
allocation among team members.

I. INTRODUCTION

Accurate localization is crucial for the success of mobile
multi-robot operations such as search and rescue, environ-
mental monitoring, and oceanic exploration. These oper-
ations most of the time take place in fully or partially
GPS-denied environments. Moreover, often, the environment
is a priori unaccessible, without distinct features, or the
features are changing with time. As a result, GPS naviga-
tion, classical beacon-based localization algorithms [1] or
fixed feature-based Simultaneous Localization and Mapping
algorithms [2] cannot be used. The Cooperative Localization
(CL) strategy for multi-robot systems is a technique with a
promising prospect that uses relative measurements among
the robots as a feedback signal to jointly estimate the location
of team members, resulting in improved position accuracy
for the entire team. However, because CL treats localization
as a joint estimation problem, any algorithm applied results
in a significant processing requirements whose reduction has
been the subject of research over the past few years (see e.g.,
[3], [4], [5], [6]). In this paper, we intend to distribute the
high computational cost of a centralized Unscented Kalamn
filter (UKF) algorithm for CL among team members using
a server-client paradigm.

In recent years, many effort have been devoted to develop
decentralized CL (D-CL) algorithms where the high com-
munication and computation costs of the CL strategy are
distributed among the team members. For example, [9]
proposes a suboptimal algorithm that only the robot obtaining
the relative measurement updates its states. There, to produce
consistent estimates, a bank of Extended Kalman Filters
(EKFs) is maintained at each robot. Using an accurate book-
keeping of the identity of the robots involved in previous
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updates, each filter is only updated when its states are not
correlated with the state of the landmark robot. The main
drawbacks of this algorithm is the large memory demand,
computational complexity, and the growing size of informa-
tion needed at each update. An alternative approach is to
distribute the computation of components of a centralized
CL among team members. This decentralization can be
conducted as a multi-centralized CL, wherein each robot
broadcasts its own information to the entire team. Then,
acting as a Fusion Center (FC) [10], each robot can calculate
and reproduce the centralized pose estimates. This scheme
requires all-to-all robot communication at each information
exchange and has a high-processing cost per robot. D-CL
algorithms distributing computations of an EKF centralized
CL algorithm is proposed in [3] and [11]. Subsequently, [6]
presents a maximum-a-posteriori D-CL algorithm in which
all the robots in the team calculate parts of the centralized
CL. A D-CL approach equivalent to a centralized CL is
proposed in [12]. In order to handle limited communication
ranges and time-varying communication graphs, this method
uses an information transfer scheme wherein each robot
broadcasts all of its locally available information to every
robot within its communication radius at each time-step. This
information includes the past and present measurements,
as well as past measurements previously received from
other robots. The main drawback of this algorithm is its
high communication cost, which may not be feasible in
applications with limited communication bandwidth.

EKF based CL algorithms due to their recursive nature and
relative ease of implementation has been studied extensively.
However, the EKF, due to linearization approximation, is
known to be inconsistent for highly nonlinear systems. An al-
ternative recursive estimation filter, the UKF proposed in [15]
is proven to work more consistently than the EKF for systems
with nonlinear state and measurement models. However, for
large systems, UKF is computationally more expensive than
EKF. In this note, we consider a CL algorithm based on
UKF for a team of mobile robots with communication and
computation capabilities. In particular, we present a server-
client paradigm to distribute the computational cost of this
algorithm among team members. The highest computational
cost of the UKF comes from calculating the collective
covariance matrix, and its square root. The square root of
covariance matrix is required to create the sigma points
for UKF’s statistical linearization. A comparison between
different matrix square root calculation methods within a
UKF application of GPS/INS sensor fusion was presented



in [16] which indicated that the Cholesky decomposition
method was best suited for UKF applications. Our server-
client based algorithm is constructed based on identifying an
appropriate Cholesky decomposition algorithm which allows
a coordinated computational task allocation among team
members. In our algorithm, the server is responsible for
storing the overall data generated by the UKF CL method,
mainly, a matrix of the size of the collective covariance
matrix of the team, the sigma points of the team and the
relative measurement data. While, the clients are the robotic
team members which based on a pre-specified coordinated
computational task allocation, read, process and write back
data at the server to cooperatively implement a centralized
equivalent UKF CL algorithm.

II. PRELIMINARIES

In this section, we introduce our notation, terminology, and
the description of the mobile robotic group we study.

Let R and Z≥0 denote, respectively, the set of real and
nonnegative integer numbers, Mn represent the set of real
positive definite matrices of dimension n × n, 0n×m be
the zero matrix of dimension n × m, and In denote the
identity matrix of dimension n×n. The transpose of matrix
A ∈ Rn×m is A>. We denote the ith column of a matrix
A by [A]i. For n,m ∈ Z≥0, with n < m, n : m represents
{n, · · · ,m}. For block partitioned matrix A, Ai:j,k:l where
i < j and k < l, indicates a submatrix of A consisted of
the blocks in the intersection of rows i to j and the columns
k to l. For finite sets V1 and V2, we denote by V1\V2 the
set whose elements consist of all the elements of V1 that
are not in V2. We distinguish the variables associated to
robot i by the superscript i, e.g., xi is the pose (i.e., position
and orientation) of robot i, x̂i is its pose estimate, and Pi

is the covariance matrix of its pose estimate. We use Pi,i

interchangeably with Pi. The cross-covariance 1 of the pose
vectors of robots i and j is Pi,j . We denote the propagated
and updated variables, say x̂i, at time-step k by x̂i-(k) and
x̂i+(k), respectively. We drop the time-step argument of the
variables whenever it is clear from the context. If qi ∈ Rni

is a local variable at robot i in a team of N robots, the
aggregated qi’s is represented by q = (q1, . . . ,qN ) ∈ Rd,
d =

∑N
i=1 n

i.

A. Description of the mobile robot group

We consider a team of N mobile robots with processing and
communication capabilities. We assume the communication
links are reliable, i.e., information sent over the network will
be received without errors at its destination. We also assume
that there is a shared memory with a server (we refer to it in
short as ‘server’) that robots can read or write data on it at
every time the localization algorithm requires. Subsequently,
when the robots are interacting with this server we refer to

1We use the term cross-covariance to refer to the correlation terms
between two robots in the covariance matrix of the entire team.

them as ‘clients’. Every robot carries exteroceptive sensing
devices to detect and take relative measurements (relative
pose, range, bearing or a combination of them) from the
team members in its measurement range. Every robot has a
distinct detectable unique identification (UID) which, without
loss of generality, here is represented by a unique number in
V = {1, · · · , N}. The robotic team can be heterogeneous,
and the motion of each robot is described by its own linear
or nonlinear equations of motion

xi(k + 1) = f i(xi(k),u(k)) + Bi(k)ηi(k), i ∈ V.

Then, the collective motion equation of the team is given by

x(k + 1) = f(x(k),u(k)) + B(k)η(k), (1)

where x, u, and η are, respectively, the aggregated vectors
of the pose xi ∈ Rni

, the input ui ∈ Rmi

and the process
noise ηi ∈ Rni

p , i ∈ V . We use nx =
∑N

i=1 n
i to denote

the size of the aggregated state of the mobile robotic team.
Here, f(x,u) = (f1(x1,u1), · · · , fN (xN ,uN )) and B =

Diag(B1, · · · ,BN ), where, f i(xi,ui) and Bi ∈ Rni×ni
p ,

are, respectively, the system function and process noise
coefficient matrix of the robot i ∈ V . We assume that
the process noises ηi ∈ Rni

p , i ∈ V , are independent
zero-mean white Gaussian processes with a known positive
definite variance Qi = E[ηi>ηi]. We model the relative
measurement collected by robot i from robot j as

zi,j(k + 1) = hi,j(x
i(k),xj(k))+νi(k), zi,j ∈ Rni

z , (2)

where hi,j(x
i,xj) is the measurement model and νi is the

measurement noise of robot i ∈ V , assumed to be inde-
pendent zero-mean white Gaussian processes with known
positive definite variance Ri = E[νi>νi]. Here, we as-
sume that all the sensor measurements are synchronized.
Moreover, all sensor noises are assumed to be white and
mutually uncorrelated. We show below how using a UKF,
relative measurements between robots are used to improve
the propagated states of the system.

B. Left-looking Cholesky decomposition over a server-client
framework

In this section, we introduce the Cholesky decomposition
algorithm which we use in our UKF algorithm. Let P be
a real symmetric and positive definite matrix. Then there
exists a real lower triangular matrix L so that P = LL> (L
is unique if we restrict its diagonal elements to be positive).
This is called the Cholesky decomposition. We refer to L
as the Cholesky decomposition element. There are different
techniques to obtain Cholesky decomposition (see e.g., [17]).
In this paper, we use the left-looking Cholesky decomposition
algorithm implemented on a two-level memory hierarchy
(fast and slow), see Algorithm 1. In this algorithm, the matrix
being factored initially resides in slow memory, and is too
large to fit in the smaller fast memory. At every timestep, the
fast memory works on a column of the decomposing matrix
and uses the prior columns to obtain the respective Cholesky
elements of that columns and writes back the results on



Algorithm 1 Left-looking Cholesky algorithm [17]
1: for j = 1 to n do
2: read P (j : n, j) from slow memory
3: for k = 1 to j − 1 do
4: read P(j : n, k) from slow memory
5: update diagonal element: P(j, j)← P(j, j)−P(j, k)2

6: for i = j + 1 to n do
7: update jth column element: P(i, j)← P(i, j)−P(i, k)P(j, k)
8: end for
9: end for

10: calculate final value of diagonal element P(j, j)←
√

P(j, j)
11: for i = j + 1 to n do
12: calculate final value of jth column element: P(i, j)← P(i, j)/P(j, j)
13: end for
14: write P(j : n, j) to slow memory
15: end for
16: L = P
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Fig. 1: Progression of the left-
looking Cholesky algorithm over
the matrix resided in the slow mem-
ory (server). j is the currently com-
puted column at the fast memory
(client). The dashed trapezoid is the
part already computed. The gray
part shows the matrix elements used
in the computation of j.

the same column in the slow memory. Figure 1 depicts the
progression of the left-looking Cholesky algorithm over the
matrix resided in the slow memory. Starting with a matrix
to decompose, the result of applying Algorithm 1 is to over-
write this matrix, on the slow memory, with its Cholesky
decomposition element. The slow memory (server in our
development below) is responsible to storing the matrix
and the fast memory (client in out development below) is
responsible to carrying out the calculations, a column at a
time. The fact that this algorithm progresses one column at a
time makes it an apporipriate candidate for our cooperative
localization algorithm.

III. BENCHMARK CENTRALIZED COOPERATIVE
LOCALIZATION ALGORITHM

In this section, we present a centralized UKF CL algorithm
as our benchmark solution and evaluate its performance vs.
and EKF CL algorithm in an example simulation. Our main
contribution, presented in the next section, is to offer a novel
sever-client based distribution of the computations of this
algorithm among the members of the mobile robotic team.

Our centralized UKF CL algorithm below is the straightfor-
ward application of UKF (see [18]) over the collective model
of the mobile robotic team described in Section II-A.

Centralized UKF CL Initialization

For i ∈ V , we initialize the UKF algorithm at x̂i+(0)∈Rni

,
Pi+(0)∈Mni and P+

i,j(0) = 0ni×nj , j ∈ V\{i}.
The prediction and correction steps of UKF over steps k ∈
Z≥0 is as follows.

Centralized UKF CL Prediction

At each prediction step, first, we obtain the Cholesky de-

composition of the covariance matrix of the team, i.e.,
P+(k) = L(k)L(k)> using Algorithm 1. Then, we use L(k)
to construct 2nx + 1 sigma points of the UKF algorithm:

χ(0) = x̂+(k), w(0) =
κ

(nx + κ)
(3a)

χ(l) = x̂+(k) +
√
nx+κ[L(k)]l, w(l) =

1

2(nx + κ)
(3b)

χ(l+nx) = x̂+(k)−
√
nx+κ[L(k)]l, w(l+nx) =

1

2(nx + κ)
,

(3c)

where l ∈ {1, · · · , nx}. Here, κ is a design parameter in the
selection of the sigma points, usually chosen so that nx+κ =
3. This set of sigma points captures the moments of the
underlying distribution up to the third order for the Gaussian
case. Next, we obtain the transformed sigma points

χ-
(l) = f(χ(l)(k),u(k)), l ∈ {0, · · · , 2nx}. (4)

Then, the collective predicted UKF state and covariance
equations are, respectively,

x̂-(k + 1)=
∑2nx

l=0
w(l) χ

-
(l), (5a)

P-(k + 1)=
∑2nx

l=0
w(l) ex,(l)e

>
x,(l)+B(k)Q(k)B(k)>, (5b)

where ex,(l) = χ-
(l) − x̂-(k + 1), l ∈ {0, · · · , 2nx}.

Centralized UKF CL Correction

While there are no relative measurements in the team, no
correction happens, therefore,

x̂+(k + 1) = x̂-(k + 1), P+(k + 1) = P-(k + 1).

For simplicity, we assume that only one relative measurement
takes place at each time. Multiple relative measurements
can be handled by sequential updating procedure (c.f. [19],
[20]). Let robot a make a relative measurement from robot
b. The UKF correction equation is obtained as follows. First,
we calculate the measurement model using predicted sigma
points. In relative measurement models, we only need the
sigma points corresponding to robot a and b, i.e.,

ζab,(l) = hab(χ
a-
(l),χ

b-
(l)), l ∈ {0, · · · , 2nx}. (6)

Then, the predicted relative measurement, the measurement
residual and the innovation covariance are, respectively,

ẑab =
∑2nx

l=0
w(l)ζab,(l), (7a)

ra = zab − ẑab, (7b)

Sab =
∑2nx

l=0
w(l) ez,(l)e

>
z,(l) + Ra(k). (7c)

where ez,(l) = ζab,(l) − ẑab. Let

PXZ =
∑2nx

l=0
w(l) ex,(l)e

>
z,(l).

Then, the UKF gain is given by

K(k + 1) = PXZ Sab
−1. (8)

Finally, the corrected collective team estimations are

x̂+(k+1) = x̂-(k+1)+K(k+1)ra, (9a)

P+(k+1) = P-(k+1)−K(k+1)SabK(k+1)>, (9b)



TABLE I: Computational cost per time-step of the centralized UKF CL algorithm
of Section III in terms of nx, the size of the collective state of the robotic team.

prediction stage, total cost O(n3
x)

L(k) (cf. [17]) (3) (4) (5a) (5b)
O(n3

x) O(nx) O(nx) O(nx) O(n2
x)

correction stage, total cost O(n2
x)

(7a) (7c) (8) (9a) (9b)
O(nx) O(n2

x) O(n2
x) O(nx) O(n2

x)

Table I presents the computational cost of the aforementioned
centralized UKF CL algorithm at each time step in terms of
nx, the size of the collective state of the team. Figure 2
demonstrates a comparative performance study of UKF-
based and EKF-based CL algorithms.

IV. COMPUTATIONALLY DISTRIBUTED SERVER-CLIENT
BASED UKF FOR COOPERATIVE LOCALIZATION

In this section, we introduce our server-client based algo-
rithm for UKF CL which intends to distribute the high
computational cost of a centralized operation among the
robotic team members. We start by expanding the collective
UKF CL equations of Section III in terms of robot-wise
components of the aggregated state and covariance equations
of the team. While doing this, we make observations about
the nature of the source of coupling in the equations of robots
and use these observations to, systematically, generate our
server-client based algorithm for UKF CL.

We partition the the Cholesky decomposition element L of
the state covariance matrix P+(k) in a comparable way to its
robot-wise partitions, i.e., Li,i(k) ∈ Rni×ni

and Li,j(k) ∈
Rni×nj

, for i ∈ V and j ∈ V\{i}, where Li,i’s are lower
triangular matrices. An example of such partitioning is given
below for a group of N = 3 robots:

 P+
1,1(k) P+

1,2(k) P+
1,3(k)

P+
2,1(k) P+

2,2(k) P+
2,3(k)

P+
3,1(k) P+

3,2(k) P+
3,3(k)


︸ ︷︷ ︸

P+(k)

,



. . . 0 0 0

L1,1

. . .

L2,1 L2,2

. . . 0

L3,1 L3,2 L3,3

. . .


︸ ︷︷ ︸

L(k)

,

By taking into account the structure of L(k), the sigma
points (3) can be expanded in terms of robot-wise compo-
nents as follows

χi
(l) = x̂i+(k), l ∈ {0, · · ·nx}\{1, · · · ,

∑i

j=1
nj}, (10a)

χi
(l+nx) = x̂i+(k), l∈{1, · · ·nx}\{1, · · · ,

∑i

j=1
nj}, (10b)

χi
(l) = x̂i+(k)+

√
nx+κ[Li,1:i]l, l∈{1, · · · ,

∑i

j=1
nj}, (10c)

χi
(l+nx) = x̂i+(k)−

√
nx+κ[Li,1:i]l, l∈{1, · · · ,

∑i

j=1
nj}.

(10d)

Observation 1: Observe that in (10) the sigma points of
each robot depend only on its own predicted state and the
elements of corresponding horizontal partition of matrix L.
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Fig. 2: Position root mean square error (RMS) of 30 Monte Carlo
simulations for 3 robots moving on a flat terrain (xi = [x, y, φ]>). The
relative measurement scenario, used in all simulations, consists of robot 3
taking alternating relative pose measurement over consecutive 50 seconds
time intervals from robot 1 and 2, starting at t = 10 seconds. The very thin
curves correspond to robot 1, the thick curves correspond to robot 2 and
the very thick curves correspond to robot 3. The black, gray and light gray
curves correspond to, respectively, the UKF-based CL, the EKF-based CL,
and UKF localization without CL (every robot propagates its model). As this
figure show, employing both UKF-based and EKF-based CL improves robot
localizations. However, the UKF strategy results in further improvement due
to its less conservative method to handle system nonlinearities.

For example, for a team of three robots with n1 = n2 =
n3 = 2, some of the sigma points for the robots are

χ1
(1) = x̂1+(k)+

√
nx+κ[L1,1]1,

χ2
(1) = x̂2+(k)+

√
nx+κ[L2,1 L2,2]1,

χ3
(1) = x̂3+(k)+

√
nx+κ[L3,1 L3,2 L3,3]1,

where L1,1 ∈ R2×2, and [L2,1 L2,2] ∈ R2×4, and
[L3,1 L3,2 L3,3] ∈ R2×6.

Because the equation of each robot is decoupled from the
rest of the team, the transformed sigma points of each robot
i ∈ V , only depend on the local equations of the robot, i.e.,

χi-
(l) = f i(χi

(l)(k),ui(k)), l ∈ {0, · · · , 2nx}. (11)

Then, the predicted UKF state and covariance equations of
each robot i ∈ V are, respectively,

x̂i-(k+1)=
∑2nx

l=0
w(l) χ

i-
(l), (12a)

P-
i,i(k+1)=

∑2nx

l=0
w(l) e

i
x,(l)(e

i
x,(l))

>+Bi(k)Qi(k)Bi(k)>,

(12b)

The cross-covariance terms among the robots are given by

P-
i,j(k + 1) =

∑2nx

l=0
w(l) e

i
x,(l)(e

j
x,(l))

>, (13)

for i ∈ V and j ∈ V\{i}.
Observation 2: Once the sigma points are obtained, the
predicted state and state error covariance of each robot can
be obtained locally at each robot. The source of coupling
between robots is the error cross-covariance terms among
the team members. Therefore, robots need to collaborate with
one another to calculate these terms.

Next, notice that, we can obtain measurement sigma
points (6) for l ∈ {0, · · · , 2nx} as

ζab,(l) = hab(e
a
x,(l)+x̂a-, ebx,(l)+x̂b-), (14)



where we used χj-
(l) = ejx,(l) + x̂j-, j ∈ {a, b}.

We partition K as K =
[
K>1 , · · · ,K

>
N

]>
. Here, Ki ∈

Rni×na
z is the portion of the UKF gain used to correct the

pose estimate of the robot i ∈ V , and is given by

Ki =
∑2nx

l=0
w(l) e

i
x,(l)(ez,(l))

>Sab
−1. (15)

Then, the corrected pose and covariance equations (9) can
be represented as follows where i ∈ V and j ∈ V\{i}

x̂i+(k+1) = x̂i-(k+1) + Kir
a, (16a)

P+
i,i(k+1) =

∑2nx

l=0
w(l)e

i
x,(l)e

i
x,(l)

> −KiS
−1
ab K

>
i , (16b)

P+
i,j(k+1) =

∑2nx

l=0
w(l)e

i
x,(l)e

j
x,(l)

>
−KiS

−1
ab K

>
j . (16c)

Observation 3: After obtaining the measurement informa-
tion, each robot can calculate its corresponding UKF gains
and process its corrected state and state covariance locally.
The source of coupling between robots is the state cross-
covariance terms among the team members.

Based on the observations above, we propose a server-client
based approach to distribute the computational load of the
aforementioned UKF CL among the robotic team members.
We assume that there is a shared memory that is accessible by
every robot/client with a server that lets clients read and write
data on this shared memory. The shared memory allocates
the memory for the following variables (see Fig. 3):

• M where ex,(l), l ∈ {0, · · · , 2nx} of the entire team
will reside at every timestep;

• M̄ where at each timestep, first P+ will reside in it
and next its Cholesky decomposition matrix element L.
Because P+ is symmetric and L is lower triangular,
we only need to allocate memory to the lower block
triangular portion as shown in Fig. 3;

• M̃ where, respectively, the identity of the robot taking
the relative measurement (i.e., a), the predicted state of
this robot a, the measurement vector (zab), the identity
of the robot the measurement is taken from it (i.e, b),
and finally the predicted state of this robot b will reside
in this variable;

• M̄ where the UKF gain of the robots will reside.

Initialization

All the initial cross-covariance terms between robots are
equal to zero. Every robot/client i ∈ V initializes its estima-
tion variables x̂i+(0) ∈ Rni

, and P+
i,i(0) ∈Mni . Then, every

robot/client writes its initial P+
i,i(0) at the corresponding

location of M̄ in the shared memory. Notice that because
the initial cross-covariance terms are equal to zero, the off-
diagonal blocks of M̄ are all zero, i.e, at k = 0, M̄i,i =
P+

i,i(0), M̄i,j = 0, i ∈ V , j ∈ V\{i}.
The prediction and correction steps and the interaction be-
tween the server and the clients of our proposed computa-
tionally distributed UKF over steps k ∈ Z≥0 are as follows.

Prediction stage

The first step in the prediction stage is to calculate the
Cholesky decomposition and to compute the sigma points of
each robot. To accomplish this task, given the facts that a) the
left-looking Cholesky decomposition progresses one column
at a time and b) to compute its sigma points (10) every
robot i ∈ V only needs Li:N,1:i partitions of the Cholesky
decomposition element L, we propose the following coop-
erative compute sequential procedure. Robot/client i ∈ V
reads the blocks M̄i:N,1:i from the server, and preforms the
corresponding steps of the Algorithm 1’s Cholesky decom-
position over blocks M̄i:N,i to obtain Li:N,i. Once finished,
robot i writes back Li:N,i over M̄i:N,i on the server. Then,
the next robot starts the same procedure. Eventually, robot
N will compute the LN,N . Notice that every robot/client
i ∈ V is reading M̄i:N,1:i = [Li:N,1:i−1 M̄i:N,i] and
computing Li:N,i and eventually over writing M̄i:N,i with
its computed Li:N,i. Once each robot/client i ∈ V is done
with calculating its corresponding Li:N,i, it computes its
own sigma points (10) locally. Notice that following the
decomposition procedure above, every robot i ∈ V , has
access to the corresponding row block of the Cholesky
decomposition element L(k) needed to compute its local
sigma points (10).

Next, every robot i ∈ V , computes locally its transformed
sigma points (11), and subsequently computes its local
predicted state (12a) and the corresponding error covari-
ance (12b). Then every robot i ∈ V writes its eix,(l),
l ∈ {0, · · · , 2nx}, on the corresponding row block of M
at the server. Once all robots are done, we have M =
(ex,(0), ex,(1), · · · , ex,(2nx)).

Correction stage

When there is a relative measurement in the team, the robot
that has taken the measurement, denoted by robot a, writes
its identity at M̃1,1, its current predicted state xa- at M̃2,1,
its measurement vector at M̃3,1 and the UID of the landmark
robot b at M̃4,1. Then, every robot i ∈ V\{a} reads M̃1:4,1,
from the shared memory. Subsequently, robot b writes its
current predicted state xb- in M̃5,1. Then every robot reads
M̃5,1 from the shared memory.

We assume that every robot knows the measurement model
of all the other robots in the team. Then, by reading M̃
and the rows of M corresponding to robots {a, b} from the
shared memory, every robot can calculate a local copy of the
measurement variables (7) (recall (14)). Subsequently, every
robot i ∈ V can calculate its corresponding UKF gain Ki

given (15), and as a result its corrected state (16a) and error
covariance (16b) locally by itself.

Next, robots should create the cross-covariance matri-
ces (16a) and write the corrected covariance matrix of the
team P+ on the share memory for next step. To accomplish
this task, the robots follow the parallel procedure in Proce-
dure 1 below (each robot i can perform this stage in parallel
with other robots). As final task for the correction stage,
robot a writes zero at both M̃1,1 and M̃4,1.

If there is no relative measurement at the current time-step
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×
×
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×
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Fig. 3: Matrices stored in the server/shared memory. The blank blocks of M̄ are not needed and no memory is allocated for them.

Procedure 1: distributed calculation of team cross-covariances
1: for robot i = 1 to N do
2: read M̂(i:N,1) from the shared memory to obtain Ki:N

3: for l = i− 1 to 2nx do
4: read M(i : N, l + 1) from shared memory to obtain

ei:N
x,(l)

5: for j = i to N do
6: set P+

i,j ← P+
i,j + ei

x,(l)(e
j
x,(l))

>

7: end for
8: end for
9: for j = i to N do

10: P+
i,j ← P+

i,j −KiS
−1
ab K

>
j

11: write P+
i,j in the corresponding block at M̄i,j in the

shared memory
12: end for
13: end for

k + 1, every robot i ∈ V obtains its estimation as

x̂i+(k + 1) = x̂i-(k + 1), P+
i,i(k + 1) = P-

i,i(k + 1).

Then, the robots need to proceed with the distributed cal-
culation of the team cross-covariance terms as outlined in
Procedure 1 expect for steps 2 and 10. When there is no
relative measurement at the current time-step, the robots do
not need to read from or write on M̃ and M̂ variables of
the shared memory except for M̃1,1 which its zero value
indicates there is no relative measurement in the team.

It worth noticing that except for the Cholesky decomposition,
which must be done in a sequential manner, the rest of
calculations by each robot is independent from the rest of
the team and can be done in a parallel manner.

V. CONCLUSIONS

For a team of robots with communication and computational
capabilities, we presented a cooperative localization algo-
rithm based on a UKF whose computations are distributed
among the team members via a server-client paradaim. Our
server-client based computationally distributed algorithm is
based on identifying an appropriate Cholesky decomposition
algorithm which allows a coordinated computational task
allocation among team member.
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[8] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor net-
work deployment using potential fields: A distributed scalable solution
to the area coverage problem,” in Int. Conference on Distributed
Autonomous Robotic Systems, (Fukuoka, Japan), pp. 299–308, June
2002.

[9] A. Bahr, M. R. Walter, and J. J. Leonard, “Consistent cooperative
localization,” in IEEE Int. Conf. on Robotics and Automation, (Kobe,
Japan), pp. 8908–8913, May 2009.

[10] N. Trawny, S. I. Roumeliotis, and G. B. Giannakis, “Cooperative
multi-robot localization under communication constraints,” in IEEE
Int. Conf. on Robotics and Automation, (Kobe, Japan), pp. 4394–4400,
May 2009.

[11] S. S. Kia, S. Rounds, and S. Martı́nez, “A centralized-equivalent de-
centralized implementation of extended Kalman filters for cooperative
localization,” in IEEE/RSJ Int. Conference on Intelligent Robots and
Systems, (Chicago, IL), pp. 3761–3765, September 2014.

[12] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized
localization of sparsely-communicating robot networks: A centralized-
equivalent approach,” IEEE Transactions on Robotics, vol. 26, no. 1,
pp. 62–77, 2010.

[13] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparamet-
ric belief propagation for self-localization of sensor networks,” IEEE
Journal of Selected Areas in Communications, vol. 23, no. 4, pp. 809–
819, 2005.

[14] J. Nilsson, D. Zachariah, I. Skog, and P. Händel, “Cooperative local-
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